WSL2-Linux-Kernel/mm/internal.h

1103 строки
34 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/* internal.h: mm/ internal definitions
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#ifndef __MM_INTERNAL_H
#define __MM_INTERNAL_H
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/tracepoint-defs.h>
struct folio_batch;
/*
* The set of flags that only affect watermark checking and reclaim
* behaviour. This is used by the MM to obey the caller constraints
* about IO, FS and watermark checking while ignoring placement
* hints such as HIGHMEM usage.
*/
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
__GFP_NOLOCKDEP)
/* The GFP flags allowed during early boot */
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
/* Control allocation cpuset and node placement constraints */
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
/* Do not use these with a slab allocator */
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
/*
* Different from WARN_ON_ONCE(), no warning will be issued
* when we specify __GFP_NOWARN.
*/
#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
static bool __section(".data.once") __warned; \
int __ret_warn_once = !!(cond); \
\
if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
__warned = true; \
WARN_ON(1); \
} \
unlikely(__ret_warn_once); \
})
void page_writeback_init(void);
/*
* If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
* its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
* above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
* leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
*/
#define COMPOUND_MAPPED 0x800000
#define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1)
/*
* How many individual pages have an elevated _mapcount. Excludes
* the folio's entire_mapcount.
*/
static inline int folio_nr_pages_mapped(struct folio *folio)
{
return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
}
static inline void *folio_raw_mapping(struct folio *folio)
{
unsigned long mapping = (unsigned long)folio->mapping;
return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
}
void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
int nr_throttled);
static inline void acct_reclaim_writeback(struct folio *folio)
{
pg_data_t *pgdat = folio_pgdat(folio);
int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
if (nr_throttled)
__acct_reclaim_writeback(pgdat, folio, nr_throttled);
}
static inline void wake_throttle_isolated(pg_data_t *pgdat)
{
wait_queue_head_t *wqh;
wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
if (waitqueue_active(wqh))
wake_up(wqh);
}
vm_fault_t do_swap_page(struct vm_fault *vmf);
void folio_rotate_reclaimable(struct folio *folio);
bool __folio_end_writeback(struct folio *folio);
void deactivate_file_folio(struct folio *folio);
void folio_activate(struct folio *folio);
void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
struct vm_area_struct *start_vma, unsigned long floor,
unsigned long ceiling, bool mm_wr_locked);
void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
struct zap_details;
void unmap_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end,
struct zap_details *details);
void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
unsigned int order);
void force_page_cache_ra(struct readahead_control *, unsigned long nr);
static inline void force_page_cache_readahead(struct address_space *mapping,
struct file *file, pgoff_t index, unsigned long nr_to_read)
{
DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
force_page_cache_ra(&ractl, nr_to_read);
}
unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
void filemap_free_folio(struct address_space *mapping, struct folio *folio);
int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
loff_t end);
long invalidate_inode_page(struct page *page);
unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
/**
* folio_evictable - Test whether a folio is evictable.
* @folio: The folio to test.
*
* Test whether @folio is evictable -- i.e., should be placed on
* active/inactive lists vs unevictable list.
*
* Reasons folio might not be evictable:
* 1. folio's mapping marked unevictable
* 2. One of the pages in the folio is part of an mlocked VMA
*/
static inline bool folio_evictable(struct folio *folio)
{
bool ret;
/* Prevent address_space of inode and swap cache from being freed */
rcu_read_lock();
ret = !mapping_unevictable(folio_mapping(folio)) &&
!folio_test_mlocked(folio);
rcu_read_unlock();
return ret;
}
/*
* Turn a non-refcounted page (->_refcount == 0) into refcounted with
* a count of one.
*/
static inline void set_page_refcounted(struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(page_ref_count(page), page);
set_page_count(page, 1);
}
extern unsigned long highest_memmap_pfn;
/*
* Maximum number of reclaim retries without progress before the OOM
* killer is consider the only way forward.
*/
#define MAX_RECLAIM_RETRIES 16
/*
* in mm/early_ioremap.c
*/
pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
unsigned long size, pgprot_t prot);
/*
* in mm/vmscan.c:
*/
bool isolate_lru_page(struct page *page);
bool folio_isolate_lru(struct folio *folio);
void putback_lru_page(struct page *page);
void folio_putback_lru(struct folio *folio);
extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
/*
* in mm/rmap.c:
*/
pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
/*
* in mm/page_alloc.c
*/
#define K(x) ((x) << (PAGE_SHIFT-10))
extern char * const zone_names[MAX_NR_ZONES];
/* perform sanity checks on struct pages being allocated or freed */
DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
static inline bool is_check_pages_enabled(void)
{
return static_branch_unlikely(&check_pages_enabled);
}
/*
* Structure for holding the mostly immutable allocation parameters passed
* between functions involved in allocations, including the alloc_pages*
* family of functions.
*
* nodemask, migratetype and highest_zoneidx are initialized only once in
* __alloc_pages() and then never change.
*
* zonelist, preferred_zone and highest_zoneidx are set first in
* __alloc_pages() for the fast path, and might be later changed
* in __alloc_pages_slowpath(). All other functions pass the whole structure
* by a const pointer.
*/
struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zoneref *preferred_zoneref;
int migratetype;
/*
* highest_zoneidx represents highest usable zone index of
* the allocation request. Due to the nature of the zone,
* memory on lower zone than the highest_zoneidx will be
* protected by lowmem_reserve[highest_zoneidx].
*
* highest_zoneidx is also used by reclaim/compaction to limit
* the target zone since higher zone than this index cannot be
* usable for this allocation request.
*/
enum zone_type highest_zoneidx;
bool spread_dirty_pages;
};
/*
* This function returns the order of a free page in the buddy system. In
* general, page_zone(page)->lock must be held by the caller to prevent the
* page from being allocated in parallel and returning garbage as the order.
* If a caller does not hold page_zone(page)->lock, it must guarantee that the
* page cannot be allocated or merged in parallel. Alternatively, it must
* handle invalid values gracefully, and use buddy_order_unsafe() below.
*/
static inline unsigned int buddy_order(struct page *page)
{
/* PageBuddy() must be checked by the caller */
return page_private(page);
}
/*
* Like buddy_order(), but for callers who cannot afford to hold the zone lock.
* PageBuddy() should be checked first by the caller to minimize race window,
* and invalid values must be handled gracefully.
*
* READ_ONCE is used so that if the caller assigns the result into a local
* variable and e.g. tests it for valid range before using, the compiler cannot
* decide to remove the variable and inline the page_private(page) multiple
* times, potentially observing different values in the tests and the actual
* use of the result.
*/
#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
/*
* This function checks whether a page is free && is the buddy
* we can coalesce a page and its buddy if
* (a) the buddy is not in a hole (check before calling!) &&
* (b) the buddy is in the buddy system &&
* (c) a page and its buddy have the same order &&
* (d) a page and its buddy are in the same zone.
*
* For recording whether a page is in the buddy system, we set PageBuddy.
* Setting, clearing, and testing PageBuddy is serialized by zone->lock.
*
* For recording page's order, we use page_private(page).
*/
static inline bool page_is_buddy(struct page *page, struct page *buddy,
unsigned int order)
{
if (!page_is_guard(buddy) && !PageBuddy(buddy))
return false;
if (buddy_order(buddy) != order)
return false;
/*
* zone check is done late to avoid uselessly calculating
* zone/node ids for pages that could never merge.
*/
if (page_zone_id(page) != page_zone_id(buddy))
return false;
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
return true;
}
/*
* Locate the struct page for both the matching buddy in our
* pair (buddy1) and the combined O(n+1) page they form (page).
*
* 1) Any buddy B1 will have an order O twin B2 which satisfies
* the following equation:
* B2 = B1 ^ (1 << O)
* For example, if the starting buddy (buddy2) is #8 its order
* 1 buddy is #10:
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
*
* 2) Any buddy B will have an order O+1 parent P which
* satisfies the following equation:
* P = B & ~(1 << O)
*
* Assumption: *_mem_map is contiguous at least up to MAX_ORDER
*/
static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
{
return page_pfn ^ (1 << order);
}
/*
* Find the buddy of @page and validate it.
* @page: The input page
* @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
* function is used in the performance-critical __free_one_page().
* @order: The order of the page
* @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
* page_to_pfn().
*
* The found buddy can be a non PageBuddy, out of @page's zone, or its order is
* not the same as @page. The validation is necessary before use it.
*
* Return: the found buddy page or NULL if not found.
*/
static inline struct page *find_buddy_page_pfn(struct page *page,
unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
{
unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
struct page *buddy;
buddy = page + (__buddy_pfn - pfn);
if (buddy_pfn)
*buddy_pfn = __buddy_pfn;
if (page_is_buddy(page, buddy, order))
return buddy;
return NULL;
}
extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
unsigned long end_pfn, struct zone *zone);
static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
unsigned long end_pfn, struct zone *zone)
{
if (zone->contiguous)
return pfn_to_page(start_pfn);
return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
}
extern int __isolate_free_page(struct page *page, unsigned int order);
extern void __putback_isolated_page(struct page *page, unsigned int order,
int mt);
extern void memblock_free_pages(struct page *page, unsigned long pfn,
unsigned int order);
extern void __free_pages_core(struct page *page, unsigned int order);
static inline void prep_compound_head(struct page *page, unsigned int order)
{
struct folio *folio = (struct folio *)page;
set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
set_compound_order(page, order);
atomic_set(&folio->_entire_mapcount, -1);
atomic_set(&folio->_nr_pages_mapped, 0);
atomic_set(&folio->_pincount, 0);
}
static inline void prep_compound_tail(struct page *head, int tail_idx)
{
struct page *p = head + tail_idx;
p->mapping = TAIL_MAPPING;
set_compound_head(p, head);
set_page_private(p, 0);
}
extern void prep_compound_page(struct page *page, unsigned int order);
extern void post_alloc_hook(struct page *page, unsigned int order,
gfp_t gfp_flags);
extern int user_min_free_kbytes;
extern void free_unref_page(struct page *page, unsigned int order);
extern void free_unref_page_list(struct list_head *list);
extern void zone_pcp_reset(struct zone *zone);
extern void zone_pcp_disable(struct zone *zone);
extern void zone_pcp_enable(struct zone *zone);
extern void zone_pcp_init(struct zone *zone);
extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr,
int nid, bool exact_nid);
int split_free_page(struct page *free_page,
unsigned int order, unsigned long split_pfn_offset);
/*
* This will have no effect, other than possibly generating a warning, if the
* caller passes in a non-large folio.
*/
static inline void folio_set_order(struct folio *folio, unsigned int order)
{
if (WARN_ON_ONCE(!folio_test_large(folio)))
return;
folio->_folio_order = order;
#ifdef CONFIG_64BIT
/*
* When hugetlb dissolves a folio, we need to clear the tail
* page, rather than setting nr_pages to 1.
*/
folio->_folio_nr_pages = order ? 1U << order : 0;
#endif
}
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
/*
* in mm/compaction.c
*/
/*
* compact_control is used to track pages being migrated and the free pages
* they are being migrated to during memory compaction. The free_pfn starts
* at the end of a zone and migrate_pfn begins at the start. Movable pages
* are moved to the end of a zone during a compaction run and the run
* completes when free_pfn <= migrate_pfn
*/
struct compact_control {
struct list_head freepages; /* List of free pages to migrate to */
struct list_head migratepages; /* List of pages being migrated */
unsigned int nr_freepages; /* Number of isolated free pages */
unsigned int nr_migratepages; /* Number of pages to migrate */
unsigned long free_pfn; /* isolate_freepages search base */
/*
* Acts as an in/out parameter to page isolation for migration.
* isolate_migratepages uses it as a search base.
* isolate_migratepages_block will update the value to the next pfn
* after the last isolated one.
*/
unsigned long migrate_pfn;
unsigned long fast_start_pfn; /* a pfn to start linear scan from */
struct zone *zone;
unsigned long total_migrate_scanned;
unsigned long total_free_scanned;
unsigned short fast_search_fail;/* failures to use free list searches */
short search_order; /* order to start a fast search at */
const gfp_t gfp_mask; /* gfp mask of a direct compactor */
int order; /* order a direct compactor needs */
int migratetype; /* migratetype of direct compactor */
const unsigned int alloc_flags; /* alloc flags of a direct compactor */
const int highest_zoneidx; /* zone index of a direct compactor */
enum migrate_mode mode; /* Async or sync migration mode */
bool ignore_skip_hint; /* Scan blocks even if marked skip */
bool no_set_skip_hint; /* Don't mark blocks for skipping */
bool ignore_block_suitable; /* Scan blocks considered unsuitable */
bool direct_compaction; /* False from kcompactd or /proc/... */
bool proactive_compaction; /* kcompactd proactive compaction */
bool whole_zone; /* Whole zone should/has been scanned */
bool contended; /* Signal lock contention */
bool finish_pageblock; /* Scan the remainder of a pageblock. Used
* when there are potentially transient
* isolation or migration failures to
* ensure forward progress.
*/
bool alloc_contig; /* alloc_contig_range allocation */
};
/*
* Used in direct compaction when a page should be taken from the freelists
* immediately when one is created during the free path.
*/
struct capture_control {
struct compact_control *cc;
struct page *page;
};
unsigned long
isolate_freepages_range(struct compact_control *cc,
unsigned long start_pfn, unsigned long end_pfn);
int
isolate_migratepages_range(struct compact_control *cc,
unsigned long low_pfn, unsigned long end_pfn);
int __alloc_contig_migrate_range(struct compact_control *cc,
unsigned long start, unsigned long end);
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
void init_cma_reserved_pageblock(struct page *page);
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
int find_suitable_fallback(struct free_area *area, unsigned int order,
int migratetype, bool only_stealable, bool *can_steal);
static inline bool free_area_empty(struct free_area *area, int migratetype)
{
return list_empty(&area->free_list[migratetype]);
}
/*
* These three helpers classifies VMAs for virtual memory accounting.
*/
/*
* Executable code area - executable, not writable, not stack
*/
static inline bool is_exec_mapping(vm_flags_t flags)
{
return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
}
/*
* Stack area - automatically grows in one direction
*
* VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
* do_mmap() forbids all other combinations.
*/
static inline bool is_stack_mapping(vm_flags_t flags)
{
return (flags & VM_STACK) == VM_STACK;
}
/*
* Data area - private, writable, not stack
*/
static inline bool is_data_mapping(vm_flags_t flags)
{
return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
}
/* mm/util.c */
struct anon_vma *folio_anon_vma(struct folio *folio);
#ifdef CONFIG_MMU
void unmap_mapping_folio(struct folio *folio);
extern long populate_vma_page_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *locked);
extern long faultin_vma_page_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
bool write, int *locked);
extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
unsigned long len);
/*
* mlock_vma_folio() and munlock_vma_folio():
* should be called with vma's mmap_lock held for read or write,
* under page table lock for the pte/pmd being added or removed.
*
* mlock is usually called at the end of page_add_*_rmap(), munlock at
* the end of page_remove_rmap(); but new anon folios are managed by
* folio_add_lru_vma() calling mlock_new_folio().
*
* @compound is used to include pmd mappings of THPs, but filter out
* pte mappings of THPs, which cannot be consistently counted: a pte
* mapping of the THP head cannot be distinguished by the page alone.
*/
void mlock_folio(struct folio *folio);
static inline void mlock_vma_folio(struct folio *folio,
struct vm_area_struct *vma, bool compound)
{
/*
* The VM_SPECIAL check here serves two purposes.
* 1) VM_IO check prevents migration from double-counting during mlock.
* 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
* is never left set on a VM_SPECIAL vma, there is an interval while
* file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
* still be set while VM_SPECIAL bits are added: so ignore it then.
*/
if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
(compound || !folio_test_large(folio)))
mlock_folio(folio);
}
void munlock_folio(struct folio *folio);
static inline void munlock_vma_folio(struct folio *folio,
struct vm_area_struct *vma, bool compound)
{
if (unlikely(vma->vm_flags & VM_LOCKED) &&
(compound || !folio_test_large(folio)))
munlock_folio(folio);
}
void mlock_new_folio(struct folio *folio);
bool need_mlock_drain(int cpu);
void mlock_drain_local(void);
void mlock_drain_remote(int cpu);
extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
/*
* Return the start of user virtual address at the specific offset within
* a vma.
*/
static inline unsigned long
vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
struct vm_area_struct *vma)
{
unsigned long address;
if (pgoff >= vma->vm_pgoff) {
address = vma->vm_start +
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
/* Check for address beyond vma (or wrapped through 0?) */
if (address < vma->vm_start || address >= vma->vm_end)
address = -EFAULT;
} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
/* Test above avoids possibility of wrap to 0 on 32-bit */
address = vma->vm_start;
} else {
address = -EFAULT;
}
return address;
}
/*
* Return the start of user virtual address of a page within a vma.
* Returns -EFAULT if all of the page is outside the range of vma.
* If page is a compound head, the entire compound page is considered.
*/
static inline unsigned long
vma_address(struct page *page, struct vm_area_struct *vma)
{
VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
}
/*
* Then at what user virtual address will none of the range be found in vma?
* Assumes that vma_address() already returned a good starting address.
*/
static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
{
struct vm_area_struct *vma = pvmw->vma;
pgoff_t pgoff;
unsigned long address;
/* Common case, plus ->pgoff is invalid for KSM */
if (pvmw->nr_pages == 1)
return pvmw->address + PAGE_SIZE;
pgoff = pvmw->pgoff + pvmw->nr_pages;
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
/* Check for address beyond vma (or wrapped through 0?) */
if (address < vma->vm_start || address > vma->vm_end)
address = vma->vm_end;
return address;
}
static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
struct file *fpin)
{
int flags = vmf->flags;
if (fpin)
return fpin;
/*
* FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
* anything, so we only pin the file and drop the mmap_lock if only
* FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
*/
if (fault_flag_allow_retry_first(flags) &&
!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
fpin = get_file(vmf->vma->vm_file);
mmap_read_unlock(vmf->vma->vm_mm);
}
return fpin;
}
#else /* !CONFIG_MMU */
static inline void unmap_mapping_folio(struct folio *folio) { }
static inline void mlock_new_folio(struct folio *folio) { }
static inline bool need_mlock_drain(int cpu) { return false; }
static inline void mlock_drain_local(void) { }
static inline void mlock_drain_remote(int cpu) { }
static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
{
}
#endif /* !CONFIG_MMU */
/* Memory initialisation debug and verification */
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
DECLARE_STATIC_KEY_TRUE(deferred_pages);
bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
enum mminit_level {
MMINIT_WARNING,
MMINIT_VERIFY,
MMINIT_TRACE
};
#ifdef CONFIG_DEBUG_MEMORY_INIT
extern int mminit_loglevel;
#define mminit_dprintk(level, prefix, fmt, arg...) \
do { \
if (level < mminit_loglevel) { \
if (level <= MMINIT_WARNING) \
pr_warn("mminit::" prefix " " fmt, ##arg); \
else \
printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
} \
} while (0)
extern void mminit_verify_pageflags_layout(void);
extern void mminit_verify_zonelist(void);
#else
static inline void mminit_dprintk(enum mminit_level level,
const char *prefix, const char *fmt, ...)
{
}
static inline void mminit_verify_pageflags_layout(void)
{
}
static inline void mminit_verify_zonelist(void)
{
}
#endif /* CONFIG_DEBUG_MEMORY_INIT */
#define NODE_RECLAIM_NOSCAN -2
#define NODE_RECLAIM_FULL -1
#define NODE_RECLAIM_SOME 0
#define NODE_RECLAIM_SUCCESS 1
#ifdef CONFIG_NUMA
extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
extern int find_next_best_node(int node, nodemask_t *used_node_mask);
#else
static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
unsigned int order)
{
return NODE_RECLAIM_NOSCAN;
}
static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
{
return NUMA_NO_NODE;
}
#endif
/*
* mm/memory-failure.c
*/
extern int hwpoison_filter(struct page *p);
extern u32 hwpoison_filter_dev_major;
extern u32 hwpoison_filter_dev_minor;
extern u64 hwpoison_filter_flags_mask;
extern u64 hwpoison_filter_flags_value;
extern u64 hwpoison_filter_memcg;
extern u32 hwpoison_filter_enable;
extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
unsigned long, unsigned long,
unsigned long, unsigned long);
extern void set_pageblock_order(void);
unsigned long reclaim_pages(struct list_head *folio_list);
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
struct list_head *folio_list);
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
#define ALLOC_WMARK_MIN WMARK_MIN
#define ALLOC_WMARK_LOW WMARK_LOW
#define ALLOC_WMARK_HIGH WMARK_HIGH
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
/* Mask to get the watermark bits */
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
/*
* Only MMU archs have async oom victim reclaim - aka oom_reaper so we
* cannot assume a reduced access to memory reserves is sufficient for
* !MMU
*/
#ifdef CONFIG_MMU
#define ALLOC_OOM 0x08
#else
#define ALLOC_OOM ALLOC_NO_WATERMARKS
#endif
#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
* to 25% of the min watermark or
* 62.5% if __GFP_HIGH is set.
*/
#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
* of the min watermark.
*/
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
#ifdef CONFIG_ZONE_DMA32
#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
#else
#define ALLOC_NOFRAGMENT 0x0
#endif
#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
/* Flags that allow allocations below the min watermark. */
#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
enum ttu_flags;
struct tlbflush_unmap_batch;
/*
* only for MM internal work items which do not depend on
* any allocations or locks which might depend on allocations
*/
extern struct workqueue_struct *mm_percpu_wq;
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
void try_to_unmap_flush(void);
void try_to_unmap_flush_dirty(void);
void flush_tlb_batched_pending(struct mm_struct *mm);
#else
static inline void try_to_unmap_flush(void)
{
}
static inline void try_to_unmap_flush_dirty(void)
{
}
static inline void flush_tlb_batched_pending(struct mm_struct *mm)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
extern const struct trace_print_flags pageflag_names[];
extern const struct trace_print_flags pagetype_names[];
extern const struct trace_print_flags vmaflag_names[];
extern const struct trace_print_flags gfpflag_names[];
static inline bool is_migrate_highatomic(enum migratetype migratetype)
{
return migratetype == MIGRATE_HIGHATOMIC;
}
static inline bool is_migrate_highatomic_page(struct page *page)
{
return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
}
void setup_zone_pageset(struct zone *zone);
struct migration_target_control {
int nid; /* preferred node id */
nodemask_t *nmask;
gfp_t gfp_mask;
};
/*
* mm/filemap.c
*/
size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
struct folio *folio, loff_t fpos, size_t size);
/*
* mm/vmalloc.c
*/
#ifdef CONFIG_MMU
void __init vmalloc_init(void);
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
pgprot_t prot, struct page **pages, unsigned int page_shift);
#else
static inline void vmalloc_init(void)
{
}
static inline
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
pgprot_t prot, struct page **pages, unsigned int page_shift)
{
return -EINVAL;
}
#endif
int __must_check __vmap_pages_range_noflush(unsigned long addr,
unsigned long end, pgprot_t prot,
struct page **pages, unsigned int page_shift);
void vunmap_range_noflush(unsigned long start, unsigned long end);
void __vunmap_range_noflush(unsigned long start, unsigned long end);
int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
unsigned long addr, int page_nid, int *flags);
void free_zone_device_page(struct page *page);
int migrate_device_coherent_page(struct page *page);
/*
* mm/gup.c
*/
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
int __must_check try_grab_page(struct page *page, unsigned int flags);
enum {
/* mark page accessed */
FOLL_TOUCH = 1 << 16,
/* a retry, previous pass started an IO */
FOLL_TRIED = 1 << 17,
/* we are working on non-current tsk/mm */
FOLL_REMOTE = 1 << 18,
/* pages must be released via unpin_user_page */
FOLL_PIN = 1 << 19,
/* gup_fast: prevent fall-back to slow gup */
FOLL_FAST_ONLY = 1 << 20,
/* allow unlocking the mmap lock */
FOLL_UNLOCKABLE = 1 << 21,
};
/*
* Indicates for which pages that are write-protected in the page table,
* whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
* GUP pin will remain consistent with the pages mapped into the page tables
* of the MM.
*
* Temporary unmapping of PageAnonExclusive() pages or clearing of
* PageAnonExclusive() has to protect against concurrent GUP:
* * Ordinary GUP: Using the PT lock
* * GUP-fast and fork(): mm->write_protect_seq
* * GUP-fast and KSM or temporary unmapping (swap, migration): see
* page_try_share_anon_rmap()
*
* Must be called with the (sub)page that's actually referenced via the
* page table entry, which might not necessarily be the head page for a
* PTE-mapped THP.
*
* If the vma is NULL, we're coming from the GUP-fast path and might have
* to fallback to the slow path just to lookup the vma.
*/
static inline bool gup_must_unshare(struct vm_area_struct *vma,
unsigned int flags, struct page *page)
{
/*
* FOLL_WRITE is implicitly handled correctly as the page table entry
* has to be writable -- and if it references (part of) an anonymous
* folio, that part is required to be marked exclusive.
*/
if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
return false;
/*
* Note: PageAnon(page) is stable until the page is actually getting
* freed.
*/
if (!PageAnon(page)) {
/*
* We only care about R/O long-term pining: R/O short-term
* pinning does not have the semantics to observe successive
* changes through the process page tables.
*/
if (!(flags & FOLL_LONGTERM))
return false;
/* We really need the vma ... */
if (!vma)
return true;
/*
* ... because we only care about writable private ("COW")
* mappings where we have to break COW early.
*/
return is_cow_mapping(vma->vm_flags);
}
/* Paired with a memory barrier in page_try_share_anon_rmap(). */
if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
smp_rmb();
/*
* Note that PageKsm() pages cannot be exclusive, and consequently,
* cannot get pinned.
*/
return !PageAnonExclusive(page);
}
extern bool mirrored_kernelcore;
static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
{
/*
* NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
* enablements, because when without soft-dirty being compiled in,
* VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
* will be constantly true.
*/
if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
return false;
/*
* Soft-dirty is kind of special: its tracking is enabled when the
* vma flags not set.
*/
return !(vma->vm_flags & VM_SOFTDIRTY);
}
/*
* VMA Iterator functions shared between nommu and mmap
*/
static inline int vma_iter_prealloc(struct vma_iterator *vmi)
{
return mas_preallocate(&vmi->mas, GFP_KERNEL);
}
static inline void vma_iter_clear(struct vma_iterator *vmi,
unsigned long start, unsigned long end)
{
mas_set_range(&vmi->mas, start, end - 1);
mas_store_prealloc(&vmi->mas, NULL);
}
static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
{
return mas_walk(&vmi->mas);
}
/* Store a VMA with preallocated memory */
static inline void vma_iter_store(struct vma_iterator *vmi,
struct vm_area_struct *vma)
{
#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.index > vma->vm_start)) {
printk("%lu > %lu\n", vmi->mas.index, vma->vm_start);
printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end);
printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last);
mt_dump(vmi->mas.tree);
}
if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.last < vma->vm_start)) {
printk("%lu < %lu\n", vmi->mas.last, vma->vm_start);
printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end);
printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last);
mt_dump(vmi->mas.tree);
}
#endif
if (vmi->mas.node != MAS_START &&
((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
vma_iter_invalidate(vmi);
vmi->mas.index = vma->vm_start;
vmi->mas.last = vma->vm_end - 1;
mas_store_prealloc(&vmi->mas, vma);
}
static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
struct vm_area_struct *vma, gfp_t gfp)
{
if (vmi->mas.node != MAS_START &&
((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
vma_iter_invalidate(vmi);
vmi->mas.index = vma->vm_start;
vmi->mas.last = vma->vm_end - 1;
mas_store_gfp(&vmi->mas, vma, gfp);
if (unlikely(mas_is_err(&vmi->mas)))
return -ENOMEM;
return 0;
}
/*
* VMA lock generalization
*/
struct vma_prepare {
struct vm_area_struct *vma;
struct vm_area_struct *adj_next;
struct file *file;
struct address_space *mapping;
struct anon_vma *anon_vma;
struct vm_area_struct *insert;
struct vm_area_struct *remove;
struct vm_area_struct *remove2;
};
#endif /* __MM_INTERNAL_H */