WSL2-Linux-Kernel/arch/s390/kvm/kvm-s390.c

5802 строки
158 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* hosting IBM Z kernel virtual machines (s390x)
*
* Copyright IBM Corp. 2008, 2020
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
* Christian Borntraeger <borntraeger@de.ibm.com>
* Christian Ehrhardt <ehrhardt@de.ibm.com>
* Jason J. Herne <jjherne@us.ibm.com>
*/
#define KMSG_COMPONENT "kvm-s390"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/hrtimer.h>
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <linux/bitmap.h>
#include <linux/sched/signal.h>
#include <linux/string.h>
#include <linux/pgtable.h>
#include <linux/mmu_notifier.h>
#include <asm/asm-offsets.h>
#include <asm/lowcore.h>
#include <asm/stp.h>
#include <asm/gmap.h>
#include <asm/nmi.h>
#include <asm/switch_to.h>
#include <asm/isc.h>
#include <asm/sclp.h>
#include <asm/cpacf.h>
#include <asm/timex.h>
#include <asm/ap.h>
#include <asm/uv.h>
#include <asm/fpu/api.h>
#include "kvm-s390.h"
#include "gaccess.h"
#include "pci.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "trace-s390.h"
#define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
(KVM_MAX_VCPUS + LOCAL_IRQS))
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
KVM_GENERIC_VM_STATS(),
STATS_DESC_COUNTER(VM, inject_io),
STATS_DESC_COUNTER(VM, inject_float_mchk),
STATS_DESC_COUNTER(VM, inject_pfault_done),
STATS_DESC_COUNTER(VM, inject_service_signal),
STATS_DESC_COUNTER(VM, inject_virtio),
STATS_DESC_COUNTER(VM, aen_forward)
};
const struct kvm_stats_header kvm_vm_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vm_stats_desc),
};
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
KVM_GENERIC_VCPU_STATS(),
STATS_DESC_COUNTER(VCPU, exit_userspace),
STATS_DESC_COUNTER(VCPU, exit_null),
STATS_DESC_COUNTER(VCPU, exit_external_request),
STATS_DESC_COUNTER(VCPU, exit_io_request),
STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
STATS_DESC_COUNTER(VCPU, exit_stop_request),
STATS_DESC_COUNTER(VCPU, exit_validity),
STATS_DESC_COUNTER(VCPU, exit_instruction),
STATS_DESC_COUNTER(VCPU, exit_pei),
STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
STATS_DESC_COUNTER(VCPU, instruction_lctl),
STATS_DESC_COUNTER(VCPU, instruction_lctlg),
STATS_DESC_COUNTER(VCPU, instruction_stctl),
STATS_DESC_COUNTER(VCPU, instruction_stctg),
STATS_DESC_COUNTER(VCPU, exit_program_interruption),
STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
STATS_DESC_COUNTER(VCPU, exit_operation_exception),
STATS_DESC_COUNTER(VCPU, deliver_ckc),
STATS_DESC_COUNTER(VCPU, deliver_cputm),
STATS_DESC_COUNTER(VCPU, deliver_external_call),
STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
STATS_DESC_COUNTER(VCPU, deliver_service_signal),
STATS_DESC_COUNTER(VCPU, deliver_virtio),
STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
STATS_DESC_COUNTER(VCPU, deliver_program),
STATS_DESC_COUNTER(VCPU, deliver_io),
STATS_DESC_COUNTER(VCPU, deliver_machine_check),
STATS_DESC_COUNTER(VCPU, exit_wait_state),
STATS_DESC_COUNTER(VCPU, inject_ckc),
STATS_DESC_COUNTER(VCPU, inject_cputm),
STATS_DESC_COUNTER(VCPU, inject_external_call),
STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
STATS_DESC_COUNTER(VCPU, inject_mchk),
STATS_DESC_COUNTER(VCPU, inject_pfault_init),
STATS_DESC_COUNTER(VCPU, inject_program),
STATS_DESC_COUNTER(VCPU, inject_restart),
STATS_DESC_COUNTER(VCPU, inject_set_prefix),
STATS_DESC_COUNTER(VCPU, inject_stop_signal),
STATS_DESC_COUNTER(VCPU, instruction_epsw),
STATS_DESC_COUNTER(VCPU, instruction_gs),
STATS_DESC_COUNTER(VCPU, instruction_io_other),
STATS_DESC_COUNTER(VCPU, instruction_lpsw),
STATS_DESC_COUNTER(VCPU, instruction_lpswe),
STATS_DESC_COUNTER(VCPU, instruction_pfmf),
STATS_DESC_COUNTER(VCPU, instruction_ptff),
STATS_DESC_COUNTER(VCPU, instruction_sck),
STATS_DESC_COUNTER(VCPU, instruction_sckpf),
STATS_DESC_COUNTER(VCPU, instruction_stidp),
STATS_DESC_COUNTER(VCPU, instruction_spx),
STATS_DESC_COUNTER(VCPU, instruction_stpx),
STATS_DESC_COUNTER(VCPU, instruction_stap),
STATS_DESC_COUNTER(VCPU, instruction_iske),
STATS_DESC_COUNTER(VCPU, instruction_ri),
STATS_DESC_COUNTER(VCPU, instruction_rrbe),
STATS_DESC_COUNTER(VCPU, instruction_sske),
STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
STATS_DESC_COUNTER(VCPU, instruction_stsi),
STATS_DESC_COUNTER(VCPU, instruction_stfl),
STATS_DESC_COUNTER(VCPU, instruction_tb),
STATS_DESC_COUNTER(VCPU, instruction_tpi),
STATS_DESC_COUNTER(VCPU, instruction_tprot),
STATS_DESC_COUNTER(VCPU, instruction_tsch),
STATS_DESC_COUNTER(VCPU, instruction_sie),
STATS_DESC_COUNTER(VCPU, instruction_essa),
STATS_DESC_COUNTER(VCPU, instruction_sthyi),
STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
STATS_DESC_COUNTER(VCPU, diag_9c_forward),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
STATS_DESC_COUNTER(VCPU, pfault_sync)
};
const struct kvm_stats_header kvm_vcpu_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vcpu_stats_desc),
};
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");
/* allow 1m huge page guest backing, if !nested */
static int hpage;
module_param(hpage, int, 0444);
MODULE_PARM_DESC(hpage, "1m huge page backing support");
/* maximum percentage of steal time for polling. >100 is treated like 100 */
static u8 halt_poll_max_steal = 10;
module_param(halt_poll_max_steal, byte, 0644);
MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
/* if set to true, the GISA will be initialized and used if available */
static bool use_gisa = true;
module_param(use_gisa, bool, 0644);
MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
/* maximum diag9c forwarding per second */
unsigned int diag9c_forwarding_hz;
module_param(diag9c_forwarding_hz, uint, 0644);
MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
/*
* allow asynchronous deinit for protected guests; enable by default since
* the feature is opt-in anyway
*/
static int async_destroy = 1;
module_param(async_destroy, int, 0444);
MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
/*
* For now we handle at most 16 double words as this is what the s390 base
* kernel handles and stores in the prefix page. If we ever need to go beyond
* this, this requires changes to code, but the external uapi can stay.
*/
#define SIZE_INTERNAL 16
/*
* Base feature mask that defines default mask for facilities. Consists of the
* defines in FACILITIES_KVM and the non-hypervisor managed bits.
*/
static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
/*
* Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
* and defines the facilities that can be enabled via a cpu model.
*/
static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
static unsigned long kvm_s390_fac_size(void)
{
BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
sizeof(stfle_fac_list));
return SIZE_INTERNAL;
}
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
static struct gmap_notifier gmap_notifier;
static struct gmap_notifier vsie_gmap_notifier;
debug_info_t *kvm_s390_dbf;
debug_info_t *kvm_s390_dbf_uv;
/* Section: not file related */
/* forward declarations */
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
unsigned long end);
static int sca_switch_to_extended(struct kvm *kvm);
static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
{
u8 delta_idx = 0;
/*
* The TOD jumps by delta, we have to compensate this by adding
* -delta to the epoch.
*/
delta = -delta;
/* sign-extension - we're adding to signed values below */
if ((s64)delta < 0)
delta_idx = -1;
scb->epoch += delta;
if (scb->ecd & ECD_MEF) {
scb->epdx += delta_idx;
if (scb->epoch < delta)
scb->epdx += 1;
}
}
/*
* This callback is executed during stop_machine(). All CPUs are therefore
* temporarily stopped. In order not to change guest behavior, we have to
* disable preemption whenever we touch the epoch of kvm and the VCPUs,
* so a CPU won't be stopped while calculating with the epoch.
*/
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
void *v)
{
struct kvm *kvm;
struct kvm_vcpu *vcpu;
unsigned long i;
unsigned long long *delta = v;
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
if (i == 0) {
kvm->arch.epoch = vcpu->arch.sie_block->epoch;
kvm->arch.epdx = vcpu->arch.sie_block->epdx;
}
if (vcpu->arch.cputm_enabled)
vcpu->arch.cputm_start += *delta;
if (vcpu->arch.vsie_block)
kvm_clock_sync_scb(vcpu->arch.vsie_block,
*delta);
}
}
return NOTIFY_OK;
}
static struct notifier_block kvm_clock_notifier = {
.notifier_call = kvm_clock_sync,
};
static void allow_cpu_feat(unsigned long nr)
{
set_bit_inv(nr, kvm_s390_available_cpu_feat);
}
static inline int plo_test_bit(unsigned char nr)
{
unsigned long function = (unsigned long)nr | 0x100;
int cc;
asm volatile(
" lgr 0,%[function]\n"
/* Parameter registers are ignored for "test bit" */
" plo 0,0,0,0(0)\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: [function] "d" (function)
: "cc", "0");
return cc == 0;
}
static __always_inline void __insn32_query(unsigned int opcode, u8 *query)
{
asm volatile(
" lghi 0,0\n"
" lgr 1,%[query]\n"
/* Parameter registers are ignored */
" .insn rrf,%[opc] << 16,2,4,6,0\n"
:
: [query] "d" ((unsigned long)query), [opc] "i" (opcode)
: "cc", "memory", "0", "1");
}
#define INSN_SORTL 0xb938
#define INSN_DFLTCC 0xb939
static void __init kvm_s390_cpu_feat_init(void)
{
int i;
for (i = 0; i < 256; ++i) {
if (plo_test_bit(i))
kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
}
if (test_facility(28)) /* TOD-clock steering */
ptff(kvm_s390_available_subfunc.ptff,
sizeof(kvm_s390_available_subfunc.ptff),
PTFF_QAF);
if (test_facility(17)) { /* MSA */
__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmac);
__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmc);
__cpacf_query(CPACF_KM, (cpacf_mask_t *)
kvm_s390_available_subfunc.km);
__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
kvm_s390_available_subfunc.kimd);
__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
kvm_s390_available_subfunc.klmd);
}
if (test_facility(76)) /* MSA3 */
__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
kvm_s390_available_subfunc.pckmo);
if (test_facility(77)) { /* MSA4 */
__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmctr);
__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmf);
__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmo);
__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
kvm_s390_available_subfunc.pcc);
}
if (test_facility(57)) /* MSA5 */
__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
kvm_s390_available_subfunc.ppno);
if (test_facility(146)) /* MSA8 */
__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
kvm_s390_available_subfunc.kma);
if (test_facility(155)) /* MSA9 */
__cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
kvm_s390_available_subfunc.kdsa);
if (test_facility(150)) /* SORTL */
__insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl);
if (test_facility(151)) /* DFLTCC */
__insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc);
if (MACHINE_HAS_ESOP)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
/*
* We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
* 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
*/
if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
!test_facility(3) || !nested)
return;
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
if (sclp.has_64bscao)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
if (sclp.has_siif)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
if (sclp.has_gpere)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
if (sclp.has_gsls)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
if (sclp.has_ib)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
if (sclp.has_cei)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
if (sclp.has_ibs)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
if (sclp.has_kss)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
/*
* KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
* all skey handling functions read/set the skey from the PGSTE
* instead of the real storage key.
*
* KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
* pages being detected as preserved although they are resident.
*
* KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
* have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
*
* For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
* KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
* correctly shadowed. We can do that for the PGSTE but not for PTE.I.
*
* KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
* cannot easily shadow the SCA because of the ipte lock.
*/
}
static int __init __kvm_s390_init(void)
{
int rc = -ENOMEM;
kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
if (!kvm_s390_dbf)
return -ENOMEM;
kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
if (!kvm_s390_dbf_uv)
goto err_kvm_uv;
if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
goto err_debug_view;
kvm_s390_cpu_feat_init();
/* Register floating interrupt controller interface. */
rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
if (rc) {
pr_err("A FLIC registration call failed with rc=%d\n", rc);
goto err_flic;
}
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
rc = kvm_s390_pci_init();
if (rc) {
pr_err("Unable to allocate AIFT for PCI\n");
goto err_pci;
}
}
rc = kvm_s390_gib_init(GAL_ISC);
if (rc)
goto err_gib;
gmap_notifier.notifier_call = kvm_gmap_notifier;
gmap_register_pte_notifier(&gmap_notifier);
vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
gmap_register_pte_notifier(&vsie_gmap_notifier);
atomic_notifier_chain_register(&s390_epoch_delta_notifier,
&kvm_clock_notifier);
return 0;
err_gib:
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
kvm_s390_pci_exit();
err_pci:
err_flic:
err_debug_view:
debug_unregister(kvm_s390_dbf_uv);
err_kvm_uv:
debug_unregister(kvm_s390_dbf);
return rc;
}
static void __kvm_s390_exit(void)
{
gmap_unregister_pte_notifier(&gmap_notifier);
gmap_unregister_pte_notifier(&vsie_gmap_notifier);
atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
&kvm_clock_notifier);
kvm_s390_gib_destroy();
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
kvm_s390_pci_exit();
debug_unregister(kvm_s390_dbf);
debug_unregister(kvm_s390_dbf_uv);
}
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
if (ioctl == KVM_S390_ENABLE_SIE)
return s390_enable_sie();
return -EINVAL;
}
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
switch (ext) {
case KVM_CAP_S390_PSW:
case KVM_CAP_S390_GMAP:
case KVM_CAP_SYNC_MMU:
#ifdef CONFIG_KVM_S390_UCONTROL
case KVM_CAP_S390_UCONTROL:
#endif
case KVM_CAP_ASYNC_PF:
case KVM_CAP_SYNC_REGS:
case KVM_CAP_ONE_REG:
case KVM_CAP_ENABLE_CAP:
case KVM_CAP_S390_CSS_SUPPORT:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_DEVICE_CTRL:
case KVM_CAP_S390_IRQCHIP:
case KVM_CAP_VM_ATTRIBUTES:
case KVM_CAP_MP_STATE:
case KVM_CAP_IMMEDIATE_EXIT:
case KVM_CAP_S390_INJECT_IRQ:
case KVM_CAP_S390_USER_SIGP:
case KVM_CAP_S390_USER_STSI:
case KVM_CAP_S390_SKEYS:
case KVM_CAP_S390_IRQ_STATE:
case KVM_CAP_S390_USER_INSTR0:
case KVM_CAP_S390_CMMA_MIGRATION:
case KVM_CAP_S390_AIS:
case KVM_CAP_S390_AIS_MIGRATION:
case KVM_CAP_S390_VCPU_RESETS:
case KVM_CAP_SET_GUEST_DEBUG:
case KVM_CAP_S390_DIAG318:
case KVM_CAP_IRQFD_RESAMPLE:
r = 1;
break;
case KVM_CAP_SET_GUEST_DEBUG2:
r = KVM_GUESTDBG_VALID_MASK;
break;
case KVM_CAP_S390_HPAGE_1M:
r = 0;
if (hpage && !kvm_is_ucontrol(kvm))
r = 1;
break;
case KVM_CAP_S390_MEM_OP:
r = MEM_OP_MAX_SIZE;
break;
case KVM_CAP_S390_MEM_OP_EXTENSION:
/*
* Flag bits indicating which extensions are supported.
* If r > 0, the base extension must also be supported/indicated,
* in order to maintain backwards compatibility.
*/
r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
break;
case KVM_CAP_NR_VCPUS:
case KVM_CAP_MAX_VCPUS:
case KVM_CAP_MAX_VCPU_ID:
r = KVM_S390_BSCA_CPU_SLOTS;
if (!kvm_s390_use_sca_entries())
r = KVM_MAX_VCPUS;
else if (sclp.has_esca && sclp.has_64bscao)
r = KVM_S390_ESCA_CPU_SLOTS;
if (ext == KVM_CAP_NR_VCPUS)
r = min_t(unsigned int, num_online_cpus(), r);
break;
case KVM_CAP_S390_COW:
r = MACHINE_HAS_ESOP;
break;
case KVM_CAP_S390_VECTOR_REGISTERS:
r = MACHINE_HAS_VX;
break;
case KVM_CAP_S390_RI:
r = test_facility(64);
break;
case KVM_CAP_S390_GS:
r = test_facility(133);
break;
case KVM_CAP_S390_BPB:
r = test_facility(82);
break;
case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
r = async_destroy && is_prot_virt_host();
break;
case KVM_CAP_S390_PROTECTED:
r = is_prot_virt_host();
break;
case KVM_CAP_S390_PROTECTED_DUMP: {
u64 pv_cmds_dump[] = {
BIT_UVC_CMD_DUMP_INIT,
BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
BIT_UVC_CMD_DUMP_CPU,
BIT_UVC_CMD_DUMP_COMPLETE,
};
int i;
r = is_prot_virt_host();
for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
if (!test_bit_inv(pv_cmds_dump[i],
(unsigned long *)&uv_info.inst_calls_list)) {
r = 0;
break;
}
}
break;
}
case KVM_CAP_S390_ZPCI_OP:
r = kvm_s390_pci_interp_allowed();
break;
case KVM_CAP_S390_CPU_TOPOLOGY:
r = test_facility(11);
break;
default:
r = 0;
}
return r;
}
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
int i;
gfn_t cur_gfn, last_gfn;
unsigned long gaddr, vmaddr;
struct gmap *gmap = kvm->arch.gmap;
DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
/* Loop over all guest segments */
cur_gfn = memslot->base_gfn;
last_gfn = memslot->base_gfn + memslot->npages;
for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
gaddr = gfn_to_gpa(cur_gfn);
vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
if (kvm_is_error_hva(vmaddr))
continue;
bitmap_zero(bitmap, _PAGE_ENTRIES);
gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
for (i = 0; i < _PAGE_ENTRIES; i++) {
if (test_bit(i, bitmap))
mark_page_dirty(kvm, cur_gfn + i);
}
if (fatal_signal_pending(current))
return;
cond_resched();
}
}
/* Section: vm related */
static void sca_del_vcpu(struct kvm_vcpu *vcpu);
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
int r;
unsigned long n;
struct kvm_memory_slot *memslot;
int is_dirty;
if (kvm_is_ucontrol(kvm))
return -EINVAL;
mutex_lock(&kvm->slots_lock);
r = -EINVAL;
if (log->slot >= KVM_USER_MEM_SLOTS)
goto out;
r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
if (r)
goto out;
/* Clear the dirty log */
if (is_dirty) {
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
unsigned long i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
}
}
int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_S390_IRQCHIP:
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
kvm->arch.use_irqchip = 1;
r = 0;
break;
case KVM_CAP_S390_USER_SIGP:
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
kvm->arch.user_sigp = 1;
r = 0;
break;
case KVM_CAP_S390_VECTOR_REGISTERS:
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else if (MACHINE_HAS_VX) {
set_kvm_facility(kvm->arch.model.fac_mask, 129);
set_kvm_facility(kvm->arch.model.fac_list, 129);
if (test_facility(134)) {
set_kvm_facility(kvm->arch.model.fac_mask, 134);
set_kvm_facility(kvm->arch.model.fac_list, 134);
}
if (test_facility(135)) {
set_kvm_facility(kvm->arch.model.fac_mask, 135);
set_kvm_facility(kvm->arch.model.fac_list, 135);
}
if (test_facility(148)) {
set_kvm_facility(kvm->arch.model.fac_mask, 148);
set_kvm_facility(kvm->arch.model.fac_list, 148);
}
if (test_facility(152)) {
set_kvm_facility(kvm->arch.model.fac_mask, 152);
set_kvm_facility(kvm->arch.model.fac_list, 152);
}
if (test_facility(192)) {
set_kvm_facility(kvm->arch.model.fac_mask, 192);
set_kvm_facility(kvm->arch.model.fac_list, 192);
}
r = 0;
} else
r = -EINVAL;
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_RI:
r = -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else if (test_facility(64)) {
set_kvm_facility(kvm->arch.model.fac_mask, 64);
set_kvm_facility(kvm->arch.model.fac_list, 64);
r = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_AIS:
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else {
set_kvm_facility(kvm->arch.model.fac_mask, 72);
set_kvm_facility(kvm->arch.model.fac_list, 72);
r = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: AIS %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_GS:
r = -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else if (test_facility(133)) {
set_kvm_facility(kvm->arch.model.fac_mask, 133);
set_kvm_facility(kvm->arch.model.fac_list, 133);
r = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_HPAGE_1M:
mutex_lock(&kvm->lock);
if (kvm->created_vcpus)
r = -EBUSY;
else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
r = -EINVAL;
else {
r = 0;
mmap_write_lock(kvm->mm);
kvm->mm->context.allow_gmap_hpage_1m = 1;
mmap_write_unlock(kvm->mm);
/*
* We might have to create fake 4k page
* tables. To avoid that the hardware works on
* stale PGSTEs, we emulate these instructions.
*/
kvm->arch.use_skf = 0;
kvm->arch.use_pfmfi = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_USER_STSI:
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
kvm->arch.user_stsi = 1;
r = 0;
break;
case KVM_CAP_S390_USER_INSTR0:
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
kvm->arch.user_instr0 = 1;
icpt_operexc_on_all_vcpus(kvm);
r = 0;
break;
case KVM_CAP_S390_CPU_TOPOLOGY:
r = -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else if (test_facility(11)) {
set_kvm_facility(kvm->arch.model.fac_mask, 11);
set_kvm_facility(kvm->arch.model.fac_list, 11);
r = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
r ? "(not available)" : "(success)");
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->attr) {
case KVM_S390_VM_MEM_LIMIT_SIZE:
ret = 0;
VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
kvm->arch.mem_limit);
if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
ret = -EFAULT;
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
unsigned int idx;
switch (attr->attr) {
case KVM_S390_VM_MEM_ENABLE_CMMA:
ret = -ENXIO;
if (!sclp.has_cmma)
break;
VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
mutex_lock(&kvm->lock);
if (kvm->created_vcpus)
ret = -EBUSY;
else if (kvm->mm->context.allow_gmap_hpage_1m)
ret = -EINVAL;
else {
kvm->arch.use_cmma = 1;
/* Not compatible with cmma. */
kvm->arch.use_pfmfi = 0;
ret = 0;
}
mutex_unlock(&kvm->lock);
break;
case KVM_S390_VM_MEM_CLR_CMMA:
ret = -ENXIO;
if (!sclp.has_cmma)
break;
ret = -EINVAL;
if (!kvm->arch.use_cmma)
break;
VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
mutex_lock(&kvm->lock);
idx = srcu_read_lock(&kvm->srcu);
s390_reset_cmma(kvm->arch.gmap->mm);
srcu_read_unlock(&kvm->srcu, idx);
mutex_unlock(&kvm->lock);
ret = 0;
break;
case KVM_S390_VM_MEM_LIMIT_SIZE: {
unsigned long new_limit;
if (kvm_is_ucontrol(kvm))
return -EINVAL;
if (get_user(new_limit, (u64 __user *)attr->addr))
return -EFAULT;
if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
new_limit > kvm->arch.mem_limit)
return -E2BIG;
if (!new_limit)
return -EINVAL;
/* gmap_create takes last usable address */
if (new_limit != KVM_S390_NO_MEM_LIMIT)
new_limit -= 1;
ret = -EBUSY;
mutex_lock(&kvm->lock);
if (!kvm->created_vcpus) {
/* gmap_create will round the limit up */
struct gmap *new = gmap_create(current->mm, new_limit);
if (!new) {
ret = -ENOMEM;
} else {
gmap_remove(kvm->arch.gmap);
new->private = kvm;
kvm->arch.gmap = new;
ret = 0;
}
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
(void *) kvm->arch.gmap->asce);
break;
}
default:
ret = -ENXIO;
break;
}
return ret;
}
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long i;
kvm_s390_vcpu_block_all(kvm);
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_s390_vcpu_crypto_setup(vcpu);
/* recreate the shadow crycb by leaving the VSIE handler */
kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
}
kvm_s390_vcpu_unblock_all(kvm);
}
static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
mutex_lock(&kvm->lock);
switch (attr->attr) {
case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
get_random_bytes(
kvm->arch.crypto.crycb->aes_wrapping_key_mask,
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
kvm->arch.crypto.aes_kw = 1;
VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
break;
case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
get_random_bytes(
kvm->arch.crypto.crycb->dea_wrapping_key_mask,
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
kvm->arch.crypto.dea_kw = 1;
VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
break;
case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
kvm->arch.crypto.aes_kw = 0;
memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
break;
case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
kvm->arch.crypto.dea_kw = 0;
memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
break;
case KVM_S390_VM_CRYPTO_ENABLE_APIE:
if (!ap_instructions_available()) {
mutex_unlock(&kvm->lock);
return -EOPNOTSUPP;
}
kvm->arch.crypto.apie = 1;
break;
case KVM_S390_VM_CRYPTO_DISABLE_APIE:
if (!ap_instructions_available()) {
mutex_unlock(&kvm->lock);
return -EOPNOTSUPP;
}
kvm->arch.crypto.apie = 0;
break;
default:
mutex_unlock(&kvm->lock);
return -ENXIO;
}
kvm_s390_vcpu_crypto_reset_all(kvm);
mutex_unlock(&kvm->lock);
return 0;
}
static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
{
/* Only set the ECB bits after guest requests zPCI interpretation */
if (!vcpu->kvm->arch.use_zpci_interp)
return;
vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
}
void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long i;
lockdep_assert_held(&kvm->lock);
if (!kvm_s390_pci_interp_allowed())
return;
/*
* If host is configured for PCI and the necessary facilities are
* available, turn on interpretation for the life of this guest
*/
kvm->arch.use_zpci_interp = 1;
kvm_s390_vcpu_block_all(kvm);
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_s390_vcpu_pci_setup(vcpu);
kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
}
kvm_s390_vcpu_unblock_all(kvm);
}
static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
{
unsigned long cx;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(cx, vcpu, kvm)
kvm_s390_sync_request(req, vcpu);
}
/*
* Must be called with kvm->srcu held to avoid races on memslots, and with
* kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
*/
static int kvm_s390_vm_start_migration(struct kvm *kvm)
{
struct kvm_memory_slot *ms;
struct kvm_memslots *slots;
unsigned long ram_pages = 0;
int bkt;
/* migration mode already enabled */
if (kvm->arch.migration_mode)
return 0;
slots = kvm_memslots(kvm);
if (!slots || kvm_memslots_empty(slots))
return -EINVAL;
if (!kvm->arch.use_cmma) {
kvm->arch.migration_mode = 1;
return 0;
}
/* mark all the pages in active slots as dirty */
kvm_for_each_memslot(ms, bkt, slots) {
if (!ms->dirty_bitmap)
return -EINVAL;
/*
* The second half of the bitmap is only used on x86,
* and would be wasted otherwise, so we put it to good
* use here to keep track of the state of the storage
* attributes.
*/
memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
ram_pages += ms->npages;
}
atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
kvm->arch.migration_mode = 1;
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
return 0;
}
/*
* Must be called with kvm->slots_lock to avoid races with ourselves and
* kvm_s390_vm_start_migration.
*/
static int kvm_s390_vm_stop_migration(struct kvm *kvm)
{
/* migration mode already disabled */
if (!kvm->arch.migration_mode)
return 0;
kvm->arch.migration_mode = 0;
if (kvm->arch.use_cmma)
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
return 0;
}
static int kvm_s390_vm_set_migration(struct kvm *kvm,
struct kvm_device_attr *attr)
{
int res = -ENXIO;
mutex_lock(&kvm->slots_lock);
switch (attr->attr) {
case KVM_S390_VM_MIGRATION_START:
res = kvm_s390_vm_start_migration(kvm);
break;
case KVM_S390_VM_MIGRATION_STOP:
res = kvm_s390_vm_stop_migration(kvm);
break;
default:
break;
}
mutex_unlock(&kvm->slots_lock);
return res;
}
static int kvm_s390_vm_get_migration(struct kvm *kvm,
struct kvm_device_attr *attr)
{
u64 mig = kvm->arch.migration_mode;
if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
return -ENXIO;
if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
return -EFAULT;
return 0;
}
static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_tod_clock gtod;
if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
return -EFAULT;
if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
return -EINVAL;
__kvm_s390_set_tod_clock(kvm, &gtod);
VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
gtod.epoch_idx, gtod.tod);
return 0;
}
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
u8 gtod_high;
if (copy_from_user(&gtod_high, (void __user *)attr->addr,
sizeof(gtod_high)))
return -EFAULT;
if (gtod_high != 0)
return -EINVAL;
VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
return 0;
}
static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_tod_clock gtod = { 0 };
if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
sizeof(gtod.tod)))
return -EFAULT;
__kvm_s390_set_tod_clock(kvm, &gtod);
VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
return 0;
}
static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
if (attr->flags)
return -EINVAL;
mutex_lock(&kvm->lock);
/*
* For protected guests, the TOD is managed by the ultravisor, so trying
* to change it will never bring the expected results.
*/
if (kvm_s390_pv_is_protected(kvm)) {
ret = -EOPNOTSUPP;
goto out_unlock;
}
switch (attr->attr) {
case KVM_S390_VM_TOD_EXT:
ret = kvm_s390_set_tod_ext(kvm, attr);
break;
case KVM_S390_VM_TOD_HIGH:
ret = kvm_s390_set_tod_high(kvm, attr);
break;
case KVM_S390_VM_TOD_LOW:
ret = kvm_s390_set_tod_low(kvm, attr);
break;
default:
ret = -ENXIO;
break;
}
out_unlock:
mutex_unlock(&kvm->lock);
return ret;
}
static void kvm_s390_get_tod_clock(struct kvm *kvm,
struct kvm_s390_vm_tod_clock *gtod)
{
union tod_clock clk;
preempt_disable();
store_tod_clock_ext(&clk);
gtod->tod = clk.tod + kvm->arch.epoch;
gtod->epoch_idx = 0;
if (test_kvm_facility(kvm, 139)) {
gtod->epoch_idx = clk.ei + kvm->arch.epdx;
if (gtod->tod < clk.tod)
gtod->epoch_idx += 1;
}
preempt_enable();
}
static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_tod_clock gtod;
memset(&gtod, 0, sizeof(gtod));
kvm_s390_get_tod_clock(kvm, &gtod);
if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
return -EFAULT;
VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
gtod.epoch_idx, gtod.tod);
return 0;
}
static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
u8 gtod_high = 0;
if (copy_to_user((void __user *)attr->addr, &gtod_high,
sizeof(gtod_high)))
return -EFAULT;
VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
return 0;
}
static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
u64 gtod;
gtod = kvm_s390_get_tod_clock_fast(kvm);
if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
return -EFAULT;
VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
return 0;
}
static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
if (attr->flags)
return -EINVAL;
switch (attr->attr) {
case KVM_S390_VM_TOD_EXT:
ret = kvm_s390_get_tod_ext(kvm, attr);
break;
case KVM_S390_VM_TOD_HIGH:
ret = kvm_s390_get_tod_high(kvm, attr);
break;
case KVM_S390_VM_TOD_LOW:
ret = kvm_s390_get_tod_low(kvm, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_processor *proc;
u16 lowest_ibc, unblocked_ibc;
int ret = 0;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
ret = -EBUSY;
goto out;
}
proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
if (!proc) {
ret = -ENOMEM;
goto out;
}
if (!copy_from_user(proc, (void __user *)attr->addr,
sizeof(*proc))) {
kvm->arch.model.cpuid = proc->cpuid;
lowest_ibc = sclp.ibc >> 16 & 0xfff;
unblocked_ibc = sclp.ibc & 0xfff;
if (lowest_ibc && proc->ibc) {
if (proc->ibc > unblocked_ibc)
kvm->arch.model.ibc = unblocked_ibc;
else if (proc->ibc < lowest_ibc)
kvm->arch.model.ibc = lowest_ibc;
else
kvm->arch.model.ibc = proc->ibc;
}
memcpy(kvm->arch.model.fac_list, proc->fac_list,
S390_ARCH_FAC_LIST_SIZE_BYTE);
VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
kvm->arch.model.ibc,
kvm->arch.model.cpuid);
VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
kvm->arch.model.fac_list[0],
kvm->arch.model.fac_list[1],
kvm->arch.model.fac_list[2]);
} else
ret = -EFAULT;
kfree(proc);
out:
mutex_unlock(&kvm->lock);
return ret;
}
static int kvm_s390_set_processor_feat(struct kvm *kvm,
struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_feat data;
if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
return -EFAULT;
if (!bitmap_subset((unsigned long *) data.feat,
kvm_s390_available_cpu_feat,
KVM_S390_VM_CPU_FEAT_NR_BITS))
return -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
mutex_unlock(&kvm->lock);
return -EBUSY;
}
bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
data.feat[0],
data.feat[1],
data.feat[2]);
return 0;
}
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
struct kvm_device_attr *attr)
{
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
mutex_unlock(&kvm->lock);
return -EBUSY;
}
if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
sizeof(struct kvm_s390_vm_cpu_subfunc))) {
mutex_unlock(&kvm->lock);
return -EFAULT;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
return 0;
}
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->attr) {
case KVM_S390_VM_CPU_PROCESSOR:
ret = kvm_s390_set_processor(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
ret = kvm_s390_set_processor_feat(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
ret = kvm_s390_set_processor_subfunc(kvm, attr);
break;
}
return ret;
}
static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_processor *proc;
int ret = 0;
proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
if (!proc) {
ret = -ENOMEM;
goto out;
}
proc->cpuid = kvm->arch.model.cpuid;
proc->ibc = kvm->arch.model.ibc;
memcpy(&proc->fac_list, kvm->arch.model.fac_list,
S390_ARCH_FAC_LIST_SIZE_BYTE);
VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
kvm->arch.model.ibc,
kvm->arch.model.cpuid);
VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
kvm->arch.model.fac_list[0],
kvm->arch.model.fac_list[1],
kvm->arch.model.fac_list[2]);
if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
ret = -EFAULT;
kfree(proc);
out:
return ret;
}
static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_machine *mach;
int ret = 0;
mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
if (!mach) {
ret = -ENOMEM;
goto out;
}
get_cpu_id((struct cpuid *) &mach->cpuid);
mach->ibc = sclp.ibc;
memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
S390_ARCH_FAC_LIST_SIZE_BYTE);
memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
sizeof(stfle_fac_list));
VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
kvm->arch.model.ibc,
kvm->arch.model.cpuid);
VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
mach->fac_mask[0],
mach->fac_mask[1],
mach->fac_mask[2]);
VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
mach->fac_list[0],
mach->fac_list[1],
mach->fac_list[2]);
if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
ret = -EFAULT;
kfree(mach);
out:
return ret;
}
static int kvm_s390_get_processor_feat(struct kvm *kvm,
struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_feat data;
bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
data.feat[0],
data.feat[1],
data.feat[2]);
return 0;
}
static int kvm_s390_get_machine_feat(struct kvm *kvm,
struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_feat data;
bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
data.feat[0],
data.feat[1],
data.feat[2]);
return 0;
}
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
struct kvm_device_attr *attr)
{
if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
sizeof(struct kvm_s390_vm_cpu_subfunc)))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
return 0;
}
static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
struct kvm_device_attr *attr)
{
if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
sizeof(struct kvm_s390_vm_cpu_subfunc)))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.km)[0],
((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
return 0;
}
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->attr) {
case KVM_S390_VM_CPU_PROCESSOR:
ret = kvm_s390_get_processor(kvm, attr);
break;
case KVM_S390_VM_CPU_MACHINE:
ret = kvm_s390_get_machine(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
ret = kvm_s390_get_processor_feat(kvm, attr);
break;
case KVM_S390_VM_CPU_MACHINE_FEAT:
ret = kvm_s390_get_machine_feat(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
ret = kvm_s390_get_processor_subfunc(kvm, attr);
break;
case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
ret = kvm_s390_get_machine_subfunc(kvm, attr);
break;
}
return ret;
}
/**
* kvm_s390_update_topology_change_report - update CPU topology change report
* @kvm: guest KVM description
* @val: set or clear the MTCR bit
*
* Updates the Multiprocessor Topology-Change-Report bit to signal
* the guest with a topology change.
* This is only relevant if the topology facility is present.
*
* The SCA version, bsca or esca, doesn't matter as offset is the same.
*/
static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
{
union sca_utility new, old;
struct bsca_block *sca;
read_lock(&kvm->arch.sca_lock);
sca = kvm->arch.sca;
do {
old = READ_ONCE(sca->utility);
new = old;
new.mtcr = val;
} while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val);
read_unlock(&kvm->arch.sca_lock);
}
static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
struct kvm_device_attr *attr)
{
if (!test_kvm_facility(kvm, 11))
return -ENXIO;
kvm_s390_update_topology_change_report(kvm, !!attr->attr);
return 0;
}
static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
struct kvm_device_attr *attr)
{
u8 topo;
if (!test_kvm_facility(kvm, 11))
return -ENXIO;
read_lock(&kvm->arch.sca_lock);
topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr;
read_unlock(&kvm->arch.sca_lock);
return put_user(topo, (u8 __user *)attr->addr);
}
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_S390_VM_MEM_CTRL:
ret = kvm_s390_set_mem_control(kvm, attr);
break;
case KVM_S390_VM_TOD:
ret = kvm_s390_set_tod(kvm, attr);
break;
case KVM_S390_VM_CPU_MODEL:
ret = kvm_s390_set_cpu_model(kvm, attr);
break;
case KVM_S390_VM_CRYPTO:
ret = kvm_s390_vm_set_crypto(kvm, attr);
break;
case KVM_S390_VM_MIGRATION:
ret = kvm_s390_vm_set_migration(kvm, attr);
break;
case KVM_S390_VM_CPU_TOPOLOGY:
ret = kvm_s390_set_topo_change_indication(kvm, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_S390_VM_MEM_CTRL:
ret = kvm_s390_get_mem_control(kvm, attr);
break;
case KVM_S390_VM_TOD:
ret = kvm_s390_get_tod(kvm, attr);
break;
case KVM_S390_VM_CPU_MODEL:
ret = kvm_s390_get_cpu_model(kvm, attr);
break;
case KVM_S390_VM_MIGRATION:
ret = kvm_s390_vm_get_migration(kvm, attr);
break;
case KVM_S390_VM_CPU_TOPOLOGY:
ret = kvm_s390_get_topo_change_indication(kvm, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_S390_VM_MEM_CTRL:
switch (attr->attr) {
case KVM_S390_VM_MEM_ENABLE_CMMA:
case KVM_S390_VM_MEM_CLR_CMMA:
ret = sclp.has_cmma ? 0 : -ENXIO;
break;
case KVM_S390_VM_MEM_LIMIT_SIZE:
ret = 0;
break;
default:
ret = -ENXIO;
break;
}
break;
case KVM_S390_VM_TOD:
switch (attr->attr) {
case KVM_S390_VM_TOD_LOW:
case KVM_S390_VM_TOD_HIGH:
ret = 0;
break;
default:
ret = -ENXIO;
break;
}
break;
case KVM_S390_VM_CPU_MODEL:
switch (attr->attr) {
case KVM_S390_VM_CPU_PROCESSOR:
case KVM_S390_VM_CPU_MACHINE:
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
case KVM_S390_VM_CPU_MACHINE_FEAT:
case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
ret = 0;
break;
default:
ret = -ENXIO;
break;
}
break;
case KVM_S390_VM_CRYPTO:
switch (attr->attr) {
case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
ret = 0;
break;
case KVM_S390_VM_CRYPTO_ENABLE_APIE:
case KVM_S390_VM_CRYPTO_DISABLE_APIE:
ret = ap_instructions_available() ? 0 : -ENXIO;
break;
default:
ret = -ENXIO;
break;
}
break;
case KVM_S390_VM_MIGRATION:
ret = 0;
break;
case KVM_S390_VM_CPU_TOPOLOGY:
ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
uint8_t *keys;
uint64_t hva;
int srcu_idx, i, r = 0;
if (args->flags != 0)
return -EINVAL;
/* Is this guest using storage keys? */
if (!mm_uses_skeys(current->mm))
return KVM_S390_GET_SKEYS_NONE;
/* Enforce sane limit on memory allocation */
if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
return -EINVAL;
keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
if (!keys)
return -ENOMEM;
mmap_read_lock(current->mm);
srcu_idx = srcu_read_lock(&kvm->srcu);
for (i = 0; i < args->count; i++) {
hva = gfn_to_hva(kvm, args->start_gfn + i);
if (kvm_is_error_hva(hva)) {
r = -EFAULT;
break;
}
r = get_guest_storage_key(current->mm, hva, &keys[i]);
if (r)
break;
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
mmap_read_unlock(current->mm);
if (!r) {
r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
sizeof(uint8_t) * args->count);
if (r)
r = -EFAULT;
}
kvfree(keys);
return r;
}
static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
uint8_t *keys;
uint64_t hva;
int srcu_idx, i, r = 0;
bool unlocked;
if (args->flags != 0)
return -EINVAL;
/* Enforce sane limit on memory allocation */
if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
return -EINVAL;
keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
if (!keys)
return -ENOMEM;
r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
sizeof(uint8_t) * args->count);
if (r) {
r = -EFAULT;
goto out;
}
/* Enable storage key handling for the guest */
r = s390_enable_skey();
if (r)
goto out;
i = 0;
mmap_read_lock(current->mm);
srcu_idx = srcu_read_lock(&kvm->srcu);
while (i < args->count) {
unlocked = false;
hva = gfn_to_hva(kvm, args->start_gfn + i);
if (kvm_is_error_hva(hva)) {
r = -EFAULT;
break;
}
/* Lowest order bit is reserved */
if (keys[i] & 0x01) {
r = -EINVAL;
break;
}
r = set_guest_storage_key(current->mm, hva, keys[i], 0);
if (r) {
r = fixup_user_fault(current->mm, hva,
FAULT_FLAG_WRITE, &unlocked);
if (r)
break;
}
if (!r)
i++;
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
mmap_read_unlock(current->mm);
out:
kvfree(keys);
return r;
}
/*
* Base address and length must be sent at the start of each block, therefore
* it's cheaper to send some clean data, as long as it's less than the size of
* two longs.
*/
#define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
/* for consistency */
#define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
u8 *res, unsigned long bufsize)
{
unsigned long pgstev, hva, cur_gfn = args->start_gfn;
args->count = 0;
while (args->count < bufsize) {
hva = gfn_to_hva(kvm, cur_gfn);
/*
* We return an error if the first value was invalid, but we
* return successfully if at least one value was copied.
*/
if (kvm_is_error_hva(hva))
return args->count ? 0 : -EFAULT;
if (get_pgste(kvm->mm, hva, &pgstev) < 0)
pgstev = 0;
res[args->count++] = (pgstev >> 24) & 0x43;
cur_gfn++;
}
return 0;
}
static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
gfn_t gfn)
{
return ____gfn_to_memslot(slots, gfn, true);
}
static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
unsigned long cur_gfn)
{
struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
unsigned long ofs = cur_gfn - ms->base_gfn;
struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
if (ms->base_gfn + ms->npages <= cur_gfn) {
mnode = rb_next(mnode);
/* If we are above the highest slot, wrap around */
if (!mnode)
mnode = rb_first(&slots->gfn_tree);
ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
ofs = 0;
}
ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
}
return ms->base_gfn + ofs;
}
static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
u8 *res, unsigned long bufsize)
{
unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *ms;
if (unlikely(kvm_memslots_empty(slots)))
return 0;
cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
ms = gfn_to_memslot(kvm, cur_gfn);
args->count = 0;
args->start_gfn = cur_gfn;
if (!ms)
return 0;
next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
mem_end = kvm_s390_get_gfn_end(slots);
while (args->count < bufsize) {
hva = gfn_to_hva(kvm, cur_gfn);
if (kvm_is_error_hva(hva))
return 0;
/* Decrement only if we actually flipped the bit to 0 */
if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
atomic64_dec(&kvm->arch.cmma_dirty_pages);
if (get_pgste(kvm->mm, hva, &pgstev) < 0)
pgstev = 0;
/* Save the value */
res[args->count++] = (pgstev >> 24) & 0x43;
/* If the next bit is too far away, stop. */
if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
return 0;
/* If we reached the previous "next", find the next one */
if (cur_gfn == next_gfn)
next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
/* Reached the end of memory or of the buffer, stop */
if ((next_gfn >= mem_end) ||
(next_gfn - args->start_gfn >= bufsize))
return 0;
cur_gfn++;
/* Reached the end of the current memslot, take the next one. */
if (cur_gfn - ms->base_gfn >= ms->npages) {
ms = gfn_to_memslot(kvm, cur_gfn);
if (!ms)
return 0;
}
}
return 0;
}
/*
* This function searches for the next page with dirty CMMA attributes, and
* saves the attributes in the buffer up to either the end of the buffer or
* until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
* no trailing clean bytes are saved.
* In case no dirty bits were found, or if CMMA was not enabled or used, the
* output buffer will indicate 0 as length.
*/
static int kvm_s390_get_cmma_bits(struct kvm *kvm,
struct kvm_s390_cmma_log *args)
{
unsigned long bufsize;
int srcu_idx, peek, ret;
u8 *values;
if (!kvm->arch.use_cmma)
return -ENXIO;
/* Invalid/unsupported flags were specified */
if (args->flags & ~KVM_S390_CMMA_PEEK)
return -EINVAL;
/* Migration mode query, and we are not doing a migration */
peek = !!(args->flags & KVM_S390_CMMA_PEEK);
if (!peek && !kvm->arch.migration_mode)
return -EINVAL;
/* CMMA is disabled or was not used, or the buffer has length zero */
bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
if (!bufsize || !kvm->mm->context.uses_cmm) {
memset(args, 0, sizeof(*args));
return 0;
}
/* We are not peeking, and there are no dirty pages */
if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
memset(args, 0, sizeof(*args));
return 0;
}
values = vmalloc(bufsize);
if (!values)
return -ENOMEM;
mmap_read_lock(kvm->mm);
srcu_idx = srcu_read_lock(&kvm->srcu);
if (peek)
ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
else
ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
srcu_read_unlock(&kvm->srcu, srcu_idx);
mmap_read_unlock(kvm->mm);
if (kvm->arch.migration_mode)
args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
else
args->remaining = 0;
if (copy_to_user((void __user *)args->values, values, args->count))
ret = -EFAULT;
vfree(values);
return ret;
}
/*
* This function sets the CMMA attributes for the given pages. If the input
* buffer has zero length, no action is taken, otherwise the attributes are
* set and the mm->context.uses_cmm flag is set.
*/
static int kvm_s390_set_cmma_bits(struct kvm *kvm,
const struct kvm_s390_cmma_log *args)
{
unsigned long hva, mask, pgstev, i;
uint8_t *bits;
int srcu_idx, r = 0;
mask = args->mask;
if (!kvm->arch.use_cmma)
return -ENXIO;
/* invalid/unsupported flags */
if (args->flags != 0)
return -EINVAL;
/* Enforce sane limit on memory allocation */
if (args->count > KVM_S390_CMMA_SIZE_MAX)
return -EINVAL;
/* Nothing to do */
if (args->count == 0)
return 0;
bits = vmalloc(array_size(sizeof(*bits), args->count));
if (!bits)
return -ENOMEM;
r = copy_from_user(bits, (void __user *)args->values, args->count);
if (r) {
r = -EFAULT;
goto out;
}
mmap_read_lock(kvm->mm);
srcu_idx = srcu_read_lock(&kvm->srcu);
for (i = 0; i < args->count; i++) {
hva = gfn_to_hva(kvm, args->start_gfn + i);
if (kvm_is_error_hva(hva)) {
r = -EFAULT;
break;
}
pgstev = bits[i];
pgstev = pgstev << 24;
mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
set_pgste_bits(kvm->mm, hva, mask, pgstev);
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
mmap_read_unlock(kvm->mm);
if (!kvm->mm->context.uses_cmm) {
mmap_write_lock(kvm->mm);
kvm->mm->context.uses_cmm = 1;
mmap_write_unlock(kvm->mm);
}
out:
vfree(bits);
return r;
}
/**
* kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
* non protected.
* @kvm: the VM whose protected vCPUs are to be converted
* @rc: return value for the RC field of the UVC (in case of error)
* @rrc: return value for the RRC field of the UVC (in case of error)
*
* Does not stop in case of error, tries to convert as many
* CPUs as possible. In case of error, the RC and RRC of the last error are
* returned.
*
* Return: 0 in case of success, otherwise -EIO
*/
int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct kvm_vcpu *vcpu;
unsigned long i;
u16 _rc, _rrc;
int ret = 0;
/*
* We ignore failures and try to destroy as many CPUs as possible.
* At the same time we must not free the assigned resources when
* this fails, as the ultravisor has still access to that memory.
* So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
* behind.
* We want to return the first failure rc and rrc, though.
*/
kvm_for_each_vcpu(i, vcpu, kvm) {
mutex_lock(&vcpu->mutex);
if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
*rc = _rc;
*rrc = _rrc;
ret = -EIO;
}
mutex_unlock(&vcpu->mutex);
}
/* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
if (use_gisa)
kvm_s390_gisa_enable(kvm);
return ret;
}
/**
* kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
* to protected.
* @kvm: the VM whose protected vCPUs are to be converted
* @rc: return value for the RC field of the UVC (in case of error)
* @rrc: return value for the RRC field of the UVC (in case of error)
*
* Tries to undo the conversion in case of error.
*
* Return: 0 in case of success, otherwise -EIO
*/
static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
{
unsigned long i;
int r = 0;
u16 dummy;
struct kvm_vcpu *vcpu;
/* Disable the GISA if the ultravisor does not support AIV. */
if (!test_bit_inv(BIT_UV_FEAT_AIV, &uv_info.uv_feature_indications))
kvm_s390_gisa_disable(kvm);
kvm_for_each_vcpu(i, vcpu, kvm) {
mutex_lock(&vcpu->mutex);
r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
mutex_unlock(&vcpu->mutex);
if (r)
break;
}
if (r)
kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
return r;
}
/*
* Here we provide user space with a direct interface to query UV
* related data like UV maxima and available features as well as
* feature specific data.
*
* To facilitate future extension of the data structures we'll try to
* write data up to the maximum requested length.
*/
static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
{
ssize_t len_min;
switch (info->header.id) {
case KVM_PV_INFO_VM: {
len_min = sizeof(info->header) + sizeof(info->vm);
if (info->header.len_max < len_min)
return -EINVAL;
memcpy(info->vm.inst_calls_list,
uv_info.inst_calls_list,
sizeof(uv_info.inst_calls_list));
/* It's max cpuid not max cpus, so it's off by one */
info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
info->vm.max_guests = uv_info.max_num_sec_conf;
info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
info->vm.feature_indication = uv_info.uv_feature_indications;
return len_min;
}
case KVM_PV_INFO_DUMP: {
len_min = sizeof(info->header) + sizeof(info->dump);
if (info->header.len_max < len_min)
return -EINVAL;
info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
return len_min;
}
default:
return -EINVAL;
}
}
static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
struct kvm_s390_pv_dmp dmp)
{
int r = -EINVAL;
void __user *result_buff = (void __user *)dmp.buff_addr;
switch (dmp.subcmd) {
case KVM_PV_DUMP_INIT: {
if (kvm->arch.pv.dumping)
break;
/*
* Block SIE entry as concurrent dump UVCs could lead
* to validities.
*/
kvm_s390_vcpu_block_all(kvm);
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
cmd->rc, cmd->rrc);
if (!r) {
kvm->arch.pv.dumping = true;
} else {
kvm_s390_vcpu_unblock_all(kvm);
r = -EINVAL;
}
break;
}
case KVM_PV_DUMP_CONFIG_STOR_STATE: {
if (!kvm->arch.pv.dumping)
break;
/*
* gaddr is an output parameter since we might stop
* early. As dmp will be copied back in our caller, we
* don't need to do it ourselves.
*/
r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
&cmd->rc, &cmd->rrc);
break;
}
case KVM_PV_DUMP_COMPLETE: {
if (!kvm->arch.pv.dumping)
break;
r = -EINVAL;
if (dmp.buff_len < uv_info.conf_dump_finalize_len)
break;
r = kvm_s390_pv_dump_complete(kvm, result_buff,
&cmd->rc, &cmd->rrc);
break;
}
default:
r = -ENOTTY;
break;
}
return r;
}
static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
{
const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
void __user *argp = (void __user *)cmd->data;
int r = 0;
u16 dummy;
if (need_lock)
mutex_lock(&kvm->lock);
switch (cmd->cmd) {
case KVM_PV_ENABLE: {
r = -EINVAL;
if (kvm_s390_pv_is_protected(kvm))
break;
/*
* FMT 4 SIE needs esca. As we never switch back to bsca from
* esca, we need no cleanup in the error cases below
*/
r = sca_switch_to_extended(kvm);
if (r)
break;
mmap_write_lock(current->mm);
r = gmap_mark_unmergeable();
mmap_write_unlock(current->mm);
if (r)
break;
r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
if (r)
break;
r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
if (r)
kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
/* we need to block service interrupts from now on */
set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
break;
}
case KVM_PV_ASYNC_CLEANUP_PREPARE:
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
break;
r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
/*
* If a CPU could not be destroyed, destroy VM will also fail.
* There is no point in trying to destroy it. Instead return
* the rc and rrc from the first CPU that failed destroying.
*/
if (r)
break;
r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
/* no need to block service interrupts any more */
clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
break;
case KVM_PV_ASYNC_CLEANUP_PERFORM:
r = -EINVAL;
if (!async_destroy)
break;
/* kvm->lock must not be held; this is asserted inside the function. */
r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
break;
case KVM_PV_DISABLE: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
/*
* If a CPU could not be destroyed, destroy VM will also fail.
* There is no point in trying to destroy it. Instead return
* the rc and rrc from the first CPU that failed destroying.
*/
if (r)
break;
r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
/* no need to block service interrupts any more */
clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
break;
}
case KVM_PV_SET_SEC_PARMS: {
struct kvm_s390_pv_sec_parm parms = {};
void *hdr;
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = -EFAULT;
if (copy_from_user(&parms, argp, sizeof(parms)))
break;
/* Currently restricted to 8KB */
r = -EINVAL;
if (parms.length > PAGE_SIZE * 2)
break;
r = -ENOMEM;
hdr = vmalloc(parms.length);
if (!hdr)
break;
r = -EFAULT;
if (!copy_from_user(hdr, (void __user *)parms.origin,
parms.length))
r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
&cmd->rc, &cmd->rrc);
vfree(hdr);
break;
}
case KVM_PV_UNPACK: {
struct kvm_s390_pv_unp unp = {};
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
break;
r = -EFAULT;
if (copy_from_user(&unp, argp, sizeof(unp)))
break;
r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
&cmd->rc, &cmd->rrc);
break;
}
case KVM_PV_VERIFY: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
cmd->rrc);
break;
}
case KVM_PV_PREP_RESET: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
cmd->rc, cmd->rrc);
break;
}
case KVM_PV_UNSHARE_ALL: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
cmd->rc, cmd->rrc);
break;
}
case KVM_PV_INFO: {
struct kvm_s390_pv_info info = {};
ssize_t data_len;
/*
* No need to check the VM protection here.
*
* Maybe user space wants to query some of the data
* when the VM is still unprotected. If we see the
* need to fence a new data command we can still
* return an error in the info handler.
*/
r = -EFAULT;
if (copy_from_user(&info, argp, sizeof(info.header)))
break;
r = -EINVAL;
if (info.header.len_max < sizeof(info.header))
break;
data_len = kvm_s390_handle_pv_info(&info);
if (data_len < 0) {
r = data_len;
break;
}
/*
* If a data command struct is extended (multiple
* times) this can be used to determine how much of it
* is valid.
*/
info.header.len_written = data_len;
r = -EFAULT;
if (copy_to_user(argp, &info, data_len))
break;
r = 0;
break;
}
case KVM_PV_DUMP: {
struct kvm_s390_pv_dmp dmp;
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = -EFAULT;
if (copy_from_user(&dmp, argp, sizeof(dmp)))
break;
r = kvm_s390_pv_dmp(kvm, cmd, dmp);
if (r)
break;
if (copy_to_user(argp, &dmp, sizeof(dmp))) {
r = -EFAULT;
break;
}
break;
}
default:
r = -ENOTTY;
}
if (need_lock)
mutex_unlock(&kvm->lock);
return r;
}
static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
{
if (mop->flags & ~supported_flags || !mop->size)
return -EINVAL;
if (mop->size > MEM_OP_MAX_SIZE)
return -E2BIG;
if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
if (mop->key > 0xf)
return -EINVAL;
} else {
mop->key = 0;
}
return 0;
}
static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
{
void __user *uaddr = (void __user *)mop->buf;
enum gacc_mode acc_mode;
void *tmpbuf = NULL;
int r, srcu_idx;
r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
KVM_S390_MEMOP_F_CHECK_ONLY);
if (r)
return r;
if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
tmpbuf = vmalloc(mop->size);
if (!tmpbuf)
return -ENOMEM;
}
srcu_idx = srcu_read_lock(&kvm->srcu);
if (kvm_is_error_gpa(kvm, mop->gaddr)) {
r = PGM_ADDRESSING;
goto out_unlock;
}
acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
goto out_unlock;
}
if (acc_mode == GACC_FETCH) {
r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
mop->size, GACC_FETCH, mop->key);
if (r)
goto out_unlock;
if (copy_to_user(uaddr, tmpbuf, mop->size))
r = -EFAULT;
} else {
if (copy_from_user(tmpbuf, uaddr, mop->size)) {
r = -EFAULT;
goto out_unlock;
}
r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
mop->size, GACC_STORE, mop->key);
}
out_unlock:
srcu_read_unlock(&kvm->srcu, srcu_idx);
vfree(tmpbuf);
return r;
}
static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
{
void __user *uaddr = (void __user *)mop->buf;
void __user *old_addr = (void __user *)mop->old_addr;
union {
__uint128_t quad;
char raw[sizeof(__uint128_t)];
} old = { .quad = 0}, new = { .quad = 0 };
unsigned int off_in_quad = sizeof(new) - mop->size;
int r, srcu_idx;
bool success;
r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
if (r)
return r;
/*
* This validates off_in_quad. Checking that size is a power
* of two is not necessary, as cmpxchg_guest_abs_with_key
* takes care of that
*/
if (mop->size > sizeof(new))
return -EINVAL;
if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size))
return -EFAULT;
if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size))
return -EFAULT;
srcu_idx = srcu_read_lock(&kvm->srcu);
if (kvm_is_error_gpa(kvm, mop->gaddr)) {
r = PGM_ADDRESSING;
goto out_unlock;
}
r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad,
new.quad, mop->key, &success);
if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size))
r = -EFAULT;
out_unlock:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return r;
}
static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
{
/*
* This is technically a heuristic only, if the kvm->lock is not
* taken, it is not guaranteed that the vm is/remains non-protected.
* This is ok from a kernel perspective, wrongdoing is detected
* on the access, -EFAULT is returned and the vm may crash the
* next time it accesses the memory in question.
* There is no sane usecase to do switching and a memop on two
* different CPUs at the same time.
*/
if (kvm_s390_pv_get_handle(kvm))
return -EINVAL;
switch (mop->op) {
case KVM_S390_MEMOP_ABSOLUTE_READ:
case KVM_S390_MEMOP_ABSOLUTE_WRITE:
return kvm_s390_vm_mem_op_abs(kvm, mop);
case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
default:
return -EINVAL;
}
}
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
struct kvm_device_attr attr;
int r;
switch (ioctl) {
case KVM_S390_INTERRUPT: {
struct kvm_s390_interrupt s390int;
r = -EFAULT;
if (copy_from_user(&s390int, argp, sizeof(s390int)))
break;
r = kvm_s390_inject_vm(kvm, &s390int);
break;
}
case KVM_CREATE_IRQCHIP: {
struct kvm_irq_routing_entry routing;
r = -EINVAL;
if (kvm->arch.use_irqchip) {
/* Set up dummy routing. */
memset(&routing, 0, sizeof(routing));
r = kvm_set_irq_routing(kvm, &routing, 0, 0);
}
break;
}
case KVM_SET_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
break;
r = kvm_s390_vm_set_attr(kvm, &attr);
break;
}
case KVM_GET_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
break;
r = kvm_s390_vm_get_attr(kvm, &attr);
break;
}
case KVM_HAS_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
break;
r = kvm_s390_vm_has_attr(kvm, &attr);
break;
}
case KVM_S390_GET_SKEYS: {
struct kvm_s390_skeys args;
r = -EFAULT;
if (copy_from_user(&args, argp,
sizeof(struct kvm_s390_skeys)))
break;
r = kvm_s390_get_skeys(kvm, &args);
break;
}
case KVM_S390_SET_SKEYS: {
struct kvm_s390_skeys args;
r = -EFAULT;
if (copy_from_user(&args, argp,
sizeof(struct kvm_s390_skeys)))
break;
r = kvm_s390_set_skeys(kvm, &args);
break;
}
case KVM_S390_GET_CMMA_BITS: {
struct kvm_s390_cmma_log args;
r = -EFAULT;
if (copy_from_user(&args, argp, sizeof(args)))
break;
mutex_lock(&kvm->slots_lock);
r = kvm_s390_get_cmma_bits(kvm, &args);
mutex_unlock(&kvm->slots_lock);
if (!r) {
r = copy_to_user(argp, &args, sizeof(args));
if (r)
r = -EFAULT;
}
break;
}
case KVM_S390_SET_CMMA_BITS: {
struct kvm_s390_cmma_log args;
r = -EFAULT;
if (copy_from_user(&args, argp, sizeof(args)))
break;
mutex_lock(&kvm->slots_lock);
r = kvm_s390_set_cmma_bits(kvm, &args);
mutex_unlock(&kvm->slots_lock);
break;
}
case KVM_S390_PV_COMMAND: {
struct kvm_pv_cmd args;
/* protvirt means user cpu state */
kvm_s390_set_user_cpu_state_ctrl(kvm);
r = 0;
if (!is_prot_virt_host()) {
r = -EINVAL;
break;
}
if (copy_from_user(&args, argp, sizeof(args))) {
r = -EFAULT;
break;
}
if (args.flags) {
r = -EINVAL;
break;
}
/* must be called without kvm->lock */
r = kvm_s390_handle_pv(kvm, &args);
if (copy_to_user(argp, &args, sizeof(args))) {
r = -EFAULT;
break;
}
break;
}
case KVM_S390_MEM_OP: {
struct kvm_s390_mem_op mem_op;
if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
r = kvm_s390_vm_mem_op(kvm, &mem_op);
else
r = -EFAULT;
break;
}
case KVM_S390_ZPCI_OP: {
struct kvm_s390_zpci_op args;
r = -EINVAL;
if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
break;
if (copy_from_user(&args, argp, sizeof(args))) {
r = -EFAULT;
break;
}
r = kvm_s390_pci_zpci_op(kvm, &args);
break;
}
default:
r = -ENOTTY;
}
return r;
}
static int kvm_s390_apxa_installed(void)
{
struct ap_config_info info;
if (ap_instructions_available()) {
if (ap_qci(&info) == 0)
return info.apxa;
}
return 0;
}
/*
* The format of the crypto control block (CRYCB) is specified in the 3 low
* order bits of the CRYCB designation (CRYCBD) field as follows:
* Format 0: Neither the message security assist extension 3 (MSAX3) nor the
* AP extended addressing (APXA) facility are installed.
* Format 1: The APXA facility is not installed but the MSAX3 facility is.
* Format 2: Both the APXA and MSAX3 facilities are installed
*/
static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
/* Clear the CRYCB format bits - i.e., set format 0 by default */
kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
/* Check whether MSAX3 is installed */
if (!test_kvm_facility(kvm, 76))
return;
if (kvm_s390_apxa_installed())
kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
else
kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}
/*
* kvm_arch_crypto_set_masks
*
* @kvm: pointer to the target guest's KVM struct containing the crypto masks
* to be set.
* @apm: the mask identifying the accessible AP adapters
* @aqm: the mask identifying the accessible AP domains
* @adm: the mask identifying the accessible AP control domains
*
* Set the masks that identify the adapters, domains and control domains to
* which the KVM guest is granted access.
*
* Note: The kvm->lock mutex must be locked by the caller before invoking this
* function.
*/
void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
unsigned long *aqm, unsigned long *adm)
{
struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
kvm_s390_vcpu_block_all(kvm);
switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
case CRYCB_FORMAT2: /* APCB1 use 256 bits */
memcpy(crycb->apcb1.apm, apm, 32);
VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
apm[0], apm[1], apm[2], apm[3]);
memcpy(crycb->apcb1.aqm, aqm, 32);
VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
aqm[0], aqm[1], aqm[2], aqm[3]);
memcpy(crycb->apcb1.adm, adm, 32);
VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
adm[0], adm[1], adm[2], adm[3]);
break;
case CRYCB_FORMAT1:
case CRYCB_FORMAT0: /* Fall through both use APCB0 */
memcpy(crycb->apcb0.apm, apm, 8);
memcpy(crycb->apcb0.aqm, aqm, 2);
memcpy(crycb->apcb0.adm, adm, 2);
VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
apm[0], *((unsigned short *)aqm),
*((unsigned short *)adm));
break;
default: /* Can not happen */
break;
}
/* recreate the shadow crycb for each vcpu */
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
kvm_s390_vcpu_unblock_all(kvm);
}
EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
/*
* kvm_arch_crypto_clear_masks
*
* @kvm: pointer to the target guest's KVM struct containing the crypto masks
* to be cleared.
*
* Clear the masks that identify the adapters, domains and control domains to
* which the KVM guest is granted access.
*
* Note: The kvm->lock mutex must be locked by the caller before invoking this
* function.
*/
void kvm_arch_crypto_clear_masks(struct kvm *kvm)
{
kvm_s390_vcpu_block_all(kvm);
memset(&kvm->arch.crypto.crycb->apcb0, 0,
sizeof(kvm->arch.crypto.crycb->apcb0));
memset(&kvm->arch.crypto.crycb->apcb1, 0,
sizeof(kvm->arch.crypto.crycb->apcb1));
VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
/* recreate the shadow crycb for each vcpu */
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
kvm_s390_vcpu_unblock_all(kvm);
}
EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
static u64 kvm_s390_get_initial_cpuid(void)
{
struct cpuid cpuid;
get_cpu_id(&cpuid);
cpuid.version = 0xff;
return *((u64 *) &cpuid);
}
static void kvm_s390_crypto_init(struct kvm *kvm)
{
kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
kvm_s390_set_crycb_format(kvm);
init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
if (!test_kvm_facility(kvm, 76))
return;
/* Enable AES/DEA protected key functions by default */
kvm->arch.crypto.aes_kw = 1;
kvm->arch.crypto.dea_kw = 1;
get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
}
static void sca_dispose(struct kvm *kvm)
{
if (kvm->arch.use_esca)
free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
else
free_page((unsigned long)(kvm->arch.sca));
kvm->arch.sca = NULL;
}
void kvm_arch_free_vm(struct kvm *kvm)
{
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
kvm_s390_pci_clear_list(kvm);
__kvm_arch_free_vm(kvm);
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
gfp_t alloc_flags = GFP_KERNEL_ACCOUNT;
int i, rc;
char debug_name[16];
static unsigned long sca_offset;
rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
if (type & ~KVM_VM_S390_UCONTROL)
goto out_err;
if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
goto out_err;
#else
if (type)
goto out_err;
#endif
rc = s390_enable_sie();
if (rc)
goto out_err;
rc = -ENOMEM;
if (!sclp.has_64bscao)
alloc_flags |= GFP_DMA;
rwlock_init(&kvm->arch.sca_lock);
/* start with basic SCA */
kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
if (!kvm->arch.sca)
goto out_err;
mutex_lock(&kvm_lock);
sca_offset += 16;
if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
sca_offset = 0;
kvm->arch.sca = (struct bsca_block *)
((char *) kvm->arch.sca + sca_offset);
mutex_unlock(&kvm_lock);
sprintf(debug_name, "kvm-%u", current->pid);
kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
if (!kvm->arch.dbf)
goto out_err;
BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
kvm->arch.sie_page2 =
(struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
if (!kvm->arch.sie_page2)
goto out_err;
kvm->arch.sie_page2->kvm = kvm;
kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
for (i = 0; i < kvm_s390_fac_size(); i++) {
kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
(kvm_s390_fac_base[i] |
kvm_s390_fac_ext[i]);
kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
kvm_s390_fac_base[i];
}
kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
/* we are always in czam mode - even on pre z14 machines */
set_kvm_facility(kvm->arch.model.fac_mask, 138);
set_kvm_facility(kvm->arch.model.fac_list, 138);
/* we emulate STHYI in kvm */
set_kvm_facility(kvm->arch.model.fac_mask, 74);
set_kvm_facility(kvm->arch.model.fac_list, 74);
if (MACHINE_HAS_TLB_GUEST) {
set_kvm_facility(kvm->arch.model.fac_mask, 147);
set_kvm_facility(kvm->arch.model.fac_list, 147);
}
if (css_general_characteristics.aiv && test_facility(65))
set_kvm_facility(kvm->arch.model.fac_mask, 65);
kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
kvm->arch.model.ibc = sclp.ibc & 0x0fff;
kvm_s390_crypto_init(kvm);
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
mutex_lock(&kvm->lock);
kvm_s390_pci_init_list(kvm);
kvm_s390_vcpu_pci_enable_interp(kvm);
mutex_unlock(&kvm->lock);
}
mutex_init(&kvm->arch.float_int.ais_lock);
spin_lock_init(&kvm->arch.float_int.lock);
for (i = 0; i < FIRQ_LIST_COUNT; i++)
INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
init_waitqueue_head(&kvm->arch.ipte_wq);
mutex_init(&kvm->arch.ipte_mutex);
debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
VM_EVENT(kvm, 3, "vm created with type %lu", type);
if (type & KVM_VM_S390_UCONTROL) {
kvm->arch.gmap = NULL;
kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
} else {
if (sclp.hamax == U64_MAX)
kvm->arch.mem_limit = TASK_SIZE_MAX;
else
kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
sclp.hamax + 1);
kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
if (!kvm->arch.gmap)
goto out_err;
kvm->arch.gmap->private = kvm;
kvm->arch.gmap->pfault_enabled = 0;
}
kvm->arch.use_pfmfi = sclp.has_pfmfi;
kvm->arch.use_skf = sclp.has_skey;
spin_lock_init(&kvm->arch.start_stop_lock);
kvm_s390_vsie_init(kvm);
if (use_gisa)
kvm_s390_gisa_init(kvm);
INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
kvm->arch.pv.set_aside = NULL;
KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
return 0;
out_err:
free_page((unsigned long)kvm->arch.sie_page2);
debug_unregister(kvm->arch.dbf);
sca_dispose(kvm);
KVM_EVENT(3, "creation of vm failed: %d", rc);
return rc;
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
u16 rc, rrc;
VCPU_EVENT(vcpu, 3, "%s", "free cpu");
trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
kvm_s390_clear_local_irqs(vcpu);
kvm_clear_async_pf_completion_queue(vcpu);
if (!kvm_is_ucontrol(vcpu->kvm))
sca_del_vcpu(vcpu);
kvm_s390_update_topology_change_report(vcpu->kvm, 1);
if (kvm_is_ucontrol(vcpu->kvm))
gmap_remove(vcpu->arch.gmap);
if (vcpu->kvm->arch.use_cmma)
kvm_s390_vcpu_unsetup_cmma(vcpu);
/* We can not hold the vcpu mutex here, we are already dying */
if (kvm_s390_pv_cpu_get_handle(vcpu))
kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
free_page((unsigned long)(vcpu->arch.sie_block));
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
u16 rc, rrc;
kvm_destroy_vcpus(kvm);
sca_dispose(kvm);
kvm_s390_gisa_destroy(kvm);
/*
* We are already at the end of life and kvm->lock is not taken.
* This is ok as the file descriptor is closed by now and nobody
* can mess with the pv state.
*/
kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
/*
* Remove the mmu notifier only when the whole KVM VM is torn down,
* and only if one was registered to begin with. If the VM is
* currently not protected, but has been previously been protected,
* then it's possible that the notifier is still registered.
*/
if (kvm->arch.pv.mmu_notifier.ops)
mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
debug_unregister(kvm->arch.dbf);
free_page((unsigned long)kvm->arch.sie_page2);
if (!kvm_is_ucontrol(kvm))
gmap_remove(kvm->arch.gmap);
kvm_s390_destroy_adapters(kvm);
kvm_s390_clear_float_irqs(kvm);
kvm_s390_vsie_destroy(kvm);
KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
}
/* Section: vcpu related */
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
vcpu->arch.gmap = gmap_create(current->mm, -1UL);
if (!vcpu->arch.gmap)
return -ENOMEM;
vcpu->arch.gmap->private = vcpu->kvm;
return 0;
}
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
if (!kvm_s390_use_sca_entries())
return;
read_lock(&vcpu->kvm->arch.sca_lock);
if (vcpu->kvm->arch.use_esca) {
struct esca_block *sca = vcpu->kvm->arch.sca;
clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
sca->cpu[vcpu->vcpu_id].sda = 0;
} else {
struct bsca_block *sca = vcpu->kvm->arch.sca;
clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
sca->cpu[vcpu->vcpu_id].sda = 0;
}
read_unlock(&vcpu->kvm->arch.sca_lock);
}
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
{
if (!kvm_s390_use_sca_entries()) {
phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca);
/* we still need the basic sca for the ipte control */
vcpu->arch.sie_block->scaoh = sca_phys >> 32;
vcpu->arch.sie_block->scaol = sca_phys;
return;
}
read_lock(&vcpu->kvm->arch.sca_lock);
if (vcpu->kvm->arch.use_esca) {
struct esca_block *sca = vcpu->kvm->arch.sca;
phys_addr_t sca_phys = virt_to_phys(sca);
sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
vcpu->arch.sie_block->scaoh = sca_phys >> 32;
vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
} else {
struct bsca_block *sca = vcpu->kvm->arch.sca;
phys_addr_t sca_phys = virt_to_phys(sca);
sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
vcpu->arch.sie_block->scaoh = sca_phys >> 32;
vcpu->arch.sie_block->scaol = sca_phys;
set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
}
read_unlock(&vcpu->kvm->arch.sca_lock);
}
/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
d->sda = s->sda;
d->sigp_ctrl.c = s->sigp_ctrl.c;
d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}
static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
int i;
d->ipte_control = s->ipte_control;
d->mcn[0] = s->mcn;
for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}
static int sca_switch_to_extended(struct kvm *kvm)
{
struct bsca_block *old_sca = kvm->arch.sca;
struct esca_block *new_sca;
struct kvm_vcpu *vcpu;
unsigned long vcpu_idx;
u32 scaol, scaoh;
phys_addr_t new_sca_phys;
if (kvm->arch.use_esca)
return 0;
new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!new_sca)
return -ENOMEM;
new_sca_phys = virt_to_phys(new_sca);
scaoh = new_sca_phys >> 32;
scaol = new_sca_phys & ESCA_SCAOL_MASK;
kvm_s390_vcpu_block_all(kvm);
write_lock(&kvm->arch.sca_lock);
sca_copy_b_to_e(new_sca, old_sca);
kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
vcpu->arch.sie_block->scaoh = scaoh;
vcpu->arch.sie_block->scaol = scaol;
vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
}
kvm->arch.sca = new_sca;
kvm->arch.use_esca = 1;
write_unlock(&kvm->arch.sca_lock);
kvm_s390_vcpu_unblock_all(kvm);
free_page((unsigned long)old_sca);
VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
old_sca, kvm->arch.sca);
return 0;
}
static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
int rc;
if (!kvm_s390_use_sca_entries()) {
if (id < KVM_MAX_VCPUS)
return true;
return false;
}
if (id < KVM_S390_BSCA_CPU_SLOTS)
return true;
if (!sclp.has_esca || !sclp.has_64bscao)
return false;
rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
}
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
vcpu->arch.cputm_start = get_tod_clock_fast();
raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
}
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
vcpu->arch.cputm_start = 0;
raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
}
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
WARN_ON_ONCE(vcpu->arch.cputm_enabled);
vcpu->arch.cputm_enabled = true;
__start_cpu_timer_accounting(vcpu);
}
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
__stop_cpu_timer_accounting(vcpu);
vcpu->arch.cputm_enabled = false;
}
static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
preempt_disable(); /* protect from TOD sync and vcpu_load/put */
__enable_cpu_timer_accounting(vcpu);
preempt_enable();
}
static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
preempt_disable(); /* protect from TOD sync and vcpu_load/put */
__disable_cpu_timer_accounting(vcpu);
preempt_enable();
}
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
preempt_disable(); /* protect from TOD sync and vcpu_load/put */
raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
if (vcpu->arch.cputm_enabled)
vcpu->arch.cputm_start = get_tod_clock_fast();
vcpu->arch.sie_block->cputm = cputm;
raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
preempt_enable();
}
/* update and get the cpu timer - can also be called from other VCPU threads */
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
unsigned int seq;
__u64 value;
if (unlikely(!vcpu->arch.cputm_enabled))
return vcpu->arch.sie_block->cputm;
preempt_disable(); /* protect from TOD sync and vcpu_load/put */
do {
seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
/*
* If the writer would ever execute a read in the critical
* section, e.g. in irq context, we have a deadlock.
*/
WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
value = vcpu->arch.sie_block->cputm;
/* if cputm_start is 0, accounting is being started/stopped */
if (likely(vcpu->arch.cputm_start))
value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
preempt_enable();
return value;
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
gmap_enable(vcpu->arch.enabled_gmap);
kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
__start_cpu_timer_accounting(vcpu);
vcpu->cpu = cpu;
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
vcpu->cpu = -1;
if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
__stop_cpu_timer_accounting(vcpu);
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
vcpu->arch.enabled_gmap = gmap_get_enabled();
gmap_disable(vcpu->arch.enabled_gmap);
}
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
mutex_lock(&vcpu->kvm->lock);
preempt_disable();
vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
preempt_enable();
mutex_unlock(&vcpu->kvm->lock);
if (!kvm_is_ucontrol(vcpu->kvm)) {
vcpu->arch.gmap = vcpu->kvm->arch.gmap;
sca_add_vcpu(vcpu);
}
if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
/* make vcpu_load load the right gmap on the first trigger */
vcpu->arch.enabled_gmap = vcpu->arch.gmap;
}
static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
{
if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
return true;
return false;
}
static bool kvm_has_pckmo_ecc(struct kvm *kvm)
{
/* At least one ECC subfunction must be present */
return kvm_has_pckmo_subfunc(kvm, 32) ||
kvm_has_pckmo_subfunc(kvm, 33) ||
kvm_has_pckmo_subfunc(kvm, 34) ||
kvm_has_pckmo_subfunc(kvm, 40) ||
kvm_has_pckmo_subfunc(kvm, 41);
}
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
/*
* If the AP instructions are not being interpreted and the MSAX3
* facility is not configured for the guest, there is nothing to set up.
*/
if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
return;
vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
vcpu->arch.sie_block->eca &= ~ECA_APIE;
vcpu->arch.sie_block->ecd &= ~ECD_ECC;
if (vcpu->kvm->arch.crypto.apie)
vcpu->arch.sie_block->eca |= ECA_APIE;
/* Set up protected key support */
if (vcpu->kvm->arch.crypto.aes_kw) {
vcpu->arch.sie_block->ecb3 |= ECB3_AES;
/* ecc is also wrapped with AES key */
if (kvm_has_pckmo_ecc(vcpu->kvm))
vcpu->arch.sie_block->ecd |= ECD_ECC;
}
if (vcpu->kvm->arch.crypto.dea_kw)
vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
}
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
vcpu->arch.sie_block->cbrlo = 0;
}
int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
if (!cbrlo_page)
return -ENOMEM;
vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
return 0;
}
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
vcpu->arch.sie_block->ibc = model->ibc;
if (test_kvm_facility(vcpu->kvm, 7))
vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
}
static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
{
int rc = 0;
u16 uvrc, uvrrc;
atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
CPUSTAT_SM |
CPUSTAT_STOPPED);
if (test_kvm_facility(vcpu->kvm, 78))
kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
else if (test_kvm_facility(vcpu->kvm, 8))
kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
kvm_s390_vcpu_setup_model(vcpu);
/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
if (MACHINE_HAS_ESOP)
vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
if (test_kvm_facility(vcpu->kvm, 9))
vcpu->arch.sie_block->ecb |= ECB_SRSI;
if (test_kvm_facility(vcpu->kvm, 11))
vcpu->arch.sie_block->ecb |= ECB_PTF;
if (test_kvm_facility(vcpu->kvm, 73))
vcpu->arch.sie_block->ecb |= ECB_TE;
if (!kvm_is_ucontrol(vcpu->kvm))
vcpu->arch.sie_block->ecb |= ECB_SPECI;
if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
if (test_kvm_facility(vcpu->kvm, 130))
vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
if (sclp.has_cei)
vcpu->arch.sie_block->eca |= ECA_CEI;
if (sclp.has_ib)
vcpu->arch.sie_block->eca |= ECA_IB;
if (sclp.has_siif)
vcpu->arch.sie_block->eca |= ECA_SII;
if (sclp.has_sigpif)
vcpu->arch.sie_block->eca |= ECA_SIGPI;
if (test_kvm_facility(vcpu->kvm, 129)) {
vcpu->arch.sie_block->eca |= ECA_VX;
vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
}
if (test_kvm_facility(vcpu->kvm, 139))
vcpu->arch.sie_block->ecd |= ECD_MEF;
if (test_kvm_facility(vcpu->kvm, 156))
vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
if (vcpu->arch.sie_block->gd) {
vcpu->arch.sie_block->eca |= ECA_AIV;
VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
}
vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
if (sclp.has_kss)
kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
else
vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
if (vcpu->kvm->arch.use_cmma) {
rc = kvm_s390_vcpu_setup_cmma(vcpu);
if (rc)
return rc;
}
hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
vcpu->arch.sie_block->hpid = HPID_KVM;
kvm_s390_vcpu_crypto_setup(vcpu);
kvm_s390_vcpu_pci_setup(vcpu);
mutex_lock(&vcpu->kvm->lock);
if (kvm_s390_pv_is_protected(vcpu->kvm)) {
rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
if (rc)
kvm_s390_vcpu_unsetup_cmma(vcpu);
}
mutex_unlock(&vcpu->kvm->lock);
return rc;
}
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
return -EINVAL;
return 0;
}
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
{
struct sie_page *sie_page;
int rc;
BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
if (!sie_page)
return -ENOMEM;
vcpu->arch.sie_block = &sie_page->sie_block;
vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
/* the real guest size will always be smaller than msl */
vcpu->arch.sie_block->mso = 0;
vcpu->arch.sie_block->msl = sclp.hamax;
vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
spin_lock_init(&vcpu->arch.local_int.lock);
vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
seqcount_init(&vcpu->arch.cputm_seqcount);
vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
kvm_clear_async_pf_completion_queue(vcpu);
vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
KVM_SYNC_GPRS |
KVM_SYNC_ACRS |
KVM_SYNC_CRS |
KVM_SYNC_ARCH0 |
KVM_SYNC_PFAULT |
KVM_SYNC_DIAG318;
kvm_s390_set_prefix(vcpu, 0);
if (test_kvm_facility(vcpu->kvm, 64))
vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
if (test_kvm_facility(vcpu->kvm, 82))
vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
if (test_kvm_facility(vcpu->kvm, 133))
vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
if (test_kvm_facility(vcpu->kvm, 156))
vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
/* fprs can be synchronized via vrs, even if the guest has no vx. With
* MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
*/
if (MACHINE_HAS_VX)
vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
else
vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
if (kvm_is_ucontrol(vcpu->kvm)) {
rc = __kvm_ucontrol_vcpu_init(vcpu);
if (rc)
goto out_free_sie_block;
}
VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK",
vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
rc = kvm_s390_vcpu_setup(vcpu);
if (rc)
goto out_ucontrol_uninit;
kvm_s390_update_topology_change_report(vcpu->kvm, 1);
return 0;
out_ucontrol_uninit:
if (kvm_is_ucontrol(vcpu->kvm))
gmap_remove(vcpu->arch.gmap);
out_free_sie_block:
free_page((unsigned long)(vcpu->arch.sie_block));
return rc;
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
return kvm_s390_vcpu_has_irq(vcpu, 0);
}
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
}
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
{
atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
exit_sie(vcpu);
}
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
{
atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
exit_sie(vcpu);
}
bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
{
return atomic_read(&vcpu->arch.sie_block->prog20) &
(PROG_BLOCK_SIE | PROG_REQUEST);
}
static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
}
/*
* Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
* If the CPU is not running (e.g. waiting as idle) the function will
* return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
kvm_s390_vsie_kick(vcpu);
while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
cpu_relax();
}
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
{
__kvm_make_request(req, vcpu);
kvm_s390_vcpu_request(vcpu);
}
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
unsigned long end)
{
struct kvm *kvm = gmap->private;
struct kvm_vcpu *vcpu;
unsigned long prefix;
unsigned long i;
if (gmap_is_shadow(gmap))
return;
if (start >= 1UL << 31)
/* We are only interested in prefix pages */
return;
kvm_for_each_vcpu(i, vcpu, kvm) {
/* match against both prefix pages */
prefix = kvm_s390_get_prefix(vcpu);
if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
start, end);
kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
}
}
}
bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
{
/* do not poll with more than halt_poll_max_steal percent of steal time */
if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >=
READ_ONCE(halt_poll_max_steal)) {
vcpu->stat.halt_no_poll_steal++;
return true;
}
return false;
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
/* kvm common code refers to this, but never calls it */
BUG();
return 0;
}
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
struct kvm_one_reg *reg)
{
int r = -EINVAL;
switch (reg->id) {
case KVM_REG_S390_TODPR:
r = put_user(vcpu->arch.sie_block->todpr,
(u32 __user *)reg->addr);
break;
case KVM_REG_S390_EPOCHDIFF:
r = put_user(vcpu->arch.sie_block->epoch,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_CPU_TIMER:
r = put_user(kvm_s390_get_cpu_timer(vcpu),
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_CLOCK_COMP:
r = put_user(vcpu->arch.sie_block->ckc,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFTOKEN:
r = put_user(vcpu->arch.pfault_token,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFCOMPARE:
r = put_user(vcpu->arch.pfault_compare,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFSELECT:
r = put_user(vcpu->arch.pfault_select,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PP:
r = put_user(vcpu->arch.sie_block->pp,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_GBEA:
r = put_user(vcpu->arch.sie_block->gbea,
(u64 __user *)reg->addr);
break;
default:
break;
}
return r;
}
static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
struct kvm_one_reg *reg)
{
int r = -EINVAL;
__u64 val;
switch (reg->id) {
case KVM_REG_S390_TODPR:
r = get_user(vcpu->arch.sie_block->todpr,
(u32 __user *)reg->addr);
break;
case KVM_REG_S390_EPOCHDIFF:
r = get_user(vcpu->arch.sie_block->epoch,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_CPU_TIMER:
r = get_user(val, (u64 __user *)reg->addr);
if (!r)
kvm_s390_set_cpu_timer(vcpu, val);
break;
case KVM_REG_S390_CLOCK_COMP:
r = get_user(vcpu->arch.sie_block->ckc,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFTOKEN:
r = get_user(vcpu->arch.pfault_token,
(u64 __user *)reg->addr);
if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
kvm_clear_async_pf_completion_queue(vcpu);
break;
case KVM_REG_S390_PFCOMPARE:
r = get_user(vcpu->arch.pfault_compare,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFSELECT:
r = get_user(vcpu->arch.pfault_select,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PP:
r = get_user(vcpu->arch.sie_block->pp,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_GBEA:
r = get_user(vcpu->arch.sie_block->gbea,
(u64 __user *)reg->addr);
break;
default:
break;
}
return r;
}
static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
{
vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
kvm_clear_async_pf_completion_queue(vcpu);
if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
kvm_s390_vcpu_stop(vcpu);
kvm_s390_clear_local_irqs(vcpu);
}
static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
/* Initial reset is a superset of the normal reset */
kvm_arch_vcpu_ioctl_normal_reset(vcpu);
/*
* This equals initial cpu reset in pop, but we don't switch to ESA.
* We do not only reset the internal data, but also ...
*/
vcpu->arch.sie_block->gpsw.mask = 0;
vcpu->arch.sie_block->gpsw.addr = 0;
kvm_s390_set_prefix(vcpu, 0);
kvm_s390_set_cpu_timer(vcpu, 0);
vcpu->arch.sie_block->ckc = 0;
memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
/* ... the data in sync regs */
memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
vcpu->run->s.regs.ckc = 0;
vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
vcpu->run->psw_addr = 0;
vcpu->run->psw_mask = 0;
vcpu->run->s.regs.todpr = 0;
vcpu->run->s.regs.cputm = 0;
vcpu->run->s.regs.ckc = 0;
vcpu->run->s.regs.pp = 0;
vcpu->run->s.regs.gbea = 1;
vcpu->run->s.regs.fpc = 0;
/*
* Do not reset these registers in the protected case, as some of
* them are overlayed and they are not accessible in this case
* anyway.
*/
if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
vcpu->arch.sie_block->gbea = 1;
vcpu->arch.sie_block->pp = 0;
vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
vcpu->arch.sie_block->todpr = 0;
}
}
static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
/* Clear reset is a superset of the initial reset */
kvm_arch_vcpu_ioctl_initial_reset(vcpu);
memset(&regs->gprs, 0, sizeof(regs->gprs));
memset(&regs->vrs, 0, sizeof(regs->vrs));
memset(&regs->acrs, 0, sizeof(regs->acrs));
memset(&regs->gscb, 0, sizeof(regs->gscb));
regs->etoken = 0;
regs->etoken_extension = 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_load(vcpu);
memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_load(vcpu);
memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
vcpu_load(vcpu);
memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
vcpu_load(vcpu);
memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
int ret = 0;
vcpu_load(vcpu);
if (test_fp_ctl(fpu->fpc)) {
ret = -EINVAL;
goto out;
}
vcpu->run->s.regs.fpc = fpu->fpc;
if (MACHINE_HAS_VX)
convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
(freg_t *) fpu->fprs);
else
memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
out:
vcpu_put(vcpu);
return ret;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
vcpu_load(vcpu);
/* make sure we have the latest values */
save_fpu_regs();
if (MACHINE_HAS_VX)
convert_vx_to_fp((freg_t *) fpu->fprs,
(__vector128 *) vcpu->run->s.regs.vrs);
else
memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
fpu->fpc = vcpu->run->s.regs.fpc;
vcpu_put(vcpu);
return 0;
}
static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
int rc = 0;
if (!is_vcpu_stopped(vcpu))
rc = -EBUSY;
else {
vcpu->run->psw_mask = psw.mask;
vcpu->run->psw_addr = psw.addr;
}
return rc;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return -EINVAL; /* not implemented yet */
}
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
KVM_GUESTDBG_USE_HW_BP | \
KVM_GUESTDBG_ENABLE)
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
int rc = 0;
vcpu_load(vcpu);
vcpu->guest_debug = 0;
kvm_s390_clear_bp_data(vcpu);
if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
rc = -EINVAL;
goto out;
}
if (!sclp.has_gpere) {
rc = -EINVAL;
goto out;
}
if (dbg->control & KVM_GUESTDBG_ENABLE) {
vcpu->guest_debug = dbg->control;
/* enforce guest PER */
kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
rc = kvm_s390_import_bp_data(vcpu, dbg);
} else {
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
vcpu->arch.guestdbg.last_bp = 0;
}
if (rc) {
vcpu->guest_debug = 0;
kvm_s390_clear_bp_data(vcpu);
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
}
out:
vcpu_put(vcpu);
return rc;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
int ret;
vcpu_load(vcpu);
/* CHECK_STOP and LOAD are not supported yet */
ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
KVM_MP_STATE_OPERATING;
vcpu_put(vcpu);
return ret;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
int rc = 0;
vcpu_load(vcpu);
/* user space knows about this interface - let it control the state */
kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
switch (mp_state->mp_state) {
case KVM_MP_STATE_STOPPED:
rc = kvm_s390_vcpu_stop(vcpu);
break;
case KVM_MP_STATE_OPERATING:
rc = kvm_s390_vcpu_start(vcpu);
break;
case KVM_MP_STATE_LOAD:
if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
rc = -ENXIO;
break;
}
rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
break;
case KVM_MP_STATE_CHECK_STOP:
fallthrough; /* CHECK_STOP and LOAD are not supported yet */
default:
rc = -ENXIO;
}
vcpu_put(vcpu);
return rc;
}
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
}
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
retry:
kvm_s390_vcpu_request_handled(vcpu);
if (!kvm_request_pending(vcpu))
return 0;
/*
* If the guest prefix changed, re-arm the ipte notifier for the
* guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
* This ensures that the ipte instruction for this request has
* already finished. We might race against a second unmapper that
* wants to set the blocking bit. Lets just retry the request loop.
*/
if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
int rc;
rc = gmap_mprotect_notify(vcpu->arch.gmap,
kvm_s390_get_prefix(vcpu),
PAGE_SIZE * 2, PROT_WRITE);
if (rc) {
kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
return rc;
}
goto retry;
}
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
vcpu->arch.sie_block->ihcpu = 0xffff;
goto retry;
}
if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
if (!ibs_enabled(vcpu)) {
trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
}
goto retry;
}
if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
if (ibs_enabled(vcpu)) {
trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
}
goto retry;
}
if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
goto retry;
}
if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
/*
* Disable CMM virtualization; we will emulate the ESSA
* instruction manually, in order to provide additional
* functionalities needed for live migration.
*/
vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
goto retry;
}
if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
/*
* Re-enable CMM virtualization if CMMA is available and
* CMM has been used.
*/
if ((vcpu->kvm->arch.use_cmma) &&
(vcpu->kvm->mm->context.uses_cmm))
vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
goto retry;
}
/* we left the vsie handler, nothing to do, just clear the request */
kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
return 0;
}
static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
{
struct kvm_vcpu *vcpu;
union tod_clock clk;
unsigned long i;
preempt_disable();
store_tod_clock_ext(&clk);
kvm->arch.epoch = gtod->tod - clk.tod;
kvm->arch.epdx = 0;
if (test_kvm_facility(kvm, 139)) {
kvm->arch.epdx = gtod->epoch_idx - clk.ei;
if (kvm->arch.epoch > gtod->tod)
kvm->arch.epdx -= 1;
}
kvm_s390_vcpu_block_all(kvm);
kvm_for_each_vcpu(i, vcpu, kvm) {
vcpu->arch.sie_block->epoch = kvm->arch.epoch;
vcpu->arch.sie_block->epdx = kvm->arch.epdx;
}
kvm_s390_vcpu_unblock_all(kvm);
preempt_enable();
}
int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
{
if (!mutex_trylock(&kvm->lock))
return 0;
__kvm_s390_set_tod_clock(kvm, gtod);
mutex_unlock(&kvm->lock);
return 1;
}
/**
* kvm_arch_fault_in_page - fault-in guest page if necessary
* @vcpu: The corresponding virtual cpu
* @gpa: Guest physical address
* @writable: Whether the page should be writable or not
*
* Make sure that a guest page has been faulted-in on the host.
*
* Return: Zero on success, negative error code otherwise.
*/
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
{
return gmap_fault(vcpu->arch.gmap, gpa,
writable ? FAULT_FLAG_WRITE : 0);
}
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
unsigned long token)
{
struct kvm_s390_interrupt inti;
struct kvm_s390_irq irq;
if (start_token) {
irq.u.ext.ext_params2 = token;
irq.type = KVM_S390_INT_PFAULT_INIT;
WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
} else {
inti.type = KVM_S390_INT_PFAULT_DONE;
inti.parm64 = token;
WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
}
}
bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
return true;
}
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
/* s390 will always inject the page directly */
}
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
{
/*
* s390 will always inject the page directly,
* but we still want check_async_completion to cleanup
*/
return true;
}
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
hva_t hva;
struct kvm_arch_async_pf arch;
if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
return false;
if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
vcpu->arch.pfault_compare)
return false;
if (psw_extint_disabled(vcpu))
return false;
if (kvm_s390_vcpu_has_irq(vcpu, 0))
return false;
if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
return false;
if (!vcpu->arch.gmap->pfault_enabled)
return false;
hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
hva += current->thread.gmap_addr & ~PAGE_MASK;
if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
return false;
return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
}
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
{
int rc, cpuflags;
/*
* On s390 notifications for arriving pages will be delivered directly
* to the guest but the house keeping for completed pfaults is
* handled outside the worker.
*/
kvm_check_async_pf_completion(vcpu);
vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
if (need_resched())
schedule();
if (!kvm_is_ucontrol(vcpu->kvm)) {
rc = kvm_s390_deliver_pending_interrupts(vcpu);
if (rc)
return rc;
}
rc = kvm_s390_handle_requests(vcpu);
if (rc)
return rc;
if (guestdbg_enabled(vcpu)) {
kvm_s390_backup_guest_per_regs(vcpu);
kvm_s390_patch_guest_per_regs(vcpu);
}
clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
vcpu->arch.sie_block->icptcode = 0;
cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
trace_kvm_s390_sie_enter(vcpu, cpuflags);
return 0;
}
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
struct kvm_s390_pgm_info pgm_info = {
.code = PGM_ADDRESSING,
};
u8 opcode, ilen;
int rc;
VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
trace_kvm_s390_sie_fault(vcpu);
/*
* We want to inject an addressing exception, which is defined as a
* suppressing or terminating exception. However, since we came here
* by a DAT access exception, the PSW still points to the faulting
* instruction since DAT exceptions are nullifying. So we've got
* to look up the current opcode to get the length of the instruction
* to be able to forward the PSW.
*/
rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
ilen = insn_length(opcode);
if (rc < 0) {
return rc;
} else if (rc) {
/* Instruction-Fetching Exceptions - we can't detect the ilen.
* Forward by arbitrary ilc, injection will take care of
* nullification if necessary.
*/
pgm_info = vcpu->arch.pgm;
ilen = 4;
}
pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
kvm_s390_forward_psw(vcpu, ilen);
return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
}
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
struct mcck_volatile_info *mcck_info;
struct sie_page *sie_page;
VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
vcpu->arch.sie_block->icptcode);
trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
if (guestdbg_enabled(vcpu))
kvm_s390_restore_guest_per_regs(vcpu);
vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
if (exit_reason == -EINTR) {
VCPU_EVENT(vcpu, 3, "%s", "machine check");
sie_page = container_of(vcpu->arch.sie_block,
struct sie_page, sie_block);
mcck_info = &sie_page->mcck_info;
kvm_s390_reinject_machine_check(vcpu, mcck_info);
return 0;
}
if (vcpu->arch.sie_block->icptcode > 0) {
int rc = kvm_handle_sie_intercept(vcpu);
if (rc != -EOPNOTSUPP)
return rc;
vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
return -EREMOTE;
} else if (exit_reason != -EFAULT) {
vcpu->stat.exit_null++;
return 0;
} else if (kvm_is_ucontrol(vcpu->kvm)) {
vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
vcpu->run->s390_ucontrol.trans_exc_code =
current->thread.gmap_addr;
vcpu->run->s390_ucontrol.pgm_code = 0x10;
return -EREMOTE;
} else if (current->thread.gmap_pfault) {
trace_kvm_s390_major_guest_pfault(vcpu);
current->thread.gmap_pfault = 0;
if (kvm_arch_setup_async_pf(vcpu))
return 0;
vcpu->stat.pfault_sync++;
return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
}
return vcpu_post_run_fault_in_sie(vcpu);
}
#define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
static int __vcpu_run(struct kvm_vcpu *vcpu)
{
int rc, exit_reason;
struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
/*
* We try to hold kvm->srcu during most of vcpu_run (except when run-
* ning the guest), so that memslots (and other stuff) are protected
*/
kvm_vcpu_srcu_read_lock(vcpu);
do {
rc = vcpu_pre_run(vcpu);
if (rc)
break;
kvm_vcpu_srcu_read_unlock(vcpu);
/*
* As PF_VCPU will be used in fault handler, between
* guest_enter and guest_exit should be no uaccess.
*/
local_irq_disable();
guest_enter_irqoff();
__disable_cpu_timer_accounting(vcpu);
local_irq_enable();
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
memcpy(sie_page->pv_grregs,
vcpu->run->s.regs.gprs,
sizeof(sie_page->pv_grregs));
}
if (test_cpu_flag(CIF_FPU))
load_fpu_regs();
exit_reason = sie64a(vcpu->arch.sie_block,
vcpu->run->s.regs.gprs);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
memcpy(vcpu->run->s.regs.gprs,
sie_page->pv_grregs,
sizeof(sie_page->pv_grregs));
/*
* We're not allowed to inject interrupts on intercepts
* that leave the guest state in an "in-between" state
* where the next SIE entry will do a continuation.
* Fence interrupts in our "internal" PSW.
*/
if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
}
}
local_irq_disable();
__enable_cpu_timer_accounting(vcpu);
guest_exit_irqoff();
local_irq_enable();
kvm_vcpu_srcu_read_lock(vcpu);
rc = vcpu_post_run(vcpu, exit_reason);
} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
kvm_vcpu_srcu_read_unlock(vcpu);
return rc;
}
static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
struct runtime_instr_cb *riccb;
struct gs_cb *gscb;
riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
}
if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
vcpu->arch.pfault_token = kvm_run->s.regs.pft;
vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
kvm_clear_async_pf_completion_queue(vcpu);
}
if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
}
/*
* If userspace sets the riccb (e.g. after migration) to a valid state,
* we should enable RI here instead of doing the lazy enablement.
*/
if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
test_kvm_facility(vcpu->kvm, 64) &&
riccb->v &&
!(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
vcpu->arch.sie_block->ecb3 |= ECB3_RI;
}
/*
* If userspace sets the gscb (e.g. after migration) to non-zero,
* we should enable GS here instead of doing the lazy enablement.
*/
if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
test_kvm_facility(vcpu->kvm, 133) &&
gscb->gssm &&
!vcpu->arch.gs_enabled) {
VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
vcpu->arch.sie_block->ecb |= ECB_GS;
vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
vcpu->arch.gs_enabled = 1;
}
if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
test_kvm_facility(vcpu->kvm, 82)) {
vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
}
if (MACHINE_HAS_GS) {
preempt_disable();
__ctl_set_bit(2, 4);
if (current->thread.gs_cb) {
vcpu->arch.host_gscb = current->thread.gs_cb;
save_gs_cb(vcpu->arch.host_gscb);
}
if (vcpu->arch.gs_enabled) {
current->thread.gs_cb = (struct gs_cb *)
&vcpu->run->s.regs.gscb;
restore_gs_cb(current->thread.gs_cb);
}
preempt_enable();
}
/* SIE will load etoken directly from SDNX and therefore kvm_run */
}
static void sync_regs(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
/* some control register changes require a tlb flush */
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
}
save_access_regs(vcpu->arch.host_acrs);
restore_access_regs(vcpu->run->s.regs.acrs);
/* save host (userspace) fprs/vrs */
save_fpu_regs();
vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
if (MACHINE_HAS_VX)
current->thread.fpu.regs = vcpu->run->s.regs.vrs;
else
current->thread.fpu.regs = vcpu->run->s.regs.fprs;
current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
if (test_fp_ctl(current->thread.fpu.fpc))
/* User space provided an invalid FPC, let's clear it */
current->thread.fpu.fpc = 0;
/* Sync fmt2 only data */
if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
sync_regs_fmt2(vcpu);
} else {
/*
* In several places we have to modify our internal view to
* not do things that are disallowed by the ultravisor. For
* example we must not inject interrupts after specific exits
* (e.g. 112 prefix page not secure). We do this by turning
* off the machine check, external and I/O interrupt bits
* of our PSW copy. To avoid getting validity intercepts, we
* do only accept the condition code from userspace.
*/
vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
PSW_MASK_CC;
}
kvm_run->kvm_dirty_regs = 0;
}
static void store_regs_fmt2(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
if (MACHINE_HAS_GS) {
preempt_disable();
__ctl_set_bit(2, 4);
if (vcpu->arch.gs_enabled)
save_gs_cb(current->thread.gs_cb);
current->thread.gs_cb = vcpu->arch.host_gscb;
restore_gs_cb(vcpu->arch.host_gscb);
if (!vcpu->arch.host_gscb)
__ctl_clear_bit(2, 4);
vcpu->arch.host_gscb = NULL;
preempt_enable();
}
/* SIE will save etoken directly into SDNX and therefore kvm_run */
}
static void store_regs(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
kvm_run->s.regs.pft = vcpu->arch.pfault_token;
kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
save_access_regs(vcpu->run->s.regs.acrs);
restore_access_regs(vcpu->arch.host_acrs);
/* Save guest register state */
save_fpu_regs();
vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
/* Restore will be done lazily at return */
current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
store_regs_fmt2(vcpu);
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
int rc;
/*
* Running a VM while dumping always has the potential to
* produce inconsistent dump data. But for PV vcpus a SIE
* entry while dumping could also lead to a fatal validity
* intercept which we absolutely want to avoid.
*/
if (vcpu->kvm->arch.pv.dumping)
return -EINVAL;
if (kvm_run->immediate_exit)
return -EINTR;
if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
return -EINVAL;
vcpu_load(vcpu);
if (guestdbg_exit_pending(vcpu)) {
kvm_s390_prepare_debug_exit(vcpu);
rc = 0;
goto out;
}
kvm_sigset_activate(vcpu);
/*
* no need to check the return value of vcpu_start as it can only have
* an error for protvirt, but protvirt means user cpu state
*/
if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
kvm_s390_vcpu_start(vcpu);
} else if (is_vcpu_stopped(vcpu)) {
pr_err_ratelimited("can't run stopped vcpu %d\n",
vcpu->vcpu_id);
rc = -EINVAL;
goto out;
}
sync_regs(vcpu);
enable_cpu_timer_accounting(vcpu);
might_fault();
rc = __vcpu_run(vcpu);
if (signal_pending(current) && !rc) {
kvm_run->exit_reason = KVM_EXIT_INTR;
rc = -EINTR;
}
if (guestdbg_exit_pending(vcpu) && !rc) {
kvm_s390_prepare_debug_exit(vcpu);
rc = 0;
}
if (rc == -EREMOTE) {
/* userspace support is needed, kvm_run has been prepared */
rc = 0;
}
disable_cpu_timer_accounting(vcpu);
store_regs(vcpu);
kvm_sigset_deactivate(vcpu);
vcpu->stat.exit_userspace++;
out:
vcpu_put(vcpu);
return rc;
}
/*
* store status at address
* we use have two special cases:
* KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
* KVM_S390_STORE_STATUS_PREFIXED: -> prefix
*/
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
{
unsigned char archmode = 1;
freg_t fprs[NUM_FPRS];
unsigned int px;
u64 clkcomp, cputm;
int rc;
px = kvm_s390_get_prefix(vcpu);
if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
if (write_guest_abs(vcpu, 163, &archmode, 1))
return -EFAULT;
gpa = 0;
} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
if (write_guest_real(vcpu, 163, &archmode, 1))
return -EFAULT;
gpa = px;
} else
gpa -= __LC_FPREGS_SAVE_AREA;
/* manually convert vector registers if necessary */
if (MACHINE_HAS_VX) {
convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
fprs, 128);
} else {
rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
vcpu->run->s.regs.fprs, 128);
}
rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
vcpu->run->s.regs.gprs, 128);
rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
&vcpu->arch.sie_block->gpsw, 16);
rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
&px, 4);
rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
&vcpu->run->s.regs.fpc, 4);
rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
&vcpu->arch.sie_block->todpr, 4);
cputm = kvm_s390_get_cpu_timer(vcpu);
rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
&cputm, 8);
clkcomp = vcpu->arch.sie_block->ckc >> 8;
rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
&clkcomp, 8);
rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
&vcpu->run->s.regs.acrs, 64);
rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
&vcpu->arch.sie_block->gcr, 128);
return rc ? -EFAULT : 0;
}
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
/*
* The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
* switch in the run ioctl. Let's update our copies before we save
* it into the save area
*/
save_fpu_regs();
vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
save_access_regs(vcpu->run->s.regs.acrs);
return kvm_s390_store_status_unloaded(vcpu, addr);
}
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
}
static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
unsigned long i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
__disable_ibs_on_vcpu(vcpu);
}
}
static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
if (!sclp.has_ibs)
return;
kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
}
int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
int i, online_vcpus, r = 0, started_vcpus = 0;
if (!is_vcpu_stopped(vcpu))
return 0;
trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
/* Only one cpu at a time may enter/leave the STOPPED state. */
spin_lock(&vcpu->kvm->arch.start_stop_lock);
online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
/* Let's tell the UV that we want to change into the operating state */
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
if (r) {
spin_unlock(&vcpu->kvm->arch.start_stop_lock);
return r;
}
}
for (i = 0; i < online_vcpus; i++) {
if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
started_vcpus++;
}
if (started_vcpus == 0) {
/* we're the only active VCPU -> speed it up */
__enable_ibs_on_vcpu(vcpu);
} else if (started_vcpus == 1) {
/*
* As we are starting a second VCPU, we have to disable
* the IBS facility on all VCPUs to remove potentially
* outstanding ENABLE requests.
*/
__disable_ibs_on_all_vcpus(vcpu->kvm);
}
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
/*
* The real PSW might have changed due to a RESTART interpreted by the
* ultravisor. We block all interrupts and let the next sie exit
* refresh our view.
*/
if (kvm_s390_pv_cpu_is_protected(vcpu))
vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
/*
* Another VCPU might have used IBS while we were offline.
* Let's play safe and flush the VCPU at startup.
*/
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
spin_unlock(&vcpu->kvm->arch.start_stop_lock);
return 0;
}
int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
int i, online_vcpus, r = 0, started_vcpus = 0;
struct kvm_vcpu *started_vcpu = NULL;
if (is_vcpu_stopped(vcpu))
return 0;
trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
/* Only one cpu at a time may enter/leave the STOPPED state. */
spin_lock(&vcpu->kvm->arch.start_stop_lock);
online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
/* Let's tell the UV that we want to change into the stopped state */
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
if (r) {
spin_unlock(&vcpu->kvm->arch.start_stop_lock);
return r;
}
}
/*
* Set the VCPU to STOPPED and THEN clear the interrupt flag,
* now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
* have been fully processed. This will ensure that the VCPU
* is kept BUSY if another VCPU is inquiring with SIGP SENSE.
*/
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
kvm_s390_clear_stop_irq(vcpu);
__disable_ibs_on_vcpu(vcpu);
for (i = 0; i < online_vcpus; i++) {
struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
if (!is_vcpu_stopped(tmp)) {
started_vcpus++;
started_vcpu = tmp;
}
}
if (started_vcpus == 1) {
/*
* As we only have one VCPU left, we want to enable the
* IBS facility for that VCPU to speed it up.
*/
__enable_ibs_on_vcpu(started_vcpu);
}
spin_unlock(&vcpu->kvm->arch.start_stop_lock);
return 0;
}
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_S390_CSS_SUPPORT:
if (!vcpu->kvm->arch.css_support) {
vcpu->kvm->arch.css_support = 1;
VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
trace_kvm_s390_enable_css(vcpu->kvm);
}
r = 0;
break;
default:
r = -EINVAL;
break;
}
return r;
}
static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
struct kvm_s390_mem_op *mop)
{
void __user *uaddr = (void __user *)mop->buf;
void *sida_addr;
int r = 0;
if (mop->flags || !mop->size)
return -EINVAL;
if (mop->size + mop->sida_offset < mop->size)
return -EINVAL;
if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
return -E2BIG;
if (!kvm_s390_pv_cpu_is_protected(vcpu))
return -EINVAL;
sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
switch (mop->op) {
case KVM_S390_MEMOP_SIDA_READ:
if (copy_to_user(uaddr, sida_addr, mop->size))
r = -EFAULT;
break;
case KVM_S390_MEMOP_SIDA_WRITE:
if (copy_from_user(sida_addr, uaddr, mop->size))
r = -EFAULT;
break;
}
return r;
}
static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
struct kvm_s390_mem_op *mop)
{
void __user *uaddr = (void __user *)mop->buf;
enum gacc_mode acc_mode;
void *tmpbuf = NULL;
int r;
r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
KVM_S390_MEMOP_F_CHECK_ONLY |
KVM_S390_MEMOP_F_SKEY_PROTECTION);
if (r)
return r;
if (mop->ar >= NUM_ACRS)
return -EINVAL;
if (kvm_s390_pv_cpu_is_protected(vcpu))
return -EINVAL;
if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
tmpbuf = vmalloc(mop->size);
if (!tmpbuf)
return -ENOMEM;
}
acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
acc_mode, mop->key);
goto out_inject;
}
if (acc_mode == GACC_FETCH) {
r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
mop->size, mop->key);
if (r)
goto out_inject;
if (copy_to_user(uaddr, tmpbuf, mop->size)) {
r = -EFAULT;
goto out_free;
}
} else {
if (copy_from_user(tmpbuf, uaddr, mop->size)) {
r = -EFAULT;
goto out_free;
}
r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
mop->size, mop->key);
}
out_inject:
if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
out_free:
vfree(tmpbuf);
return r;
}
static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
struct kvm_s390_mem_op *mop)
{
int r, srcu_idx;
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
switch (mop->op) {
case KVM_S390_MEMOP_LOGICAL_READ:
case KVM_S390_MEMOP_LOGICAL_WRITE:
r = kvm_s390_vcpu_mem_op(vcpu, mop);
break;
case KVM_S390_MEMOP_SIDA_READ:
case KVM_S390_MEMOP_SIDA_WRITE:
/* we are locked against sida going away by the vcpu->mutex */
r = kvm_s390_vcpu_sida_op(vcpu, mop);
break;
default:
r = -EINVAL;
}
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
return r;
}
long kvm_arch_vcpu_async_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
switch (ioctl) {
case KVM_S390_IRQ: {
struct kvm_s390_irq s390irq;
if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
return -EFAULT;
return kvm_s390_inject_vcpu(vcpu, &s390irq);
}
case KVM_S390_INTERRUPT: {
struct kvm_s390_interrupt s390int;
struct kvm_s390_irq s390irq = {};
if (copy_from_user(&s390int, argp, sizeof(s390int)))
return -EFAULT;
if (s390int_to_s390irq(&s390int, &s390irq))
return -EINVAL;
return kvm_s390_inject_vcpu(vcpu, &s390irq);
}
}
return -ENOIOCTLCMD;
}
static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
struct kvm_pv_cmd *cmd)
{
struct kvm_s390_pv_dmp dmp;
void *data;
int ret;
/* Dump initialization is a prerequisite */
if (!vcpu->kvm->arch.pv.dumping)
return -EINVAL;
if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
return -EFAULT;
/* We only handle this subcmd right now */
if (dmp.subcmd != KVM_PV_DUMP_CPU)
return -EINVAL;
/* CPU dump length is the same as create cpu storage donation. */
if (dmp.buff_len != uv_info.guest_cpu_stor_len)
return -EINVAL;
data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
if (!data)
return -ENOMEM;
ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
vcpu->vcpu_id, cmd->rc, cmd->rrc);
if (ret)
ret = -EINVAL;
/* On success copy over the dump data */
if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
ret = -EFAULT;
kvfree(data);
return ret;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int idx;
long r;
u16 rc, rrc;
vcpu_load(vcpu);
switch (ioctl) {
case KVM_S390_STORE_STATUS:
idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvm_s390_store_status_unloaded(vcpu, arg);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
case KVM_S390_SET_INITIAL_PSW: {
psw_t psw;
r = -EFAULT;
if (copy_from_user(&psw, argp, sizeof(psw)))
break;
r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
break;
}
case KVM_S390_CLEAR_RESET:
r = 0;
kvm_arch_vcpu_ioctl_clear_reset(vcpu);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
rc, rrc);
}
break;
case KVM_S390_INITIAL_RESET:
r = 0;
kvm_arch_vcpu_ioctl_initial_reset(vcpu);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
UVC_CMD_CPU_RESET_INITIAL,
&rc, &rrc);
VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
rc, rrc);
}
break;
case KVM_S390_NORMAL_RESET:
r = 0;
kvm_arch_vcpu_ioctl_normal_reset(vcpu);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
UVC_CMD_CPU_RESET, &rc, &rrc);
VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
rc, rrc);
}
break;
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG: {
struct kvm_one_reg reg;
r = -EINVAL;
if (kvm_s390_pv_cpu_is_protected(vcpu))
break;
r = -EFAULT;
if (copy_from_user(&reg, argp, sizeof(reg)))
break;
if (ioctl == KVM_SET_ONE_REG)
r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
else
r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
break;
}
#ifdef CONFIG_KVM_S390_UCONTROL
case KVM_S390_UCAS_MAP: {
struct kvm_s390_ucas_mapping ucasmap;
if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
r = -EFAULT;
break;
}
if (!kvm_is_ucontrol(vcpu->kvm)) {
r = -EINVAL;
break;
}
r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
ucasmap.vcpu_addr, ucasmap.length);
break;
}
case KVM_S390_UCAS_UNMAP: {
struct kvm_s390_ucas_mapping ucasmap;
if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
r = -EFAULT;
break;
}
if (!kvm_is_ucontrol(vcpu->kvm)) {
r = -EINVAL;
break;
}
r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
ucasmap.length);
break;
}
#endif
case KVM_S390_VCPU_FAULT: {
r = gmap_fault(vcpu->arch.gmap, arg, 0);
break;
}
case KVM_ENABLE_CAP:
{
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
break;
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
break;
}
case KVM_S390_MEM_OP: {
struct kvm_s390_mem_op mem_op;
if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
else
r = -EFAULT;
break;
}
case KVM_S390_SET_IRQ_STATE: {
struct kvm_s390_irq_state irq_state;
r = -EFAULT;
if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
break;
if (irq_state.len > VCPU_IRQS_MAX_BUF ||
irq_state.len == 0 ||
irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
r = -EINVAL;
break;
}
/* do not use irq_state.flags, it will break old QEMUs */
r = kvm_s390_set_irq_state(vcpu,
(void __user *) irq_state.buf,
irq_state.len);
break;
}
case KVM_S390_GET_IRQ_STATE: {
struct kvm_s390_irq_state irq_state;
r = -EFAULT;
if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
break;
if (irq_state.len == 0) {
r = -EINVAL;
break;
}
/* do not use irq_state.flags, it will break old QEMUs */
r = kvm_s390_get_irq_state(vcpu,
(__u8 __user *) irq_state.buf,
irq_state.len);
break;
}
case KVM_S390_PV_CPU_COMMAND: {
struct kvm_pv_cmd cmd;
r = -EINVAL;
if (!is_prot_virt_host())
break;
r = -EFAULT;
if (copy_from_user(&cmd, argp, sizeof(cmd)))
break;
r = -EINVAL;
if (cmd.flags)
break;
/* We only handle this cmd right now */
if (cmd.cmd != KVM_PV_DUMP)
break;
r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
/* Always copy over UV rc / rrc data */
if (copy_to_user((__u8 __user *)argp, &cmd.rc,
sizeof(cmd.rc) + sizeof(cmd.rrc)))
r = -EFAULT;
break;
}
default:
r = -ENOTTY;
}
vcpu_put(vcpu);
return r;
}
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
&& (kvm_is_ucontrol(vcpu->kvm))) {
vmf->page = virt_to_page(vcpu->arch.sie_block);
get_page(vmf->page);
return 0;
}
#endif
return VM_FAULT_SIGBUS;
}
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
{
return true;
}
/* Section: memory related */
int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
gpa_t size;
/* When we are protected, we should not change the memory slots */
if (kvm_s390_pv_get_handle(kvm))
return -EINVAL;
if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
/*
* A few sanity checks. We can have memory slots which have to be
* located/ended at a segment boundary (1MB). The memory in userland is
* ok to be fragmented into various different vmas. It is okay to mmap()
* and munmap() stuff in this slot after doing this call at any time
*/
if (new->userspace_addr & 0xffffful)
return -EINVAL;
size = new->npages * PAGE_SIZE;
if (size & 0xffffful)
return -EINVAL;
if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
return -EINVAL;
}
if (!kvm->arch.migration_mode)
return 0;
/*
* Turn off migration mode when:
* - userspace creates a new memslot with dirty logging off,
* - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
* dirty logging is turned off.
* Migration mode expects dirty page logging being enabled to store
* its dirty bitmap.
*/
if (change != KVM_MR_DELETE &&
!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
WARN(kvm_s390_vm_stop_migration(kvm),
"Failed to stop migration mode");
return 0;
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
int rc = 0;
switch (change) {
case KVM_MR_DELETE:
rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
old->npages * PAGE_SIZE);
break;
case KVM_MR_MOVE:
rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
old->npages * PAGE_SIZE);
if (rc)
break;
fallthrough;
case KVM_MR_CREATE:
rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr,
new->base_gfn * PAGE_SIZE,
new->npages * PAGE_SIZE);
break;
case KVM_MR_FLAGS_ONLY:
break;
default:
WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
}
if (rc)
pr_warn("failed to commit memory region\n");
return;
}
static inline unsigned long nonhyp_mask(int i)
{
unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}
static int __init kvm_s390_init(void)
{
int i, r;
if (!sclp.has_sief2) {
pr_info("SIE is not available\n");
return -ENODEV;
}
if (nested && hpage) {
pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
return -EINVAL;
}
for (i = 0; i < 16; i++)
kvm_s390_fac_base[i] |=
stfle_fac_list[i] & nonhyp_mask(i);
r = __kvm_s390_init();
if (r)
return r;
r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
if (r) {
__kvm_s390_exit();
return r;
}
return 0;
}
static void __exit kvm_s390_exit(void)
{
kvm_exit();
__kvm_s390_exit();
}
module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
/*
* Enable autoloading of the kvm module.
* Note that we add the module alias here instead of virt/kvm/kvm_main.c
* since x86 takes a different approach.
*/
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");