1415 строки
38 KiB
C
1415 строки
38 KiB
C
/*
|
|
* Common Flash Interface support:
|
|
* ST Advanced Architecture Command Set (ID 0x0020)
|
|
*
|
|
* (C) 2000 Red Hat. GPL'd
|
|
*
|
|
* 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
|
|
* - completely revamped method functions so they are aware and
|
|
* independent of the flash geometry (buswidth, interleave, etc.)
|
|
* - scalability vs code size is completely set at compile-time
|
|
* (see include/linux/mtd/cfi.h for selection)
|
|
* - optimized write buffer method
|
|
* 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
|
|
* - modified Intel Command Set 0x0001 to support ST Advanced Architecture
|
|
* (command set 0x0020)
|
|
* - added a writev function
|
|
* 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
|
|
* - Plugged memory leak in cfi_staa_writev().
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <asm/io.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mtd/map.h>
|
|
#include <linux/mtd/cfi.h>
|
|
#include <linux/mtd/mtd.h>
|
|
|
|
|
|
static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
|
static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long count, loff_t to, size_t *retlen);
|
|
static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
|
|
static void cfi_staa_sync (struct mtd_info *);
|
|
static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
static int cfi_staa_suspend (struct mtd_info *);
|
|
static void cfi_staa_resume (struct mtd_info *);
|
|
|
|
static void cfi_staa_destroy(struct mtd_info *);
|
|
|
|
struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
|
|
|
|
static struct mtd_info *cfi_staa_setup (struct map_info *);
|
|
|
|
static struct mtd_chip_driver cfi_staa_chipdrv = {
|
|
.probe = NULL, /* Not usable directly */
|
|
.destroy = cfi_staa_destroy,
|
|
.name = "cfi_cmdset_0020",
|
|
.module = THIS_MODULE
|
|
};
|
|
|
|
/* #define DEBUG_LOCK_BITS */
|
|
//#define DEBUG_CFI_FEATURES
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
static void cfi_tell_features(struct cfi_pri_intelext *extp)
|
|
{
|
|
int i;
|
|
printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
|
|
printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
|
|
printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
|
|
printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
|
|
printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
|
|
printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
|
|
printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
|
|
printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
|
|
printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
|
|
printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
|
|
for (i=9; i<32; i++) {
|
|
if (extp->FeatureSupport & (1<<i))
|
|
printk(" - Unknown Bit %X: supported\n", i);
|
|
}
|
|
|
|
printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
|
|
printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
|
|
for (i=1; i<8; i++) {
|
|
if (extp->SuspendCmdSupport & (1<<i))
|
|
printk(" - Unknown Bit %X: supported\n", i);
|
|
}
|
|
|
|
printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
|
|
printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
|
|
printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
|
|
for (i=2; i<16; i++) {
|
|
if (extp->BlkStatusRegMask & (1<<i))
|
|
printk(" - Unknown Bit %X Active: yes\n",i);
|
|
}
|
|
|
|
printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
|
|
extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
|
|
if (extp->VppOptimal)
|
|
printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
|
|
extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
|
|
}
|
|
#endif
|
|
|
|
/* This routine is made available to other mtd code via
|
|
* inter_module_register. It must only be accessed through
|
|
* inter_module_get which will bump the use count of this module. The
|
|
* addresses passed back in cfi are valid as long as the use count of
|
|
* this module is non-zero, i.e. between inter_module_get and
|
|
* inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
|
|
*/
|
|
struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
|
|
if (cfi->cfi_mode) {
|
|
/*
|
|
* It's a real CFI chip, not one for which the probe
|
|
* routine faked a CFI structure. So we read the feature
|
|
* table from it.
|
|
*/
|
|
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
|
|
struct cfi_pri_intelext *extp;
|
|
|
|
extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
|
|
if (!extp)
|
|
return NULL;
|
|
|
|
if (extp->MajorVersion != '1' ||
|
|
(extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
|
|
printk(KERN_ERR " Unknown ST Microelectronics"
|
|
" Extended Query version %c.%c.\n",
|
|
extp->MajorVersion, extp->MinorVersion);
|
|
kfree(extp);
|
|
return NULL;
|
|
}
|
|
|
|
/* Do some byteswapping if necessary */
|
|
extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport);
|
|
extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask);
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
/* Tell the user about it in lots of lovely detail */
|
|
cfi_tell_features(extp);
|
|
#endif
|
|
|
|
/* Install our own private info structure */
|
|
cfi->cmdset_priv = extp;
|
|
}
|
|
|
|
for (i=0; i< cfi->numchips; i++) {
|
|
cfi->chips[i].word_write_time = 128;
|
|
cfi->chips[i].buffer_write_time = 128;
|
|
cfi->chips[i].erase_time = 1024;
|
|
cfi->chips[i].ref_point_counter = 0;
|
|
init_waitqueue_head(&(cfi->chips[i].wq));
|
|
}
|
|
|
|
return cfi_staa_setup(map);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
|
|
|
|
static struct mtd_info *cfi_staa_setup(struct map_info *map)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct mtd_info *mtd;
|
|
unsigned long offset = 0;
|
|
int i,j;
|
|
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
|
|
|
|
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
|
|
//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
|
|
|
|
if (!mtd) {
|
|
printk(KERN_ERR "Failed to allocate memory for MTD device\n");
|
|
kfree(cfi->cmdset_priv);
|
|
return NULL;
|
|
}
|
|
|
|
mtd->priv = map;
|
|
mtd->type = MTD_NORFLASH;
|
|
mtd->size = devsize * cfi->numchips;
|
|
|
|
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
|
|
mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
|
|
* mtd->numeraseregions, GFP_KERNEL);
|
|
if (!mtd->eraseregions) {
|
|
printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
|
|
kfree(cfi->cmdset_priv);
|
|
kfree(mtd);
|
|
return NULL;
|
|
}
|
|
|
|
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
|
|
unsigned long ernum, ersize;
|
|
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
|
|
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
|
|
|
|
if (mtd->erasesize < ersize) {
|
|
mtd->erasesize = ersize;
|
|
}
|
|
for (j=0; j<cfi->numchips; j++) {
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
|
|
}
|
|
offset += (ersize * ernum);
|
|
}
|
|
|
|
if (offset != devsize) {
|
|
/* Argh */
|
|
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
|
|
kfree(mtd->eraseregions);
|
|
kfree(cfi->cmdset_priv);
|
|
kfree(mtd);
|
|
return NULL;
|
|
}
|
|
|
|
for (i=0; i<mtd->numeraseregions;i++){
|
|
printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n",
|
|
i, (unsigned long long)mtd->eraseregions[i].offset,
|
|
mtd->eraseregions[i].erasesize,
|
|
mtd->eraseregions[i].numblocks);
|
|
}
|
|
|
|
/* Also select the correct geometry setup too */
|
|
mtd->erase = cfi_staa_erase_varsize;
|
|
mtd->read = cfi_staa_read;
|
|
mtd->write = cfi_staa_write_buffers;
|
|
mtd->writev = cfi_staa_writev;
|
|
mtd->sync = cfi_staa_sync;
|
|
mtd->lock = cfi_staa_lock;
|
|
mtd->unlock = cfi_staa_unlock;
|
|
mtd->suspend = cfi_staa_suspend;
|
|
mtd->resume = cfi_staa_resume;
|
|
mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
|
|
mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
|
|
mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize;
|
|
map->fldrv = &cfi_staa_chipdrv;
|
|
__module_get(THIS_MODULE);
|
|
mtd->name = map->name;
|
|
return mtd;
|
|
}
|
|
|
|
|
|
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
|
|
{
|
|
map_word status, status_OK;
|
|
unsigned long timeo;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int suspended = 0;
|
|
unsigned long cmd_addr;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
adr += chip->start;
|
|
|
|
/* Ensure cmd read/writes are aligned. */
|
|
cmd_addr = adr & ~(map_bankwidth(map)-1);
|
|
|
|
/* Let's determine this according to the interleave only once */
|
|
status_OK = CMD(0x80);
|
|
|
|
timeo = jiffies + HZ;
|
|
retry:
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* Check that the chip's ready to talk to us.
|
|
* If it's in FL_ERASING state, suspend it and make it talk now.
|
|
*/
|
|
switch (chip->state) {
|
|
case FL_ERASING:
|
|
if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
|
|
goto sleep; /* We don't support erase suspend */
|
|
|
|
map_write (map, CMD(0xb0), cmd_addr);
|
|
/* If the flash has finished erasing, then 'erase suspend'
|
|
* appears to make some (28F320) flash devices switch to
|
|
* 'read' mode. Make sure that we switch to 'read status'
|
|
* mode so we get the right data. --rmk
|
|
*/
|
|
map_write(map, CMD(0x70), cmd_addr);
|
|
chip->oldstate = FL_ERASING;
|
|
chip->state = FL_ERASE_SUSPENDING;
|
|
// printk("Erase suspending at 0x%lx\n", cmd_addr);
|
|
for (;;) {
|
|
status = map_read(map, cmd_addr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
/* Urgh */
|
|
map_write(map, CMD(0xd0), cmd_addr);
|
|
/* make sure we're in 'read status' mode */
|
|
map_write(map, CMD(0x70), cmd_addr);
|
|
chip->state = FL_ERASING;
|
|
mutex_unlock(&chip->mutex);
|
|
printk(KERN_ERR "Chip not ready after erase "
|
|
"suspended: status = 0x%lx\n", status.x[0]);
|
|
return -EIO;
|
|
}
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
}
|
|
|
|
suspended = 1;
|
|
map_write(map, CMD(0xff), cmd_addr);
|
|
chip->state = FL_READY;
|
|
break;
|
|
|
|
#if 0
|
|
case FL_WRITING:
|
|
/* Not quite yet */
|
|
#endif
|
|
|
|
case FL_READY:
|
|
break;
|
|
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
map_write(map, CMD(0x70), cmd_addr);
|
|
chip->state = FL_STATUS;
|
|
|
|
case FL_STATUS:
|
|
status = map_read(map, cmd_addr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK)) {
|
|
map_write(map, CMD(0xff), cmd_addr);
|
|
chip->state = FL_READY;
|
|
break;
|
|
}
|
|
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
|
if (time_after(jiffies, timeo)) {
|
|
mutex_unlock(&chip->mutex);
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
goto retry;
|
|
|
|
default:
|
|
sleep:
|
|
/* Stick ourselves on a wait queue to be woken when
|
|
someone changes the status */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + HZ;
|
|
goto retry;
|
|
}
|
|
|
|
map_copy_from(map, buf, adr, len);
|
|
|
|
if (suspended) {
|
|
chip->state = chip->oldstate;
|
|
/* What if one interleaved chip has finished and the
|
|
other hasn't? The old code would leave the finished
|
|
one in READY mode. That's bad, and caused -EROFS
|
|
errors to be returned from do_erase_oneblock because
|
|
that's the only bit it checked for at the time.
|
|
As the state machine appears to explicitly allow
|
|
sending the 0x70 (Read Status) command to an erasing
|
|
chip and expecting it to be ignored, that's what we
|
|
do. */
|
|
map_write(map, CMD(0xd0), cmd_addr);
|
|
map_write(map, CMD(0x70), cmd_addr);
|
|
}
|
|
|
|
wake_up(&chip->wq);
|
|
mutex_unlock(&chip->mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs;
|
|
int chipnum;
|
|
int ret = 0;
|
|
|
|
/* ofs: offset within the first chip that the first read should start */
|
|
chipnum = (from >> cfi->chipshift);
|
|
ofs = from - (chipnum << cfi->chipshift);
|
|
|
|
*retlen = 0;
|
|
|
|
while (len) {
|
|
unsigned long thislen;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
|
|
if ((len + ofs -1) >> cfi->chipshift)
|
|
thislen = (1<<cfi->chipshift) - ofs;
|
|
else
|
|
thislen = len;
|
|
|
|
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
|
|
if (ret)
|
|
break;
|
|
|
|
*retlen += thislen;
|
|
len -= thislen;
|
|
buf += thislen;
|
|
|
|
ofs = 0;
|
|
chipnum++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, const u_char *buf, int len)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status, status_OK;
|
|
unsigned long cmd_adr, timeo;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int wbufsize, z;
|
|
|
|
/* M58LW064A requires bus alignment for buffer wriets -- saw */
|
|
if (adr & (map_bankwidth(map)-1))
|
|
return -EINVAL;
|
|
|
|
wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
|
adr += chip->start;
|
|
cmd_adr = adr & ~(wbufsize-1);
|
|
|
|
/* Let's determine this according to the interleave only once */
|
|
status_OK = CMD(0x80);
|
|
|
|
timeo = jiffies + HZ;
|
|
retry:
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
printk("%s: chip->state[%d]\n", __func__, chip->state);
|
|
#endif
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* Check that the chip's ready to talk to us.
|
|
* Later, we can actually think about interrupting it
|
|
* if it's in FL_ERASING state.
|
|
* Not just yet, though.
|
|
*/
|
|
switch (chip->state) {
|
|
case FL_READY:
|
|
break;
|
|
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
chip->state = FL_STATUS;
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
|
|
#endif
|
|
|
|
case FL_STATUS:
|
|
status = map_read(map, cmd_adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
|
if (time_after(jiffies, timeo)) {
|
|
mutex_unlock(&chip->mutex);
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
|
|
status.x[0], map_read(map, cmd_adr).x[0]);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
goto retry;
|
|
|
|
default:
|
|
/* Stick ourselves on a wait queue to be woken when
|
|
someone changes the status */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + HZ;
|
|
goto retry;
|
|
}
|
|
|
|
ENABLE_VPP(map);
|
|
map_write(map, CMD(0xe8), cmd_adr);
|
|
chip->state = FL_WRITING_TO_BUFFER;
|
|
|
|
z = 0;
|
|
for (;;) {
|
|
status = map_read(map, cmd_adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (++z > 100) {
|
|
/* Argh. Not ready for write to buffer */
|
|
DISABLE_VPP(map);
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
chip->state = FL_STATUS;
|
|
mutex_unlock(&chip->mutex);
|
|
printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
/* Write length of data to come */
|
|
map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
|
|
|
|
/* Write data */
|
|
for (z = 0; z < len;
|
|
z += map_bankwidth(map), buf += map_bankwidth(map)) {
|
|
map_word d;
|
|
d = map_word_load(map, buf);
|
|
map_write(map, d, adr+z);
|
|
}
|
|
/* GO GO GO */
|
|
map_write(map, CMD(0xd0), cmd_adr);
|
|
chip->state = FL_WRITING;
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(chip->buffer_write_time);
|
|
mutex_lock(&chip->mutex);
|
|
|
|
timeo = jiffies + (HZ/2);
|
|
z = 0;
|
|
for (;;) {
|
|
if (chip->state != FL_WRITING) {
|
|
/* Someone's suspended the write. Sleep */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + (HZ / 2); /* FIXME */
|
|
mutex_lock(&chip->mutex);
|
|
continue;
|
|
}
|
|
|
|
status = map_read(map, cmd_adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
/* OK Still waiting */
|
|
if (time_after(jiffies, timeo)) {
|
|
/* clear status */
|
|
map_write(map, CMD(0x50), cmd_adr);
|
|
/* put back into read status register mode */
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
DISABLE_VPP(map);
|
|
mutex_unlock(&chip->mutex);
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
z++;
|
|
mutex_lock(&chip->mutex);
|
|
}
|
|
if (!z) {
|
|
chip->buffer_write_time--;
|
|
if (!chip->buffer_write_time)
|
|
chip->buffer_write_time++;
|
|
}
|
|
if (z > 1)
|
|
chip->buffer_write_time++;
|
|
|
|
/* Done and happy. */
|
|
DISABLE_VPP(map);
|
|
chip->state = FL_STATUS;
|
|
|
|
/* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
|
|
if (map_word_bitsset(map, status, CMD(0x3a))) {
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
|
|
#endif
|
|
/* clear status */
|
|
map_write(map, CMD(0x50), cmd_adr);
|
|
/* put back into read status register mode */
|
|
map_write(map, CMD(0x70), adr);
|
|
wake_up(&chip->wq);
|
|
mutex_unlock(&chip->mutex);
|
|
return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
|
|
}
|
|
wake_up(&chip->wq);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
|
|
size_t len, size_t *retlen, const u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
|
int ret = 0;
|
|
int chipnum;
|
|
unsigned long ofs;
|
|
|
|
*retlen = 0;
|
|
if (!len)
|
|
return 0;
|
|
|
|
chipnum = to >> cfi->chipshift;
|
|
ofs = to - (chipnum << cfi->chipshift);
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
|
|
printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
|
|
printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
|
|
#endif
|
|
|
|
/* Write buffer is worth it only if more than one word to write... */
|
|
while (len > 0) {
|
|
/* We must not cross write block boundaries */
|
|
int size = wbufsize - (ofs & (wbufsize-1));
|
|
|
|
if (size > len)
|
|
size = len;
|
|
|
|
ret = do_write_buffer(map, &cfi->chips[chipnum],
|
|
ofs, buf, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += size;
|
|
buf += size;
|
|
(*retlen) += size;
|
|
len -= size;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Writev for ECC-Flashes is a little more complicated. We need to maintain
|
|
* a small buffer for this.
|
|
* XXX: If the buffer size is not a multiple of 2, this will break
|
|
*/
|
|
#define ECCBUF_SIZE (mtd->writesize)
|
|
#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
|
|
#define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
|
|
static int
|
|
cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long count, loff_t to, size_t *retlen)
|
|
{
|
|
unsigned long i;
|
|
size_t totlen = 0, thislen;
|
|
int ret = 0;
|
|
size_t buflen = 0;
|
|
static char *buffer;
|
|
|
|
if (!ECCBUF_SIZE) {
|
|
/* We should fall back to a general writev implementation.
|
|
* Until that is written, just break.
|
|
*/
|
|
return -EIO;
|
|
}
|
|
buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
for (i=0; i<count; i++) {
|
|
size_t elem_len = vecs[i].iov_len;
|
|
void *elem_base = vecs[i].iov_base;
|
|
if (!elem_len) /* FIXME: Might be unnecessary. Check that */
|
|
continue;
|
|
if (buflen) { /* cut off head */
|
|
if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
|
|
memcpy(buffer+buflen, elem_base, elem_len);
|
|
buflen += elem_len;
|
|
continue;
|
|
}
|
|
memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
|
|
ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer);
|
|
totlen += thislen;
|
|
if (ret || thislen != ECCBUF_SIZE)
|
|
goto write_error;
|
|
elem_len -= thislen-buflen;
|
|
elem_base += thislen-buflen;
|
|
to += ECCBUF_SIZE;
|
|
}
|
|
if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
|
|
ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base);
|
|
totlen += thislen;
|
|
if (ret || thislen != ECCBUF_DIV(elem_len))
|
|
goto write_error;
|
|
to += thislen;
|
|
}
|
|
buflen = ECCBUF_MOD(elem_len); /* cut off tail */
|
|
if (buflen) {
|
|
memset(buffer, 0xff, ECCBUF_SIZE);
|
|
memcpy(buffer, elem_base + thislen, buflen);
|
|
}
|
|
}
|
|
if (buflen) { /* flush last page, even if not full */
|
|
/* This is sometimes intended behaviour, really */
|
|
ret = mtd->write(mtd, to, buflen, &thislen, buffer);
|
|
totlen += thislen;
|
|
if (ret || thislen != ECCBUF_SIZE)
|
|
goto write_error;
|
|
}
|
|
write_error:
|
|
if (retlen)
|
|
*retlen = totlen;
|
|
kfree(buffer);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status, status_OK;
|
|
unsigned long timeo;
|
|
int retries = 3;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int ret = 0;
|
|
|
|
adr += chip->start;
|
|
|
|
/* Let's determine this according to the interleave only once */
|
|
status_OK = CMD(0x80);
|
|
|
|
timeo = jiffies + HZ;
|
|
retry:
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* Check that the chip's ready to talk to us. */
|
|
switch (chip->state) {
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
case FL_READY:
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
|
|
case FL_STATUS:
|
|
status = map_read(map, adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
|
if (time_after(jiffies, timeo)) {
|
|
mutex_unlock(&chip->mutex);
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
goto retry;
|
|
|
|
default:
|
|
/* Stick ourselves on a wait queue to be woken when
|
|
someone changes the status */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + HZ;
|
|
goto retry;
|
|
}
|
|
|
|
ENABLE_VPP(map);
|
|
/* Clear the status register first */
|
|
map_write(map, CMD(0x50), adr);
|
|
|
|
/* Now erase */
|
|
map_write(map, CMD(0x20), adr);
|
|
map_write(map, CMD(0xD0), adr);
|
|
chip->state = FL_ERASING;
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
msleep(1000);
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* FIXME. Use a timer to check this, and return immediately. */
|
|
/* Once the state machine's known to be working I'll do that */
|
|
|
|
timeo = jiffies + (HZ*20);
|
|
for (;;) {
|
|
if (chip->state != FL_ERASING) {
|
|
/* Someone's suspended the erase. Sleep */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + (HZ*20); /* FIXME */
|
|
mutex_lock(&chip->mutex);
|
|
continue;
|
|
}
|
|
|
|
status = map_read(map, adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
/* OK Still waiting */
|
|
if (time_after(jiffies, timeo)) {
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
|
|
DISABLE_VPP(map);
|
|
mutex_unlock(&chip->mutex);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
}
|
|
|
|
DISABLE_VPP(map);
|
|
ret = 0;
|
|
|
|
/* We've broken this before. It doesn't hurt to be safe */
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
status = map_read(map, adr);
|
|
|
|
/* check for lock bit */
|
|
if (map_word_bitsset(map, status, CMD(0x3a))) {
|
|
unsigned char chipstatus = status.x[0];
|
|
if (!map_word_equal(map, status, CMD(chipstatus))) {
|
|
int i, w;
|
|
for (w=0; w<map_words(map); w++) {
|
|
for (i = 0; i<cfi_interleave(cfi); i++) {
|
|
chipstatus |= status.x[w] >> (cfi->device_type * 8);
|
|
}
|
|
}
|
|
printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
|
|
status.x[0], chipstatus);
|
|
}
|
|
/* Reset the error bits */
|
|
map_write(map, CMD(0x50), adr);
|
|
map_write(map, CMD(0x70), adr);
|
|
|
|
if ((chipstatus & 0x30) == 0x30) {
|
|
printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
|
|
ret = -EIO;
|
|
} else if (chipstatus & 0x02) {
|
|
/* Protection bit set */
|
|
ret = -EROFS;
|
|
} else if (chipstatus & 0x8) {
|
|
/* Voltage */
|
|
printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
|
|
ret = -EIO;
|
|
} else if (chipstatus & 0x20) {
|
|
if (retries--) {
|
|
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
|
|
timeo = jiffies + HZ;
|
|
chip->state = FL_STATUS;
|
|
mutex_unlock(&chip->mutex);
|
|
goto retry;
|
|
}
|
|
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
|
|
ret = -EIO;
|
|
}
|
|
}
|
|
|
|
wake_up(&chip->wq);
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_staa_erase_varsize(struct mtd_info *mtd,
|
|
struct erase_info *instr)
|
|
{ struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long adr, len;
|
|
int chipnum, ret = 0;
|
|
int i, first;
|
|
struct mtd_erase_region_info *regions = mtd->eraseregions;
|
|
|
|
if (instr->addr > mtd->size)
|
|
return -EINVAL;
|
|
|
|
if ((instr->len + instr->addr) > mtd->size)
|
|
return -EINVAL;
|
|
|
|
/* Check that both start and end of the requested erase are
|
|
* aligned with the erasesize at the appropriate addresses.
|
|
*/
|
|
|
|
i = 0;
|
|
|
|
/* Skip all erase regions which are ended before the start of
|
|
the requested erase. Actually, to save on the calculations,
|
|
we skip to the first erase region which starts after the
|
|
start of the requested erase, and then go back one.
|
|
*/
|
|
|
|
while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
|
|
i++;
|
|
i--;
|
|
|
|
/* OK, now i is pointing at the erase region in which this
|
|
erase request starts. Check the start of the requested
|
|
erase range is aligned with the erase size which is in
|
|
effect here.
|
|
*/
|
|
|
|
if (instr->addr & (regions[i].erasesize-1))
|
|
return -EINVAL;
|
|
|
|
/* Remember the erase region we start on */
|
|
first = i;
|
|
|
|
/* Next, check that the end of the requested erase is aligned
|
|
* with the erase region at that address.
|
|
*/
|
|
|
|
while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
|
|
i++;
|
|
|
|
/* As before, drop back one to point at the region in which
|
|
the address actually falls
|
|
*/
|
|
i--;
|
|
|
|
if ((instr->addr + instr->len) & (regions[i].erasesize-1))
|
|
return -EINVAL;
|
|
|
|
chipnum = instr->addr >> cfi->chipshift;
|
|
adr = instr->addr - (chipnum << cfi->chipshift);
|
|
len = instr->len;
|
|
|
|
i=first;
|
|
|
|
while(len) {
|
|
ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
adr += regions[i].erasesize;
|
|
len -= regions[i].erasesize;
|
|
|
|
if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
|
|
i++;
|
|
|
|
if (adr >> cfi->chipshift) {
|
|
adr = 0;
|
|
chipnum++;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
}
|
|
}
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cfi_staa_sync (struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
|
chip = &cfi->chips[i];
|
|
|
|
retry:
|
|
mutex_lock(&chip->mutex);
|
|
|
|
switch(chip->state) {
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_SYNCING;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
case FL_SYNCING:
|
|
mutex_unlock(&chip->mutex);
|
|
break;
|
|
|
|
default:
|
|
/* Not an idle state */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
|
|
for (i--; i >=0; i--) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (chip->state == FL_SYNCING) {
|
|
chip->state = chip->oldstate;
|
|
wake_up(&chip->wq);
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
}
|
|
|
|
static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status, status_OK;
|
|
unsigned long timeo = jiffies + HZ;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
adr += chip->start;
|
|
|
|
/* Let's determine this according to the interleave only once */
|
|
status_OK = CMD(0x80);
|
|
|
|
timeo = jiffies + HZ;
|
|
retry:
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* Check that the chip's ready to talk to us. */
|
|
switch (chip->state) {
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
case FL_READY:
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
|
|
case FL_STATUS:
|
|
status = map_read(map, adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
|
if (time_after(jiffies, timeo)) {
|
|
mutex_unlock(&chip->mutex);
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
goto retry;
|
|
|
|
default:
|
|
/* Stick ourselves on a wait queue to be woken when
|
|
someone changes the status */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + HZ;
|
|
goto retry;
|
|
}
|
|
|
|
ENABLE_VPP(map);
|
|
map_write(map, CMD(0x60), adr);
|
|
map_write(map, CMD(0x01), adr);
|
|
chip->state = FL_LOCKING;
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
msleep(1000);
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* FIXME. Use a timer to check this, and return immediately. */
|
|
/* Once the state machine's known to be working I'll do that */
|
|
|
|
timeo = jiffies + (HZ*2);
|
|
for (;;) {
|
|
|
|
status = map_read(map, adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
/* OK Still waiting */
|
|
if (time_after(jiffies, timeo)) {
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
|
|
DISABLE_VPP(map);
|
|
mutex_unlock(&chip->mutex);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
}
|
|
|
|
/* Done and happy. */
|
|
chip->state = FL_STATUS;
|
|
DISABLE_VPP(map);
|
|
wake_up(&chip->wq);
|
|
mutex_unlock(&chip->mutex);
|
|
return 0;
|
|
}
|
|
static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long adr;
|
|
int chipnum, ret = 0;
|
|
#ifdef DEBUG_LOCK_BITS
|
|
int ofs_factor = cfi->interleave * cfi->device_type;
|
|
#endif
|
|
|
|
if (ofs & (mtd->erasesize - 1))
|
|
return -EINVAL;
|
|
|
|
if (len & (mtd->erasesize -1))
|
|
return -EINVAL;
|
|
|
|
if ((len + ofs) > mtd->size)
|
|
return -EINVAL;
|
|
|
|
chipnum = ofs >> cfi->chipshift;
|
|
adr = ofs - (chipnum << cfi->chipshift);
|
|
|
|
while(len) {
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
|
printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
|
|
cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
|
#endif
|
|
|
|
ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
|
printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
|
|
cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
|
#endif
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
adr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
|
|
if (adr >> cfi->chipshift) {
|
|
adr = 0;
|
|
chipnum++;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status, status_OK;
|
|
unsigned long timeo = jiffies + HZ;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
adr += chip->start;
|
|
|
|
/* Let's determine this according to the interleave only once */
|
|
status_OK = CMD(0x80);
|
|
|
|
timeo = jiffies + HZ;
|
|
retry:
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* Check that the chip's ready to talk to us. */
|
|
switch (chip->state) {
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
case FL_READY:
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
|
|
case FL_STATUS:
|
|
status = map_read(map, adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
/* Urgh. Chip not yet ready to talk to us. */
|
|
if (time_after(jiffies, timeo)) {
|
|
mutex_unlock(&chip->mutex);
|
|
printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
goto retry;
|
|
|
|
default:
|
|
/* Stick ourselves on a wait queue to be woken when
|
|
someone changes the status */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + HZ;
|
|
goto retry;
|
|
}
|
|
|
|
ENABLE_VPP(map);
|
|
map_write(map, CMD(0x60), adr);
|
|
map_write(map, CMD(0xD0), adr);
|
|
chip->state = FL_UNLOCKING;
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
msleep(1000);
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* FIXME. Use a timer to check this, and return immediately. */
|
|
/* Once the state machine's known to be working I'll do that */
|
|
|
|
timeo = jiffies + (HZ*2);
|
|
for (;;) {
|
|
|
|
status = map_read(map, adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
/* OK Still waiting */
|
|
if (time_after(jiffies, timeo)) {
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
|
|
DISABLE_VPP(map);
|
|
mutex_unlock(&chip->mutex);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the unlock, wait a while and retry */
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
}
|
|
|
|
/* Done and happy. */
|
|
chip->state = FL_STATUS;
|
|
DISABLE_VPP(map);
|
|
wake_up(&chip->wq);
|
|
mutex_unlock(&chip->mutex);
|
|
return 0;
|
|
}
|
|
static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long adr;
|
|
int chipnum, ret = 0;
|
|
#ifdef DEBUG_LOCK_BITS
|
|
int ofs_factor = cfi->interleave * cfi->device_type;
|
|
#endif
|
|
|
|
chipnum = ofs >> cfi->chipshift;
|
|
adr = ofs - (chipnum << cfi->chipshift);
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
{
|
|
unsigned long temp_adr = adr;
|
|
unsigned long temp_len = len;
|
|
|
|
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
|
while (temp_len) {
|
|
printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
|
|
temp_adr += mtd->erasesize;
|
|
temp_len -= mtd->erasesize;
|
|
}
|
|
cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
|
}
|
|
#endif
|
|
|
|
ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
|
printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
|
|
cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_staa_suspend(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
switch(chip->state) {
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_PM_SUSPENDED;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
case FL_PM_SUSPENDED:
|
|
break;
|
|
|
|
default:
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
|
|
if (ret) {
|
|
for (i--; i >=0; i--) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
|
/* No need to force it into a known state here,
|
|
because we're returning failure, and it didn't
|
|
get power cycled */
|
|
chip->state = chip->oldstate;
|
|
wake_up(&chip->wq);
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cfi_staa_resume(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
|
|
for (i=0; i<cfi->numchips; i++) {
|
|
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* Go to known state. Chip may have been power cycled */
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
|
map_write(map, CMD(0xFF), 0);
|
|
chip->state = FL_READY;
|
|
wake_up(&chip->wq);
|
|
}
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
}
|
|
|
|
static void cfi_staa_destroy(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
kfree(cfi->cmdset_priv);
|
|
kfree(cfi);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|