WSL2-Linux-Kernel/arch/x86/kvm/xen.c

723 строки
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
* Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* KVM Xen emulation
*/
#include "x86.h"
#include "xen.h"
#include "hyperv.h"
#include <linux/kvm_host.h>
#include <linux/sched/stat.h>
#include <trace/events/kvm.h>
#include <xen/interface/xen.h>
#include <xen/interface/vcpu.h>
#include "trace.h"
DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
{
gpa_t gpa = gfn_to_gpa(gfn);
int wc_ofs, sec_hi_ofs;
int ret = 0;
int idx = srcu_read_lock(&kvm->srcu);
if (kvm_is_error_hva(gfn_to_hva(kvm, gfn))) {
ret = -EFAULT;
goto out;
}
kvm->arch.xen.shinfo_gfn = gfn;
/* Paranoia checks on the 32-bit struct layout */
BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
/* 32-bit location by default */
wc_ofs = offsetof(struct compat_shared_info, wc);
sec_hi_ofs = offsetof(struct compat_shared_info, arch.wc_sec_hi);
#ifdef CONFIG_X86_64
/* Paranoia checks on the 64-bit struct layout */
BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
if (kvm->arch.xen.long_mode) {
wc_ofs = offsetof(struct shared_info, wc);
sec_hi_ofs = offsetof(struct shared_info, wc_sec_hi);
}
#endif
kvm_write_wall_clock(kvm, gpa + wc_ofs, sec_hi_ofs - wc_ofs);
kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
out:
srcu_read_unlock(&kvm->srcu, idx);
return ret;
}
static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
{
struct kvm_vcpu_xen *vx = &v->arch.xen;
u64 now = get_kvmclock_ns(v->kvm);
u64 delta_ns = now - vx->runstate_entry_time;
u64 run_delay = current->sched_info.run_delay;
if (unlikely(!vx->runstate_entry_time))
vx->current_runstate = RUNSTATE_offline;
/*
* Time waiting for the scheduler isn't "stolen" if the
* vCPU wasn't running anyway.
*/
if (vx->current_runstate == RUNSTATE_running) {
u64 steal_ns = run_delay - vx->last_steal;
delta_ns -= steal_ns;
vx->runstate_times[RUNSTATE_runnable] += steal_ns;
}
vx->last_steal = run_delay;
vx->runstate_times[vx->current_runstate] += delta_ns;
vx->current_runstate = state;
vx->runstate_entry_time = now;
}
void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
{
struct kvm_vcpu_xen *vx = &v->arch.xen;
uint64_t state_entry_time;
unsigned int offset;
kvm_xen_update_runstate(v, state);
if (!vx->runstate_set)
return;
BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
offset = offsetof(struct compat_vcpu_runstate_info, state_entry_time);
#ifdef CONFIG_X86_64
/*
* The only difference is alignment of uint64_t in 32-bit.
* So the first field 'state' is accessed directly using
* offsetof() (where its offset happens to be zero), while the
* remaining fields which are all uint64_t, start at 'offset'
* which we tweak here by adding 4.
*/
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
offsetof(struct compat_vcpu_runstate_info, time) + 4);
if (v->kvm->arch.xen.long_mode)
offset = offsetof(struct vcpu_runstate_info, state_entry_time);
#endif
/*
* First write the updated state_entry_time at the appropriate
* location determined by 'offset'.
*/
state_entry_time = vx->runstate_entry_time;
state_entry_time |= XEN_RUNSTATE_UPDATE;
BUILD_BUG_ON(sizeof(((struct vcpu_runstate_info *)0)->state_entry_time) !=
sizeof(state_entry_time));
BUILD_BUG_ON(sizeof(((struct compat_vcpu_runstate_info *)0)->state_entry_time) !=
sizeof(state_entry_time));
if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
&state_entry_time, offset,
sizeof(state_entry_time)))
return;
smp_wmb();
/*
* Next, write the new runstate. This is in the *same* place
* for 32-bit and 64-bit guests, asserted here for paranoia.
*/
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
offsetof(struct compat_vcpu_runstate_info, state));
BUILD_BUG_ON(sizeof(((struct vcpu_runstate_info *)0)->state) !=
sizeof(vx->current_runstate));
BUILD_BUG_ON(sizeof(((struct compat_vcpu_runstate_info *)0)->state) !=
sizeof(vx->current_runstate));
if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
&vx->current_runstate,
offsetof(struct vcpu_runstate_info, state),
sizeof(vx->current_runstate)))
return;
/*
* Write the actual runstate times immediately after the
* runstate_entry_time.
*/
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
BUILD_BUG_ON(sizeof(((struct vcpu_runstate_info *)0)->time) !=
sizeof(((struct compat_vcpu_runstate_info *)0)->time));
BUILD_BUG_ON(sizeof(((struct vcpu_runstate_info *)0)->time) !=
sizeof(vx->runstate_times));
if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
&vx->runstate_times[0],
offset + sizeof(u64),
sizeof(vx->runstate_times)))
return;
smp_wmb();
/*
* Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
* runstate_entry_time field.
*/
state_entry_time &= ~XEN_RUNSTATE_UPDATE;
if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
&state_entry_time, offset,
sizeof(state_entry_time)))
return;
}
int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
{
u8 rc = 0;
/*
* If the global upcall vector (HVMIRQ_callback_vector) is set and
* the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
*/
struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
struct kvm_memslots *slots = kvm_memslots(v->kvm);
unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
/* No need for compat handling here */
BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
BUILD_BUG_ON(sizeof(rc) !=
sizeof(((struct vcpu_info *)0)->evtchn_upcall_pending));
BUILD_BUG_ON(sizeof(rc) !=
sizeof(((struct compat_vcpu_info *)0)->evtchn_upcall_pending));
/*
* For efficiency, this mirrors the checks for using the valid
* cache in kvm_read_guest_offset_cached(), but just uses
* __get_user() instead. And falls back to the slow path.
*/
if (likely(slots->generation == ghc->generation &&
!kvm_is_error_hva(ghc->hva) && ghc->memslot)) {
/* Fast path */
__get_user(rc, (u8 __user *)ghc->hva + offset);
} else {
/* Slow path */
kvm_read_guest_offset_cached(v->kvm, ghc, &rc, offset,
sizeof(rc));
}
return rc;
}
int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
{
int r = -ENOENT;
mutex_lock(&kvm->lock);
switch (data->type) {
case KVM_XEN_ATTR_TYPE_LONG_MODE:
if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
r = -EINVAL;
} else {
kvm->arch.xen.long_mode = !!data->u.long_mode;
r = 0;
}
break;
case KVM_XEN_ATTR_TYPE_SHARED_INFO:
if (data->u.shared_info.gfn == GPA_INVALID) {
kvm->arch.xen.shinfo_gfn = GPA_INVALID;
r = 0;
break;
}
r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
break;
case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
if (data->u.vector && data->u.vector < 0x10)
r = -EINVAL;
else {
kvm->arch.xen.upcall_vector = data->u.vector;
r = 0;
}
break;
default:
break;
}
mutex_unlock(&kvm->lock);
return r;
}
int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
{
int r = -ENOENT;
mutex_lock(&kvm->lock);
switch (data->type) {
case KVM_XEN_ATTR_TYPE_LONG_MODE:
data->u.long_mode = kvm->arch.xen.long_mode;
r = 0;
break;
case KVM_XEN_ATTR_TYPE_SHARED_INFO:
data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_gfn);
r = 0;
break;
case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
data->u.vector = kvm->arch.xen.upcall_vector;
r = 0;
break;
default:
break;
}
mutex_unlock(&kvm->lock);
return r;
}
int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
{
int idx, r = -ENOENT;
mutex_lock(&vcpu->kvm->lock);
idx = srcu_read_lock(&vcpu->kvm->srcu);
switch (data->type) {
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
/* No compat necessary here. */
BUILD_BUG_ON(sizeof(struct vcpu_info) !=
sizeof(struct compat_vcpu_info));
BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
offsetof(struct compat_vcpu_info, time));
if (data->u.gpa == GPA_INVALID) {
vcpu->arch.xen.vcpu_info_set = false;
r = 0;
break;
}
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
&vcpu->arch.xen.vcpu_info_cache,
data->u.gpa,
sizeof(struct vcpu_info));
if (!r) {
vcpu->arch.xen.vcpu_info_set = true;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
}
break;
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
if (data->u.gpa == GPA_INVALID) {
vcpu->arch.xen.vcpu_time_info_set = false;
r = 0;
break;
}
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
&vcpu->arch.xen.vcpu_time_info_cache,
data->u.gpa,
sizeof(struct pvclock_vcpu_time_info));
if (!r) {
vcpu->arch.xen.vcpu_time_info_set = true;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
}
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (data->u.gpa == GPA_INVALID) {
vcpu->arch.xen.runstate_set = false;
r = 0;
break;
}
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
&vcpu->arch.xen.runstate_cache,
data->u.gpa,
sizeof(struct vcpu_runstate_info));
if (!r) {
vcpu->arch.xen.runstate_set = true;
}
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (data->u.runstate.state > RUNSTATE_offline) {
r = -EINVAL;
break;
}
kvm_xen_update_runstate(vcpu, data->u.runstate.state);
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (data->u.runstate.state > RUNSTATE_offline) {
r = -EINVAL;
break;
}
if (data->u.runstate.state_entry_time !=
(data->u.runstate.time_running +
data->u.runstate.time_runnable +
data->u.runstate.time_blocked +
data->u.runstate.time_offline)) {
r = -EINVAL;
break;
}
if (get_kvmclock_ns(vcpu->kvm) <
data->u.runstate.state_entry_time) {
r = -EINVAL;
break;
}
vcpu->arch.xen.current_runstate = data->u.runstate.state;
vcpu->arch.xen.runstate_entry_time =
data->u.runstate.state_entry_time;
vcpu->arch.xen.runstate_times[RUNSTATE_running] =
data->u.runstate.time_running;
vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
data->u.runstate.time_runnable;
vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
data->u.runstate.time_blocked;
vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
data->u.runstate.time_offline;
vcpu->arch.xen.last_steal = current->sched_info.run_delay;
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (data->u.runstate.state > RUNSTATE_offline &&
data->u.runstate.state != (u64)-1) {
r = -EINVAL;
break;
}
/* The adjustment must add up */
if (data->u.runstate.state_entry_time !=
(data->u.runstate.time_running +
data->u.runstate.time_runnable +
data->u.runstate.time_blocked +
data->u.runstate.time_offline)) {
r = -EINVAL;
break;
}
if (get_kvmclock_ns(vcpu->kvm) <
(vcpu->arch.xen.runstate_entry_time +
data->u.runstate.state_entry_time)) {
r = -EINVAL;
break;
}
vcpu->arch.xen.runstate_entry_time +=
data->u.runstate.state_entry_time;
vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
data->u.runstate.time_running;
vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
data->u.runstate.time_runnable;
vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
data->u.runstate.time_blocked;
vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
data->u.runstate.time_offline;
if (data->u.runstate.state <= RUNSTATE_offline)
kvm_xen_update_runstate(vcpu, data->u.runstate.state);
r = 0;
break;
default:
break;
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
mutex_unlock(&vcpu->kvm->lock);
return r;
}
int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
{
int r = -ENOENT;
mutex_lock(&vcpu->kvm->lock);
switch (data->type) {
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
if (vcpu->arch.xen.vcpu_info_set)
data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
else
data->u.gpa = GPA_INVALID;
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
if (vcpu->arch.xen.vcpu_time_info_set)
data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
else
data->u.gpa = GPA_INVALID;
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (vcpu->arch.xen.runstate_set) {
data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
r = 0;
}
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
data->u.runstate.state = vcpu->arch.xen.current_runstate;
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
data->u.runstate.state = vcpu->arch.xen.current_runstate;
data->u.runstate.state_entry_time =
vcpu->arch.xen.runstate_entry_time;
data->u.runstate.time_running =
vcpu->arch.xen.runstate_times[RUNSTATE_running];
data->u.runstate.time_runnable =
vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
data->u.runstate.time_blocked =
vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
data->u.runstate.time_offline =
vcpu->arch.xen.runstate_times[RUNSTATE_offline];
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
r = -EINVAL;
break;
default:
break;
}
mutex_unlock(&vcpu->kvm->lock);
return r;
}
int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
{
struct kvm *kvm = vcpu->kvm;
u32 page_num = data & ~PAGE_MASK;
u64 page_addr = data & PAGE_MASK;
bool lm = is_long_mode(vcpu);
/* Latch long_mode for shared_info pages etc. */
vcpu->kvm->arch.xen.long_mode = lm;
/*
* If Xen hypercall intercept is enabled, fill the hypercall
* page with VMCALL/VMMCALL instructions since that's what
* we catch. Else the VMM has provided the hypercall pages
* with instructions of its own choosing, so use those.
*/
if (kvm_xen_hypercall_enabled(kvm)) {
u8 instructions[32];
int i;
if (page_num)
return 1;
/* mov imm32, %eax */
instructions[0] = 0xb8;
/* vmcall / vmmcall */
kvm_x86_ops.patch_hypercall(vcpu, instructions + 5);
/* ret */
instructions[8] = 0xc3;
/* int3 to pad */
memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
*(u32 *)&instructions[1] = i;
if (kvm_vcpu_write_guest(vcpu,
page_addr + (i * sizeof(instructions)),
instructions, sizeof(instructions)))
return 1;
}
} else {
/*
* Note, truncation is a non-issue as 'lm' is guaranteed to be
* false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
*/
hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
: kvm->arch.xen_hvm_config.blob_addr_32;
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
: kvm->arch.xen_hvm_config.blob_size_32;
u8 *page;
if (page_num >= blob_size)
return 1;
blob_addr += page_num * PAGE_SIZE;
page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
if (IS_ERR(page))
return PTR_ERR(page);
if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
kfree(page);
return 1;
}
}
return 0;
}
int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
{
if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
return -EINVAL;
/*
* With hypercall interception the kernel generates its own
* hypercall page so it must not be provided.
*/
if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
(xhc->blob_addr_32 || xhc->blob_addr_64 ||
xhc->blob_size_32 || xhc->blob_size_64))
return -EINVAL;
mutex_lock(&kvm->lock);
if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
static_branch_inc(&kvm_xen_enabled.key);
else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
static_branch_slow_dec_deferred(&kvm_xen_enabled);
memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
mutex_unlock(&kvm->lock);
return 0;
}
void kvm_xen_init_vm(struct kvm *kvm)
{
kvm->arch.xen.shinfo_gfn = GPA_INVALID;
}
void kvm_xen_destroy_vm(struct kvm *kvm)
{
if (kvm->arch.xen_hvm_config.msr)
static_branch_slow_dec_deferred(&kvm_xen_enabled);
}
static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
kvm_rax_write(vcpu, result);
return kvm_skip_emulated_instruction(vcpu);
}
static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
return 1;
return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
}
int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
{
bool longmode;
u64 input, params[6];
input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
/* Hyper-V hypercalls get bit 31 set in EAX */
if ((input & 0x80000000) &&
kvm_hv_hypercall_enabled(vcpu))
return kvm_hv_hypercall(vcpu);
longmode = is_64_bit_mode(vcpu);
if (!longmode) {
params[0] = (u32)kvm_rbx_read(vcpu);
params[1] = (u32)kvm_rcx_read(vcpu);
params[2] = (u32)kvm_rdx_read(vcpu);
params[3] = (u32)kvm_rsi_read(vcpu);
params[4] = (u32)kvm_rdi_read(vcpu);
params[5] = (u32)kvm_rbp_read(vcpu);
}
#ifdef CONFIG_X86_64
else {
params[0] = (u64)kvm_rdi_read(vcpu);
params[1] = (u64)kvm_rsi_read(vcpu);
params[2] = (u64)kvm_rdx_read(vcpu);
params[3] = (u64)kvm_r10_read(vcpu);
params[4] = (u64)kvm_r8_read(vcpu);
params[5] = (u64)kvm_r9_read(vcpu);
}
#endif
trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
params[3], params[4], params[5]);
vcpu->run->exit_reason = KVM_EXIT_XEN;
vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
vcpu->run->xen.u.hcall.longmode = longmode;
vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu);
vcpu->run->xen.u.hcall.input = input;
vcpu->run->xen.u.hcall.params[0] = params[0];
vcpu->run->xen.u.hcall.params[1] = params[1];
vcpu->run->xen.u.hcall.params[2] = params[2];
vcpu->run->xen.u.hcall.params[3] = params[3];
vcpu->run->xen.u.hcall.params[4] = params[4];
vcpu->run->xen.u.hcall.params[5] = params[5];
vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
vcpu->arch.complete_userspace_io =
kvm_xen_hypercall_complete_userspace;
return 0;
}