WSL2-Linux-Kernel/drivers/edac/i5400_edac.c

1469 строки
40 KiB
C

/*
* Intel 5400 class Memory Controllers kernel module (Seaburg)
*
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Copyright (c) 2008 by:
* Ben Woodard <woodard@redhat.com>
* Mauro Carvalho Chehab
*
* Red Hat Inc. http://www.redhat.com
*
* Forked and adapted from the i5000_edac driver which was
* written by Douglas Thompson Linux Networx <norsk5@xmission.com>
*
* This module is based on the following document:
*
* Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
* http://developer.intel.com/design/chipsets/datashts/313070.htm
*
* This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
* 2 channels operating in lockstep no-mirror mode. Each channel can have up to
* 4 dimm's, each with up to 8GB.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include "edac_module.h"
/*
* Alter this version for the I5400 module when modifications are made
*/
#define I5400_REVISION " Ver: 1.0.0"
#define EDAC_MOD_STR "i5400_edac"
#define i5400_printk(level, fmt, arg...) \
edac_printk(level, "i5400", fmt, ##arg)
#define i5400_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
/* Limits for i5400 */
#define MAX_BRANCHES 2
#define CHANNELS_PER_BRANCH 2
#define DIMMS_PER_CHANNEL 4
#define MAX_CHANNELS (MAX_BRANCHES * CHANNELS_PER_BRANCH)
/* Device 16,
* Function 0: System Address
* Function 1: Memory Branch Map, Control, Errors Register
* Function 2: FSB Error Registers
*
* All 3 functions of Device 16 (0,1,2) share the SAME DID and
* uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
* PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
* for device 21 (0,1).
*/
/* OFFSETS for Function 0 */
#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
#define MAXCH 0x56 /* Max Channel Number */
#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
/* OFFSETS for Function 1 */
#define TOLM 0x6C
#define REDMEMB 0x7C
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
#define MIR0 0x80
#define MIR1 0x84
#define AMIR0 0x8c
#define AMIR1 0x90
/* Fatal error registers */
#define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
#define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
#define NERR_FAT_FBD 0x9c
#define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
/* Non-fatal error register */
#define NERR_NF_FBD 0xa4
/* Enable error mask */
#define EMASK_FBD 0xa8
#define ERR0_FBD 0xac
#define ERR1_FBD 0xb0
#define ERR2_FBD 0xb4
#define MCERR_FBD 0xb8
/* No OFFSETS for Device 16 Function 2 */
/*
* Device 21,
* Function 0: Memory Map Branch 0
*
* Device 22,
* Function 0: Memory Map Branch 1
*/
/* OFFSETS for Function 0 */
#define AMBPRESENT_0 0x64
#define AMBPRESENT_1 0x66
#define MTR0 0x80
#define MTR1 0x82
#define MTR2 0x84
#define MTR3 0x86
/* OFFSETS for Function 1 */
#define NRECFGLOG 0x74
#define RECFGLOG 0x78
#define NRECMEMA 0xbe
#define NRECMEMB 0xc0
#define NRECFB_DIMMA 0xc4
#define NRECFB_DIMMB 0xc8
#define NRECFB_DIMMC 0xcc
#define NRECFB_DIMMD 0xd0
#define NRECFB_DIMME 0xd4
#define NRECFB_DIMMF 0xd8
#define REDMEMA 0xdC
#define RECMEMA 0xf0
#define RECMEMB 0xf4
#define RECFB_DIMMA 0xf8
#define RECFB_DIMMB 0xec
#define RECFB_DIMMC 0xf0
#define RECFB_DIMMD 0xf4
#define RECFB_DIMME 0xf8
#define RECFB_DIMMF 0xfC
/*
* Error indicator bits and masks
* Error masks are according with Table 5-17 of i5400 datasheet
*/
enum error_mask {
EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */
EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */
EMASK_M3 = 1<<2, /* Reserved */
EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */
EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
EMASK_M6 = 1<<5, /* Unsupported on i5400 */
EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
EMASK_M10 = 1<<9, /* Unsupported on i5400 */
EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
EMASK_M18 = 1<<17, /* Unsupported on i5400 */
EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
EMASK_M22 = 1<<21, /* SPD protocol Error */
EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
EMASK_M24 = 1<<23, /* Refresh error */
EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
};
/*
* Names to translate bit error into something useful
*/
static const char *error_name[] = {
[0] = "Memory Write error on non-redundant retry",
[1] = "Memory or FB-DIMM configuration CRC read error",
/* Reserved */
[3] = "Uncorrectable Data ECC on Replay",
[4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
/* M6 Unsupported on i5400 */
[6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
[7] = "Aliased Uncorrectable Patrol Data ECC",
[8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
/* M10 Unsupported on i5400 */
[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
[12] = "Memory Write error on first attempt",
[13] = "FB-DIMM Configuration Write error on first attempt",
[14] = "Memory or FB-DIMM configuration CRC read error",
[15] = "Channel Failed-Over Occurred",
[16] = "Correctable Non-Mirrored Demand Data ECC",
/* M18 Unsupported on i5400 */
[18] = "Correctable Resilver- or Spare-Copy Data ECC",
[19] = "Correctable Patrol Data ECC",
[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
[21] = "SPD protocol Error",
[22] = "Non-Redundant Fast Reset Timeout",
[23] = "Refresh error",
[24] = "Memory Write error on redundant retry",
[25] = "Redundant Fast Reset Timeout",
[26] = "Correctable Counter Threshold Exceeded",
[27] = "DIMM-Spare Copy Completed",
[28] = "DIMM-Isolation Completed",
};
/* Fatal errors */
#define ERROR_FAT_MASK (EMASK_M1 | \
EMASK_M2 | \
EMASK_M23)
/* Correctable errors */
#define ERROR_NF_CORRECTABLE (EMASK_M27 | \
EMASK_M20 | \
EMASK_M19 | \
EMASK_M18 | \
EMASK_M17 | \
EMASK_M16)
#define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
EMASK_M28)
#define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
#define ERROR_NF_NORTH_CRC (EMASK_M21)
/* Recoverable errors */
#define ERROR_NF_RECOVERABLE (EMASK_M26 | \
EMASK_M25 | \
EMASK_M24 | \
EMASK_M15 | \
EMASK_M14 | \
EMASK_M13 | \
EMASK_M12 | \
EMASK_M11 | \
EMASK_M9 | \
EMASK_M8 | \
EMASK_M7 | \
EMASK_M5)
/* uncorrectable errors */
#define ERROR_NF_UNCORRECTABLE (EMASK_M4)
/* mask to all non-fatal errors */
#define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
ERROR_NF_UNCORRECTABLE | \
ERROR_NF_RECOVERABLE | \
ERROR_NF_DIMM_SPARE | \
ERROR_NF_SPD_PROTOCOL | \
ERROR_NF_NORTH_CRC)
/*
* Define error masks for the several registers
*/
/* Enable all fatal and non fatal errors */
#define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
/* mask for fatal error registers */
#define FERR_FAT_MASK ERROR_FAT_MASK
/* masks for non-fatal error register */
static inline int to_nf_mask(unsigned int mask)
{
return (mask & EMASK_M29) | (mask >> 3);
};
static inline int from_nf_ferr(unsigned int mask)
{
return (mask & EMASK_M29) | /* Bit 28 */
(mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
};
#define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
#define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
#define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
#define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
#define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
#define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
#define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
/* Defines to extract the vaious fields from the
* MTRx - Memory Technology Registers
*/
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
#define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
static inline int extract_fbdchan_indx(u32 x)
{
return (x>>28) & 0x3;
}
/* Device name and register DID (Device ID) */
struct i5400_dev_info {
const char *ctl_name; /* name for this device */
u16 fsb_mapping_errors; /* DID for the branchmap,control */
};
/* Table of devices attributes supported by this driver */
static const struct i5400_dev_info i5400_devs[] = {
{
.ctl_name = "I5400",
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
},
};
struct i5400_dimm_info {
int megabytes; /* size, 0 means not present */
};
/* driver private data structure */
struct i5400_pvt {
struct pci_dev *system_address; /* 16.0 */
struct pci_dev *branchmap_werrors; /* 16.1 */
struct pci_dev *fsb_error_regs; /* 16.2 */
struct pci_dev *branch_0; /* 21.0 */
struct pci_dev *branch_1; /* 22.0 */
u16 tolm; /* top of low memory */
union {
u64 ambase; /* AMB BAR */
struct {
u32 ambase_bottom;
u32 ambase_top;
} u __packed;
};
u16 mir0, mir1;
u16 b0_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
u16 b1_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
/* DIMM information matrix, allocating architecture maximums */
struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
/* Actual values for this controller */
int maxch; /* Max channels */
int maxdimmperch; /* Max DIMMs per channel */
};
/* I5400 MCH error information retrieved from Hardware */
struct i5400_error_info {
/* These registers are always read from the MC */
u32 ferr_fat_fbd; /* First Errors Fatal */
u32 nerr_fat_fbd; /* Next Errors Fatal */
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
/* These registers are input ONLY if there was a Recoverable Error */
u32 redmemb; /* Recoverable Mem Data Error log B */
u16 recmema; /* Recoverable Mem Error log A */
u32 recmemb; /* Recoverable Mem Error log B */
/* These registers are input ONLY if there was a Non-Rec Error */
u16 nrecmema; /* Non-Recoverable Mem log A */
u32 nrecmemb; /* Non-Recoverable Mem log B */
};
/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
5400 better to use an inline function than a macro in this case */
static inline int nrec_bank(struct i5400_error_info *info)
{
return ((info->nrecmema) >> 12) & 0x7;
}
static inline int nrec_rank(struct i5400_error_info *info)
{
return ((info->nrecmema) >> 8) & 0xf;
}
static inline int nrec_buf_id(struct i5400_error_info *info)
{
return ((info->nrecmema)) & 0xff;
}
static inline int nrec_rdwr(struct i5400_error_info *info)
{
return (info->nrecmemb) >> 31;
}
/* This applies to both NREC and REC string so it can be used with nrec_rdwr
and rec_rdwr */
static inline const char *rdwr_str(int rdwr)
{
return rdwr ? "Write" : "Read";
}
static inline int nrec_cas(struct i5400_error_info *info)
{
return ((info->nrecmemb) >> 16) & 0x1fff;
}
static inline int nrec_ras(struct i5400_error_info *info)
{
return (info->nrecmemb) & 0xffff;
}
static inline int rec_bank(struct i5400_error_info *info)
{
return ((info->recmema) >> 12) & 0x7;
}
static inline int rec_rank(struct i5400_error_info *info)
{
return ((info->recmema) >> 8) & 0xf;
}
static inline int rec_rdwr(struct i5400_error_info *info)
{
return (info->recmemb) >> 31;
}
static inline int rec_cas(struct i5400_error_info *info)
{
return ((info->recmemb) >> 16) & 0x1fff;
}
static inline int rec_ras(struct i5400_error_info *info)
{
return (info->recmemb) & 0xffff;
}
static struct edac_pci_ctl_info *i5400_pci;
/*
* i5400_get_error_info Retrieve the hardware error information from
* the hardware and cache it in the 'info'
* structure
*/
static void i5400_get_error_info(struct mem_ctl_info *mci,
struct i5400_error_info *info)
{
struct i5400_pvt *pvt;
u32 value;
pvt = mci->pvt_info;
/* read in the 1st FATAL error register */
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
/* Mask only the bits that the doc says are valid
*/
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
/* If there is an error, then read in the
NEXT FATAL error register and the Memory Error Log Register A
*/
if (value & FERR_FAT_MASK) {
info->ferr_fat_fbd = value;
/* harvest the various error data we need */
pci_read_config_dword(pvt->branchmap_werrors,
NERR_FAT_FBD, &info->nerr_fat_fbd);
pci_read_config_word(pvt->branchmap_werrors,
NRECMEMA, &info->nrecmema);
pci_read_config_dword(pvt->branchmap_werrors,
NRECMEMB, &info->nrecmemb);
/* Clear the error bits, by writing them back */
pci_write_config_dword(pvt->branchmap_werrors,
FERR_FAT_FBD, value);
} else {
info->ferr_fat_fbd = 0;
info->nerr_fat_fbd = 0;
info->nrecmema = 0;
info->nrecmemb = 0;
}
/* read in the 1st NON-FATAL error register */
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
/* If there is an error, then read in the 1st NON-FATAL error
* register as well */
if (value & FERR_NF_MASK) {
info->ferr_nf_fbd = value;
/* harvest the various error data we need */
pci_read_config_dword(pvt->branchmap_werrors,
NERR_NF_FBD, &info->nerr_nf_fbd);
pci_read_config_word(pvt->branchmap_werrors,
RECMEMA, &info->recmema);
pci_read_config_dword(pvt->branchmap_werrors,
RECMEMB, &info->recmemb);
pci_read_config_dword(pvt->branchmap_werrors,
REDMEMB, &info->redmemb);
/* Clear the error bits, by writing them back */
pci_write_config_dword(pvt->branchmap_werrors,
FERR_NF_FBD, value);
} else {
info->ferr_nf_fbd = 0;
info->nerr_nf_fbd = 0;
info->recmema = 0;
info->recmemb = 0;
info->redmemb = 0;
}
}
/*
* i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
* struct i5400_error_info *info,
* int handle_errors);
*
* handle the Intel FATAL and unrecoverable errors, if any
*/
static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
struct i5400_error_info *info,
unsigned long allErrors)
{
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
int branch;
int channel;
int bank;
int buf_id;
int rank;
int rdwr;
int ras, cas;
int errnum;
char *type = NULL;
enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
if (!allErrors)
return; /* if no error, return now */
if (allErrors & ERROR_FAT_MASK) {
type = "FATAL";
tp_event = HW_EVENT_ERR_FATAL;
} else if (allErrors & FERR_NF_UNCORRECTABLE)
type = "NON-FATAL uncorrected";
else
type = "NON-FATAL recoverable";
/* ONLY ONE of the possible error bits will be set, as per the docs */
branch = extract_fbdchan_indx(info->ferr_fat_fbd);
channel = branch;
/* Use the NON-Recoverable macros to extract data */
bank = nrec_bank(info);
rank = nrec_rank(info);
buf_id = nrec_buf_id(info);
rdwr = nrec_rdwr(info);
ras = nrec_ras(info);
cas = nrec_cas(info);
edac_dbg(0, "\t\t%s DIMM= %d Channels= %d,%d (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
type, rank, channel, channel + 1, branch >> 1, bank,
buf_id, rdwr_str(rdwr), ras, cas);
/* Only 1 bit will be on */
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
/* Form out message */
snprintf(msg, sizeof(msg),
"Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
bank, buf_id, ras, cas, allErrors, error_name[errnum]);
edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
branch >> 1, -1, rank,
rdwr ? "Write error" : "Read error",
msg);
}
/*
* i5400_process_fatal_error_info(struct mem_ctl_info *mci,
* struct i5400_error_info *info,
* int handle_errors);
*
* handle the Intel NON-FATAL errors, if any
*/
static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
struct i5400_error_info *info)
{
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
unsigned long allErrors;
int branch;
int channel;
int bank;
int rank;
int rdwr;
int ras, cas;
int errnum;
/* mask off the Error bits that are possible */
allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
if (!allErrors)
return; /* if no error, return now */
/* ONLY ONE of the possible error bits will be set, as per the docs */
if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
i5400_proccess_non_recoverable_info(mci, info, allErrors);
return;
}
/* Correctable errors */
if (allErrors & ERROR_NF_CORRECTABLE) {
edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
channel = 0;
if (REC_ECC_LOCATOR_ODD(info->redmemb))
channel = 1;
/* Convert channel to be based from zero, instead of
* from branch base of 0 */
channel += branch;
bank = rec_bank(info);
rank = rec_rank(info);
rdwr = rec_rdwr(info);
ras = rec_ras(info);
cas = rec_cas(info);
/* Only 1 bit will be on */
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
edac_dbg(0, "\t\tDIMM= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
rank, channel, branch >> 1, bank,
rdwr_str(rdwr), ras, cas);
/* Form out message */
snprintf(msg, sizeof(msg),
"Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
"RAS=%d CAS=%d, CE Err=0x%lx (%s))",
branch >> 1, bank, rdwr_str(rdwr), ras, cas,
allErrors, error_name[errnum]);
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
branch >> 1, channel % 2, rank,
rdwr ? "Write error" : "Read error",
msg);
return;
}
/* Miscellaneous errors */
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
i5400_mc_printk(mci, KERN_EMERG,
"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
branch >> 1, allErrors, error_name[errnum]);
}
/*
* i5400_process_error_info Process the error info that is
* in the 'info' structure, previously retrieved from hardware
*/
static void i5400_process_error_info(struct mem_ctl_info *mci,
struct i5400_error_info *info)
{ u32 allErrors;
/* First handle any fatal errors that occurred */
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
i5400_proccess_non_recoverable_info(mci, info, allErrors);
/* now handle any non-fatal errors that occurred */
i5400_process_nonfatal_error_info(mci, info);
}
/*
* i5400_clear_error Retrieve any error from the hardware
* but do NOT process that error.
* Used for 'clearing' out of previous errors
* Called by the Core module.
*/
static void i5400_clear_error(struct mem_ctl_info *mci)
{
struct i5400_error_info info;
i5400_get_error_info(mci, &info);
}
/*
* i5400_check_error Retrieve and process errors reported by the
* hardware. Called by the Core module.
*/
static void i5400_check_error(struct mem_ctl_info *mci)
{
struct i5400_error_info info;
edac_dbg(4, "MC%d\n", mci->mc_idx);
i5400_get_error_info(mci, &info);
i5400_process_error_info(mci, &info);
}
/*
* i5400_put_devices 'put' all the devices that we have
* reserved via 'get'
*/
static void i5400_put_devices(struct mem_ctl_info *mci)
{
struct i5400_pvt *pvt;
pvt = mci->pvt_info;
/* Decrement usage count for devices */
pci_dev_put(pvt->branch_1);
pci_dev_put(pvt->branch_0);
pci_dev_put(pvt->fsb_error_regs);
pci_dev_put(pvt->branchmap_werrors);
}
/*
* i5400_get_devices Find and perform 'get' operation on the MCH's
* device/functions we want to reference for this driver
*
* Need to 'get' device 16 func 1 and func 2
*/
static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
struct i5400_pvt *pvt;
struct pci_dev *pdev;
pvt = mci->pvt_info;
pvt->branchmap_werrors = NULL;
pvt->fsb_error_regs = NULL;
pvt->branch_0 = NULL;
pvt->branch_1 = NULL;
/* Attempt to 'get' the MCH register we want */
pdev = NULL;
while (1) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
if (!pdev) {
/* End of list, leave */
i5400_printk(KERN_ERR,
"'system address,Process Bus' "
"device not found:"
"vendor 0x%x device 0x%x ERR func 1 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_5400_ERR);
return -ENODEV;
}
/* Store device 16 func 1 */
if (PCI_FUNC(pdev->devfn) == 1)
break;
}
pvt->branchmap_werrors = pdev;
pdev = NULL;
while (1) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
if (!pdev) {
/* End of list, leave */
i5400_printk(KERN_ERR,
"'system address,Process Bus' "
"device not found:"
"vendor 0x%x device 0x%x ERR func 2 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_5400_ERR);
pci_dev_put(pvt->branchmap_werrors);
return -ENODEV;
}
/* Store device 16 func 2 */
if (PCI_FUNC(pdev->devfn) == 2)
break;
}
pvt->fsb_error_regs = pdev;
edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
pci_name(pvt->system_address),
pvt->system_address->vendor, pvt->system_address->device);
edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
pci_name(pvt->branchmap_werrors),
pvt->branchmap_werrors->vendor,
pvt->branchmap_werrors->device);
edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
pci_name(pvt->fsb_error_regs),
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
if (!pvt->branch_0) {
i5400_printk(KERN_ERR,
"MC: 'BRANCH 0' device not found:"
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
pci_dev_put(pvt->fsb_error_regs);
pci_dev_put(pvt->branchmap_werrors);
return -ENODEV;
}
/* If this device claims to have more than 2 channels then
* fetch Branch 1's information
*/
if (pvt->maxch < CHANNELS_PER_BRANCH)
return 0;
pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
if (!pvt->branch_1) {
i5400_printk(KERN_ERR,
"MC: 'BRANCH 1' device not found:"
"vendor 0x%x device 0x%x Func 0 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_5400_FBD1);
pci_dev_put(pvt->branch_0);
pci_dev_put(pvt->fsb_error_regs);
pci_dev_put(pvt->branchmap_werrors);
return -ENODEV;
}
return 0;
}
/*
* determine_amb_present
*
* the information is contained in DIMMS_PER_CHANNEL different
* registers determining which of the DIMMS_PER_CHANNEL requires
* knowing which channel is in question
*
* 2 branches, each with 2 channels
* b0_ambpresent0 for channel '0'
* b0_ambpresent1 for channel '1'
* b1_ambpresent0 for channel '2'
* b1_ambpresent1 for channel '3'
*/
static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
{
int amb_present;
if (channel < CHANNELS_PER_BRANCH) {
if (channel & 0x1)
amb_present = pvt->b0_ambpresent1;
else
amb_present = pvt->b0_ambpresent0;
} else {
if (channel & 0x1)
amb_present = pvt->b1_ambpresent1;
else
amb_present = pvt->b1_ambpresent0;
}
return amb_present;
}
/*
* determine_mtr(pvt, dimm, channel)
*
* return the proper MTR register as determine by the dimm and desired channel
*/
static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
{
int mtr;
int n;
/* There is one MTR for each slot pair of FB-DIMMs,
Each slot pair may be at branch 0 or branch 1.
*/
n = dimm;
if (n >= DIMMS_PER_CHANNEL) {
edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
dimm);
return 0;
}
if (channel < CHANNELS_PER_BRANCH)
mtr = pvt->b0_mtr[n];
else
mtr = pvt->b1_mtr[n];
return mtr;
}
/*
*/
static void decode_mtr(int slot_row, u16 mtr)
{
int ans;
ans = MTR_DIMMS_PRESENT(mtr);
edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
slot_row, mtr, ans ? "" : "NOT ");
if (!ans)
return;
edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
edac_dbg(2, "\t\tNUMRANK: %s\n",
MTR_DIMM_RANK(mtr) ? "double" : "single");
edac_dbg(2, "\t\tNUMROW: %s\n",
MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
"65,536 - 16 rows");
edac_dbg(2, "\t\tNUMCOL: %s\n",
MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
"reserved");
}
static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
struct i5400_dimm_info *dinfo)
{
int mtr;
int amb_present_reg;
int addrBits;
mtr = determine_mtr(pvt, dimm, channel);
if (MTR_DIMMS_PRESENT(mtr)) {
amb_present_reg = determine_amb_present_reg(pvt, channel);
/* Determine if there is a DIMM present in this DIMM slot */
if (amb_present_reg & (1 << dimm)) {
/* Start with the number of bits for a Bank
* on the DRAM */
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
/* Add thenumber of ROW bits */
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
/* add the number of COLUMN bits */
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
/* add the number of RANK bits */
addrBits += MTR_DIMM_RANK(mtr);
addrBits += 6; /* add 64 bits per DIMM */
addrBits -= 20; /* divide by 2^^20 */
addrBits -= 3; /* 8 bits per bytes */
dinfo->megabytes = 1 << addrBits;
}
}
}
/*
* calculate_dimm_size
*
* also will output a DIMM matrix map, if debug is enabled, for viewing
* how the DIMMs are populated
*/
static void calculate_dimm_size(struct i5400_pvt *pvt)
{
struct i5400_dimm_info *dinfo;
int dimm, max_dimms;
char *p, *mem_buffer;
int space, n;
int channel, branch;
/* ================= Generate some debug output ================= */
space = PAGE_SIZE;
mem_buffer = p = kmalloc(space, GFP_KERNEL);
if (p == NULL) {
i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
__FILE__, __func__);
return;
}
/* Scan all the actual DIMMS
* and calculate the information for each DIMM
* Start with the highest dimm first, to display it first
* and work toward the 0th dimm
*/
max_dimms = pvt->maxdimmperch;
for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
/* on an odd dimm, first output a 'boundary' marker,
* then reset the message buffer */
if (dimm & 0x1) {
n = snprintf(p, space, "---------------------------"
"-------------------------------");
p += n;
space -= n;
edac_dbg(2, "%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
}
n = snprintf(p, space, "dimm %2d ", dimm);
p += n;
space -= n;
for (channel = 0; channel < pvt->maxch; channel++) {
dinfo = &pvt->dimm_info[dimm][channel];
handle_channel(pvt, dimm, channel, dinfo);
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
p += n;
space -= n;
}
edac_dbg(2, "%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
}
/* Output the last bottom 'boundary' marker */
n = snprintf(p, space, "---------------------------"
"-------------------------------");
p += n;
space -= n;
edac_dbg(2, "%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
/* now output the 'channel' labels */
n = snprintf(p, space, " ");
p += n;
space -= n;
for (channel = 0; channel < pvt->maxch; channel++) {
n = snprintf(p, space, "channel %d | ", channel);
p += n;
space -= n;
}
space -= n;
edac_dbg(2, "%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
n = snprintf(p, space, " ");
p += n;
for (branch = 0; branch < MAX_BRANCHES; branch++) {
n = snprintf(p, space, " branch %d | ", branch);
p += n;
space -= n;
}
/* output the last message and free buffer */
edac_dbg(2, "%s\n", mem_buffer);
kfree(mem_buffer);
}
/*
* i5400_get_mc_regs read in the necessary registers and
* cache locally
*
* Fills in the private data members
*/
static void i5400_get_mc_regs(struct mem_ctl_info *mci)
{
struct i5400_pvt *pvt;
u32 actual_tolm;
u16 limit;
int slot_row;
int way0, way1;
pvt = mci->pvt_info;
pci_read_config_dword(pvt->system_address, AMBASE,
&pvt->u.ambase_bottom);
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
&pvt->u.ambase_top);
edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
/* Get the Branch Map regs */
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
pvt->tolm >>= 12;
edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
pvt->tolm, pvt->tolm);
actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
/* Get the MIR[0-1] regs */
limit = (pvt->mir0 >> 4) & 0x0fff;
way0 = pvt->mir0 & 0x1;
way1 = pvt->mir0 & 0x2;
edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
limit, way1, way0);
limit = (pvt->mir1 >> 4) & 0xfff;
way0 = pvt->mir1 & 0x1;
way1 = pvt->mir1 & 0x2;
edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
limit, way1, way0);
/* Get the set of MTR[0-3] regs by each branch */
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
int where = MTR0 + (slot_row * sizeof(u16));
/* Branch 0 set of MTR registers */
pci_read_config_word(pvt->branch_0, where,
&pvt->b0_mtr[slot_row]);
edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
slot_row, where, pvt->b0_mtr[slot_row]);
if (pvt->maxch < CHANNELS_PER_BRANCH) {
pvt->b1_mtr[slot_row] = 0;
continue;
}
/* Branch 1 set of MTR registers */
pci_read_config_word(pvt->branch_1, where,
&pvt->b1_mtr[slot_row]);
edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
slot_row, where, pvt->b1_mtr[slot_row]);
}
/* Read and dump branch 0's MTRs */
edac_dbg(2, "Memory Technology Registers:\n");
edac_dbg(2, " Branch 0:\n");
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
&pvt->b0_ambpresent0);
edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
&pvt->b0_ambpresent1);
edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
/* Only if we have 2 branchs (4 channels) */
if (pvt->maxch < CHANNELS_PER_BRANCH) {
pvt->b1_ambpresent0 = 0;
pvt->b1_ambpresent1 = 0;
} else {
/* Read and dump branch 1's MTRs */
edac_dbg(2, " Branch 1:\n");
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
&pvt->b1_ambpresent0);
edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
pvt->b1_ambpresent0);
pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
&pvt->b1_ambpresent1);
edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
pvt->b1_ambpresent1);
}
/* Go and determine the size of each DIMM and place in an
* orderly matrix */
calculate_dimm_size(pvt);
}
/*
* i5400_init_dimms Initialize the 'dimms' table within
* the mci control structure with the
* addressing of memory.
*
* return:
* 0 success
* 1 no actual memory found on this MC
*/
static int i5400_init_dimms(struct mem_ctl_info *mci)
{
struct i5400_pvt *pvt;
struct dimm_info *dimm;
int ndimms;
int mtr;
int size_mb;
int channel, slot;
pvt = mci->pvt_info;
ndimms = 0;
/*
* FIXME: remove pvt->dimm_info[slot][channel] and use the 3
* layers here.
*/
for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
channel++) {
for (slot = 0; slot < mci->layers[2].size; slot++) {
mtr = determine_mtr(pvt, slot, channel);
/* if no DIMMS on this slot, continue */
if (!MTR_DIMMS_PRESENT(mtr))
continue;
dimm = edac_get_dimm(mci, channel / 2, channel % 2, slot);
size_mb = pvt->dimm_info[slot][channel].megabytes;
edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
channel / 2, channel % 2, slot,
size_mb / 1000, size_mb % 1000);
dimm->nr_pages = size_mb << 8;
dimm->grain = 8;
dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
DEV_X8 : DEV_X4;
dimm->mtype = MEM_FB_DDR2;
/*
* The eccc mechanism is SDDC (aka SECC), with
* is similar to Chipkill.
*/
dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
EDAC_S8ECD8ED : EDAC_S4ECD4ED;
ndimms++;
}
}
/*
* When just one memory is provided, it should be at location (0,0,0).
* With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
*/
if (ndimms == 1)
mci->dimms[0]->edac_mode = EDAC_SECDED;
return (ndimms == 0);
}
/*
* i5400_enable_error_reporting
* Turn on the memory reporting features of the hardware
*/
static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
{
struct i5400_pvt *pvt;
u32 fbd_error_mask;
pvt = mci->pvt_info;
/* Read the FBD Error Mask Register */
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
&fbd_error_mask);
/* Enable with a '0' */
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
fbd_error_mask);
}
/*
* i5400_probe1 Probe for ONE instance of device to see if it is
* present.
* return:
* 0 for FOUND a device
* < 0 for error code
*/
static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
{
struct mem_ctl_info *mci;
struct i5400_pvt *pvt;
struct edac_mc_layer layers[3];
if (dev_idx >= ARRAY_SIZE(i5400_devs))
return -EINVAL;
edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
pdev->bus->number,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
/* We only are looking for func 0 of the set */
if (PCI_FUNC(pdev->devfn) != 0)
return -ENODEV;
/*
* allocate a new MC control structure
*
* This drivers uses the DIMM slot as "csrow" and the rest as "channel".
*/
layers[0].type = EDAC_MC_LAYER_BRANCH;
layers[0].size = MAX_BRANCHES;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = CHANNELS_PER_BRANCH;
layers[1].is_virt_csrow = false;
layers[2].type = EDAC_MC_LAYER_SLOT;
layers[2].size = DIMMS_PER_CHANNEL;
layers[2].is_virt_csrow = true;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
if (mci == NULL)
return -ENOMEM;
edac_dbg(0, "MC: mci = %p\n", mci);
mci->pdev = &pdev->dev; /* record ptr to the generic device */
pvt = mci->pvt_info;
pvt->system_address = pdev; /* Record this device in our private */
pvt->maxch = MAX_CHANNELS;
pvt->maxdimmperch = DIMMS_PER_CHANNEL;
/* 'get' the pci devices we want to reserve for our use */
if (i5400_get_devices(mci, dev_idx))
goto fail0;
/* Time to get serious */
i5400_get_mc_regs(mci); /* retrieve the hardware registers */
mci->mc_idx = 0;
mci->mtype_cap = MEM_FLAG_FB_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "i5400_edac.c";
mci->ctl_name = i5400_devs[dev_idx].ctl_name;
mci->dev_name = pci_name(pdev);
mci->ctl_page_to_phys = NULL;
/* Set the function pointer to an actual operation function */
mci->edac_check = i5400_check_error;
/* initialize the MC control structure 'dimms' table
* with the mapping and control information */
if (i5400_init_dimms(mci)) {
edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */
} else {
edac_dbg(1, "MC: Enable error reporting now\n");
i5400_enable_error_reporting(mci);
}
/* add this new MC control structure to EDAC's list of MCs */
if (edac_mc_add_mc(mci)) {
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
/* FIXME: perhaps some code should go here that disables error
* reporting if we just enabled it
*/
goto fail1;
}
i5400_clear_error(mci);
/* allocating generic PCI control info */
i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
if (!i5400_pci) {
printk(KERN_WARNING
"%s(): Unable to create PCI control\n",
__func__);
printk(KERN_WARNING
"%s(): PCI error report via EDAC not setup\n",
__func__);
}
return 0;
/* Error exit unwinding stack */
fail1:
i5400_put_devices(mci);
fail0:
edac_mc_free(mci);
return -ENODEV;
}
/*
* i5400_init_one constructor for one instance of device
*
* returns:
* negative on error
* count (>= 0)
*/
static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
int rc;
edac_dbg(0, "MC:\n");
/* wake up device */
rc = pci_enable_device(pdev);
if (rc)
return rc;
/* now probe and enable the device */
return i5400_probe1(pdev, id->driver_data);
}
/*
* i5400_remove_one destructor for one instance of device
*
*/
static void i5400_remove_one(struct pci_dev *pdev)
{
struct mem_ctl_info *mci;
edac_dbg(0, "\n");
if (i5400_pci)
edac_pci_release_generic_ctl(i5400_pci);
mci = edac_mc_del_mc(&pdev->dev);
if (!mci)
return;
/* retrieve references to resources, and free those resources */
i5400_put_devices(mci);
pci_disable_device(pdev);
edac_mc_free(mci);
}
/*
* pci_device_id table for which devices we are looking for
*
* The "E500P" device is the first device supported.
*/
static const struct pci_device_id i5400_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
{0,} /* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
/*
* i5400_driver pci_driver structure for this module
*
*/
static struct pci_driver i5400_driver = {
.name = "i5400_edac",
.probe = i5400_init_one,
.remove = i5400_remove_one,
.id_table = i5400_pci_tbl,
};
/*
* i5400_init Module entry function
* Try to initialize this module for its devices
*/
static int __init i5400_init(void)
{
int pci_rc;
edac_dbg(2, "MC:\n");
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
pci_rc = pci_register_driver(&i5400_driver);
return (pci_rc < 0) ? pci_rc : 0;
}
/*
* i5400_exit() Module exit function
* Unregister the driver
*/
static void __exit i5400_exit(void)
{
edac_dbg(2, "MC:\n");
pci_unregister_driver(&i5400_driver);
}
module_init(i5400_init);
module_exit(i5400_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
I5400_REVISION);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");