WSL2-Linux-Kernel/drivers/media/dvb-frontends/mn88443x.c

815 строки
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Socionext MN88443x series demodulator driver for ISDB-S/ISDB-T.
//
// Copyright (c) 2018 Socionext Inc.
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <media/dvb_math.h>
#include "mn88443x.h"
/* ISDB-S registers */
#define ATSIDU_S 0x2f
#define ATSIDL_S 0x30
#define TSSET_S 0x31
#define AGCREAD_S 0x5a
#define CPMON1_S 0x5e
#define CPMON1_S_FSYNC BIT(5)
#define CPMON1_S_ERRMON BIT(4)
#define CPMON1_S_SIGOFF BIT(3)
#define CPMON1_S_W2LOCK BIT(2)
#define CPMON1_S_W1LOCK BIT(1)
#define CPMON1_S_DW1LOCK BIT(0)
#define TRMON_S 0x60
#define BERCNFLG_S 0x68
#define BERCNFLG_S_BERVRDY BIT(5)
#define BERCNFLG_S_BERVCHK BIT(4)
#define BERCNFLG_S_BERDRDY BIT(3)
#define BERCNFLG_S_BERDCHK BIT(2)
#define CNRDXU_S 0x69
#define CNRDXL_S 0x6a
#define CNRDYU_S 0x6b
#define CNRDYL_S 0x6c
#define BERVRDU_S 0x71
#define BERVRDL_S 0x72
#define DOSET1_S 0x73
/* Primary ISDB-T */
#define PLLASET1 0x00
#define PLLASET2 0x01
#define PLLBSET1 0x02
#define PLLBSET2 0x03
#define PLLSET 0x04
#define OUTCSET 0x08
#define OUTCSET_CHDRV_8MA 0xff
#define OUTCSET_CHDRV_4MA 0x00
#define PLDWSET 0x09
#define PLDWSET_NORMAL 0x00
#define PLDWSET_PULLDOWN 0xff
#define HIZSET1 0x0a
#define HIZSET2 0x0b
/* Secondary ISDB-T (for MN884434 only) */
#define RCVSET 0x00
#define TSSET1_M 0x01
#define TSSET2_M 0x02
#define TSSET3_M 0x03
#define INTACSET 0x08
#define HIZSET3 0x0b
/* ISDB-T registers */
#define TSSET1 0x05
#define TSSET1_TSASEL_MASK GENMASK(4, 3)
#define TSSET1_TSASEL_ISDBT (0x0 << 3)
#define TSSET1_TSASEL_ISDBS (0x1 << 3)
#define TSSET1_TSASEL_NONE (0x2 << 3)
#define TSSET1_TSBSEL_MASK GENMASK(2, 1)
#define TSSET1_TSBSEL_ISDBS (0x0 << 1)
#define TSSET1_TSBSEL_ISDBT (0x1 << 1)
#define TSSET1_TSBSEL_NONE (0x2 << 1)
#define TSSET2 0x06
#define TSSET3 0x07
#define TSSET3_INTASEL_MASK GENMASK(7, 6)
#define TSSET3_INTASEL_T (0x0 << 6)
#define TSSET3_INTASEL_S (0x1 << 6)
#define TSSET3_INTASEL_NONE (0x2 << 6)
#define TSSET3_INTBSEL_MASK GENMASK(5, 4)
#define TSSET3_INTBSEL_S (0x0 << 4)
#define TSSET3_INTBSEL_T (0x1 << 4)
#define TSSET3_INTBSEL_NONE (0x2 << 4)
#define OUTSET2 0x0d
#define PWDSET 0x0f
#define PWDSET_OFDMPD_MASK GENMASK(3, 2)
#define PWDSET_OFDMPD_DOWN BIT(3)
#define PWDSET_PSKPD_MASK GENMASK(1, 0)
#define PWDSET_PSKPD_DOWN BIT(1)
#define CLKSET1_T 0x11
#define MDSET_T 0x13
#define MDSET_T_MDAUTO_MASK GENMASK(7, 4)
#define MDSET_T_MDAUTO_AUTO (0xf << 4)
#define MDSET_T_MDAUTO_MANUAL (0x0 << 4)
#define MDSET_T_FFTS_MASK GENMASK(3, 2)
#define MDSET_T_FFTS_MODE1 (0x0 << 2)
#define MDSET_T_FFTS_MODE2 (0x1 << 2)
#define MDSET_T_FFTS_MODE3 (0x2 << 2)
#define MDSET_T_GI_MASK GENMASK(1, 0)
#define MDSET_T_GI_1_32 (0x0 << 0)
#define MDSET_T_GI_1_16 (0x1 << 0)
#define MDSET_T_GI_1_8 (0x2 << 0)
#define MDSET_T_GI_1_4 (0x3 << 0)
#define MDASET_T 0x14
#define ADCSET1_T 0x20
#define ADCSET1_T_REFSEL_MASK GENMASK(1, 0)
#define ADCSET1_T_REFSEL_2V (0x3 << 0)
#define ADCSET1_T_REFSEL_1_5V (0x2 << 0)
#define ADCSET1_T_REFSEL_1V (0x1 << 0)
#define NCOFREQU_T 0x24
#define NCOFREQM_T 0x25
#define NCOFREQL_T 0x26
#define FADU_T 0x27
#define FADM_T 0x28
#define FADL_T 0x29
#define AGCSET2_T 0x2c
#define AGCSET2_T_IFPOLINV_INC BIT(0)
#define AGCSET2_T_RFPOLINV_INC BIT(1)
#define AGCV3_T 0x3e
#define MDRD_T 0xa2
#define MDRD_T_SEGID_MASK GENMASK(5, 4)
#define MDRD_T_SEGID_13 (0x0 << 4)
#define MDRD_T_SEGID_1 (0x1 << 4)
#define MDRD_T_SEGID_3 (0x2 << 4)
#define MDRD_T_FFTS_MASK GENMASK(3, 2)
#define MDRD_T_FFTS_MODE1 (0x0 << 2)
#define MDRD_T_FFTS_MODE2 (0x1 << 2)
#define MDRD_T_FFTS_MODE3 (0x2 << 2)
#define MDRD_T_GI_MASK GENMASK(1, 0)
#define MDRD_T_GI_1_32 (0x0 << 0)
#define MDRD_T_GI_1_16 (0x1 << 0)
#define MDRD_T_GI_1_8 (0x2 << 0)
#define MDRD_T_GI_1_4 (0x3 << 0)
#define SSEQRD_T 0xa3
#define SSEQRD_T_SSEQSTRD_MASK GENMASK(3, 0)
#define SSEQRD_T_SSEQSTRD_RESET (0x0 << 0)
#define SSEQRD_T_SSEQSTRD_TUNING (0x1 << 0)
#define SSEQRD_T_SSEQSTRD_AGC (0x2 << 0)
#define SSEQRD_T_SSEQSTRD_SEARCH (0x3 << 0)
#define SSEQRD_T_SSEQSTRD_CLOCK_SYNC (0x4 << 0)
#define SSEQRD_T_SSEQSTRD_FREQ_SYNC (0x8 << 0)
#define SSEQRD_T_SSEQSTRD_FRAME_SYNC (0x9 << 0)
#define SSEQRD_T_SSEQSTRD_SYNC (0xa << 0)
#define SSEQRD_T_SSEQSTRD_LOCK (0xb << 0)
#define AGCRDU_T 0xa8
#define AGCRDL_T 0xa9
#define CNRDU_T 0xbe
#define CNRDL_T 0xbf
#define BERFLG_T 0xc0
#define BERFLG_T_BERDRDY BIT(7)
#define BERFLG_T_BERDCHK BIT(6)
#define BERFLG_T_BERVRDYA BIT(5)
#define BERFLG_T_BERVCHKA BIT(4)
#define BERFLG_T_BERVRDYB BIT(3)
#define BERFLG_T_BERVCHKB BIT(2)
#define BERFLG_T_BERVRDYC BIT(1)
#define BERFLG_T_BERVCHKC BIT(0)
#define BERRDU_T 0xc1
#define BERRDM_T 0xc2
#define BERRDL_T 0xc3
#define BERLENRDU_T 0xc4
#define BERLENRDL_T 0xc5
#define ERRFLG_T 0xc6
#define ERRFLG_T_BERDOVF BIT(7)
#define ERRFLG_T_BERVOVFA BIT(6)
#define ERRFLG_T_BERVOVFB BIT(5)
#define ERRFLG_T_BERVOVFC BIT(4)
#define ERRFLG_T_NERRFA BIT(3)
#define ERRFLG_T_NERRFB BIT(2)
#define ERRFLG_T_NERRFC BIT(1)
#define ERRFLG_T_NERRF BIT(0)
#define DOSET1_T 0xcf
#define CLK_LOW 4000000
#define CLK_DIRECT 20200000
#define CLK_MAX 25410000
#define S_T_FREQ 8126984 /* 512 / 63 MHz */
struct mn88443x_spec {
bool primary;
};
struct mn88443x_priv {
const struct mn88443x_spec *spec;
struct dvb_frontend fe;
struct clk *mclk;
struct gpio_desc *reset_gpio;
u32 clk_freq;
u32 if_freq;
/* Common */
bool use_clkbuf;
/* ISDB-S */
struct i2c_client *client_s;
struct regmap *regmap_s;
/* ISDB-T */
struct i2c_client *client_t;
struct regmap *regmap_t;
};
static int mn88443x_cmn_power_on(struct mn88443x_priv *chip)
{
struct device *dev = &chip->client_s->dev;
struct regmap *r_t = chip->regmap_t;
int ret;
ret = clk_prepare_enable(chip->mclk);
if (ret) {
dev_err(dev, "Failed to prepare and enable mclk: %d\n",
ret);
return ret;
}
gpiod_set_value_cansleep(chip->reset_gpio, 1);
usleep_range(100, 1000);
gpiod_set_value_cansleep(chip->reset_gpio, 0);
if (chip->spec->primary) {
regmap_write(r_t, OUTCSET, OUTCSET_CHDRV_8MA);
regmap_write(r_t, PLDWSET, PLDWSET_NORMAL);
regmap_write(r_t, HIZSET1, 0x80);
regmap_write(r_t, HIZSET2, 0xe0);
} else {
regmap_write(r_t, HIZSET3, 0x8f);
}
return 0;
}
static void mn88443x_cmn_power_off(struct mn88443x_priv *chip)
{
gpiod_set_value_cansleep(chip->reset_gpio, 1);
clk_disable_unprepare(chip->mclk);
}
static void mn88443x_s_sleep(struct mn88443x_priv *chip)
{
struct regmap *r_t = chip->regmap_t;
regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK,
PWDSET_PSKPD_DOWN);
}
static void mn88443x_s_wake(struct mn88443x_priv *chip)
{
struct regmap *r_t = chip->regmap_t;
regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK, 0);
}
static void mn88443x_s_tune(struct mn88443x_priv *chip,
struct dtv_frontend_properties *c)
{
struct regmap *r_s = chip->regmap_s;
regmap_write(r_s, ATSIDU_S, c->stream_id >> 8);
regmap_write(r_s, ATSIDL_S, c->stream_id);
regmap_write(r_s, TSSET_S, 0);
}
static int mn88443x_s_read_status(struct mn88443x_priv *chip,
struct dtv_frontend_properties *c,
enum fe_status *status)
{
struct regmap *r_s = chip->regmap_s;
u32 cpmon, tmpu, tmpl, flg;
u64 tmp;
/* Sync detection */
regmap_read(r_s, CPMON1_S, &cpmon);
*status = 0;
if (cpmon & CPMON1_S_FSYNC)
*status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
if (cpmon & CPMON1_S_W2LOCK)
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
/* Signal strength */
c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
if (*status & FE_HAS_SIGNAL) {
u32 agc;
regmap_read(r_s, AGCREAD_S, &tmpu);
agc = tmpu << 8;
c->strength.len = 1;
c->strength.stat[0].scale = FE_SCALE_RELATIVE;
c->strength.stat[0].uvalue = agc;
}
/* C/N rate */
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
if (*status & FE_HAS_VITERBI) {
u32 cnr = 0, x, y, d;
u64 d_3 = 0;
regmap_read(r_s, CNRDXU_S, &tmpu);
regmap_read(r_s, CNRDXL_S, &tmpl);
x = (tmpu << 8) | tmpl;
regmap_read(r_s, CNRDYU_S, &tmpu);
regmap_read(r_s, CNRDYL_S, &tmpl);
y = (tmpu << 8) | tmpl;
/* CNR[dB]: 10 * log10(D) - 30.74 / D^3 - 3 */
/* D = x^2 / (2^15 * y - x^2) */
d = (y << 15) - x * x;
if (d > 0) {
/* (2^4 * D)^3 = 2^12 * D^3 */
/* 3.074 * 2^(12 + 24) = 211243671486 */
d_3 = div_u64(16 * x * x, d);
d_3 = d_3 * d_3 * d_3;
if (d_3)
d_3 = div_u64(211243671486ULL, d_3);
}
if (d_3) {
/* 0.3 * 2^24 = 5033164 */
tmp = (s64)2 * intlog10(x) - intlog10(abs(d)) - d_3
- 5033164;
cnr = div_u64(tmp * 10000, 1 << 24);
}
if (cnr) {
c->cnr.len = 1;
c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
c->cnr.stat[0].uvalue = cnr;
}
}
/* BER */
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
regmap_read(r_s, BERCNFLG_S, &flg);
if ((*status & FE_HAS_VITERBI) && (flg & BERCNFLG_S_BERVRDY)) {
u32 bit_err, bit_cnt;
regmap_read(r_s, BERVRDU_S, &tmpu);
regmap_read(r_s, BERVRDL_S, &tmpl);
bit_err = (tmpu << 8) | tmpl;
bit_cnt = (1 << 13) * 204;
if (bit_cnt) {
c->post_bit_error.len = 1;
c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_error.stat[0].uvalue = bit_err;
c->post_bit_count.len = 1;
c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_count.stat[0].uvalue = bit_cnt;
}
}
return 0;
}
static void mn88443x_t_sleep(struct mn88443x_priv *chip)
{
struct regmap *r_t = chip->regmap_t;
regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK,
PWDSET_OFDMPD_DOWN);
}
static void mn88443x_t_wake(struct mn88443x_priv *chip)
{
struct regmap *r_t = chip->regmap_t;
regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK, 0);
}
static bool mn88443x_t_is_valid_clk(u32 adckt, u32 if_freq)
{
if (if_freq == DIRECT_IF_57MHZ) {
if (adckt >= CLK_DIRECT && adckt <= 21000000)
return true;
if (adckt >= 25300000 && adckt <= CLK_MAX)
return true;
} else if (if_freq == DIRECT_IF_44MHZ) {
if (adckt >= 25000000 && adckt <= CLK_MAX)
return true;
} else if (if_freq >= LOW_IF_4MHZ && if_freq < DIRECT_IF_44MHZ) {
if (adckt >= CLK_DIRECT && adckt <= CLK_MAX)
return true;
}
return false;
}
static int mn88443x_t_set_freq(struct mn88443x_priv *chip)
{
struct device *dev = &chip->client_s->dev;
struct regmap *r_t = chip->regmap_t;
s64 adckt, nco, ad_t;
u32 m, v;
/* Clock buffer (but not supported) or XTAL */
if (chip->clk_freq >= CLK_LOW && chip->clk_freq < CLK_DIRECT) {
chip->use_clkbuf = true;
regmap_write(r_t, CLKSET1_T, 0x07);
adckt = 0;
} else {
chip->use_clkbuf = false;
regmap_write(r_t, CLKSET1_T, 0x00);
adckt = chip->clk_freq;
}
if (!mn88443x_t_is_valid_clk(adckt, chip->if_freq)) {
dev_err(dev, "Invalid clock, CLK:%d, ADCKT:%lld, IF:%d\n",
chip->clk_freq, adckt, chip->if_freq);
return -EINVAL;
}
/* Direct IF or Low IF */
if (chip->if_freq == DIRECT_IF_57MHZ ||
chip->if_freq == DIRECT_IF_44MHZ)
nco = adckt * 2 - chip->if_freq;
else
nco = -((s64)chip->if_freq);
nco = div_s64(nco << 24, adckt);
ad_t = div_s64(adckt << 22, S_T_FREQ);
regmap_write(r_t, NCOFREQU_T, nco >> 16);
regmap_write(r_t, NCOFREQM_T, nco >> 8);
regmap_write(r_t, NCOFREQL_T, nco);
regmap_write(r_t, FADU_T, ad_t >> 16);
regmap_write(r_t, FADM_T, ad_t >> 8);
regmap_write(r_t, FADL_T, ad_t);
/* Level of IF */
m = ADCSET1_T_REFSEL_MASK;
v = ADCSET1_T_REFSEL_1_5V;
regmap_update_bits(r_t, ADCSET1_T, m, v);
/* Polarity of AGC */
v = AGCSET2_T_IFPOLINV_INC | AGCSET2_T_RFPOLINV_INC;
regmap_update_bits(r_t, AGCSET2_T, v, v);
/* Lower output level of AGC */
regmap_write(r_t, AGCV3_T, 0x00);
regmap_write(r_t, MDSET_T, 0xfa);
return 0;
}
static void mn88443x_t_tune(struct mn88443x_priv *chip,
struct dtv_frontend_properties *c)
{
struct regmap *r_t = chip->regmap_t;
u32 m, v;
m = MDSET_T_MDAUTO_MASK | MDSET_T_FFTS_MASK | MDSET_T_GI_MASK;
v = MDSET_T_MDAUTO_AUTO | MDSET_T_FFTS_MODE3 | MDSET_T_GI_1_8;
regmap_update_bits(r_t, MDSET_T, m, v);
regmap_write(r_t, MDASET_T, 0);
}
static int mn88443x_t_read_status(struct mn88443x_priv *chip,
struct dtv_frontend_properties *c,
enum fe_status *status)
{
struct regmap *r_t = chip->regmap_t;
u32 seqrd, st, flg, tmpu, tmpm, tmpl;
u64 tmp;
/* Sync detection */
regmap_read(r_t, SSEQRD_T, &seqrd);
st = seqrd & SSEQRD_T_SSEQSTRD_MASK;
*status = 0;
if (st >= SSEQRD_T_SSEQSTRD_SYNC)
*status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
if (st >= SSEQRD_T_SSEQSTRD_FRAME_SYNC)
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
/* Signal strength */
c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
if (*status & FE_HAS_SIGNAL) {
u32 agc;
regmap_read(r_t, AGCRDU_T, &tmpu);
regmap_read(r_t, AGCRDL_T, &tmpl);
agc = (tmpu << 8) | tmpl;
c->strength.len = 1;
c->strength.stat[0].scale = FE_SCALE_RELATIVE;
c->strength.stat[0].uvalue = agc;
}
/* C/N rate */
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
if (*status & FE_HAS_VITERBI) {
u32 cnr;
regmap_read(r_t, CNRDU_T, &tmpu);
regmap_read(r_t, CNRDL_T, &tmpl);
if (tmpu || tmpl) {
/* CNR[dB]: 10 * (log10(65536 / value) + 0.2) */
/* intlog10(65536) = 80807124, 0.2 * 2^24 = 3355443 */
tmp = (u64)80807124 - intlog10((tmpu << 8) | tmpl)
+ 3355443;
cnr = div_u64(tmp * 10000, 1 << 24);
} else {
cnr = 0;
}
c->cnr.len = 1;
c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
c->cnr.stat[0].uvalue = cnr;
}
/* BER */
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
regmap_read(r_t, BERFLG_T, &flg);
if ((*status & FE_HAS_VITERBI) && (flg & BERFLG_T_BERVRDYA)) {
u32 bit_err, bit_cnt;
regmap_read(r_t, BERRDU_T, &tmpu);
regmap_read(r_t, BERRDM_T, &tmpm);
regmap_read(r_t, BERRDL_T, &tmpl);
bit_err = (tmpu << 16) | (tmpm << 8) | tmpl;
regmap_read(r_t, BERLENRDU_T, &tmpu);
regmap_read(r_t, BERLENRDL_T, &tmpl);
bit_cnt = ((tmpu << 8) | tmpl) * 203 * 8;
if (bit_cnt) {
c->post_bit_error.len = 1;
c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_error.stat[0].uvalue = bit_err;
c->post_bit_count.len = 1;
c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_count.stat[0].uvalue = bit_cnt;
}
}
return 0;
}
static int mn88443x_sleep(struct dvb_frontend *fe)
{
struct mn88443x_priv *chip = fe->demodulator_priv;
mn88443x_s_sleep(chip);
mn88443x_t_sleep(chip);
return 0;
}
static int mn88443x_set_frontend(struct dvb_frontend *fe)
{
struct mn88443x_priv *chip = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct regmap *r_s = chip->regmap_s;
struct regmap *r_t = chip->regmap_t;
u8 tssel = 0, intsel = 0;
if (c->delivery_system == SYS_ISDBS) {
mn88443x_s_wake(chip);
mn88443x_t_sleep(chip);
tssel = TSSET1_TSASEL_ISDBS;
intsel = TSSET3_INTASEL_S;
} else if (c->delivery_system == SYS_ISDBT) {
mn88443x_s_sleep(chip);
mn88443x_t_wake(chip);
mn88443x_t_set_freq(chip);
tssel = TSSET1_TSASEL_ISDBT;
intsel = TSSET3_INTASEL_T;
}
regmap_update_bits(r_t, TSSET1,
TSSET1_TSASEL_MASK | TSSET1_TSBSEL_MASK,
tssel | TSSET1_TSBSEL_NONE);
regmap_write(r_t, TSSET2, 0);
regmap_update_bits(r_t, TSSET3,
TSSET3_INTASEL_MASK | TSSET3_INTBSEL_MASK,
intsel | TSSET3_INTBSEL_NONE);
regmap_write(r_t, DOSET1_T, 0x95);
regmap_write(r_s, DOSET1_S, 0x80);
if (c->delivery_system == SYS_ISDBS)
mn88443x_s_tune(chip, c);
else if (c->delivery_system == SYS_ISDBT)
mn88443x_t_tune(chip, c);
if (fe->ops.tuner_ops.set_params) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
return 0;
}
static int mn88443x_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *s)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
s->min_delay_ms = 850;
if (c->delivery_system == SYS_ISDBS) {
s->max_drift = 30000 * 2 + 1;
s->step_size = 30000;
} else if (c->delivery_system == SYS_ISDBT) {
s->max_drift = 142857 * 2 + 1;
s->step_size = 142857 * 2;
}
return 0;
}
static int mn88443x_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct mn88443x_priv *chip = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
if (c->delivery_system == SYS_ISDBS)
return mn88443x_s_read_status(chip, c, status);
if (c->delivery_system == SYS_ISDBT)
return mn88443x_t_read_status(chip, c, status);
return -EINVAL;
}
static const struct dvb_frontend_ops mn88443x_ops = {
.delsys = { SYS_ISDBS, SYS_ISDBT },
.info = {
.name = "Socionext MN88443x",
.frequency_min_hz = 470 * MHz,
.frequency_max_hz = 2071 * MHz,
.symbol_rate_min = 28860000,
.symbol_rate_max = 28860000,
.caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO |
FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
},
.sleep = mn88443x_sleep,
.set_frontend = mn88443x_set_frontend,
.get_tune_settings = mn88443x_get_tune_settings,
.read_status = mn88443x_read_status,
};
static const struct regmap_config regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_NONE,
};
static int mn88443x_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct mn88443x_config *conf = client->dev.platform_data;
struct mn88443x_priv *chip;
struct device *dev = &client->dev;
int ret;
chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
if (dev->of_node)
chip->spec = of_device_get_match_data(dev);
else
chip->spec = (struct mn88443x_spec *)id->driver_data;
if (!chip->spec)
return -EINVAL;
chip->mclk = devm_clk_get(dev, "mclk");
if (IS_ERR(chip->mclk) && !conf) {
dev_err(dev, "Failed to request mclk: %ld\n",
PTR_ERR(chip->mclk));
return PTR_ERR(chip->mclk);
}
ret = of_property_read_u32(dev->of_node, "if-frequency",
&chip->if_freq);
if (ret && !conf) {
dev_err(dev, "Failed to load IF frequency: %d.\n", ret);
return ret;
}
chip->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(chip->reset_gpio)) {
dev_err(dev, "Failed to request reset_gpio: %ld\n",
PTR_ERR(chip->reset_gpio));
return PTR_ERR(chip->reset_gpio);
}
if (conf) {
chip->mclk = conf->mclk;
chip->if_freq = conf->if_freq;
chip->reset_gpio = conf->reset_gpio;
*conf->fe = &chip->fe;
}
chip->client_s = client;
chip->regmap_s = devm_regmap_init_i2c(chip->client_s, &regmap_config);
if (IS_ERR(chip->regmap_s))
return PTR_ERR(chip->regmap_s);
/*
* Chip has two I2C addresses for each satellite/terrestrial system.
* ISDB-T uses address ISDB-S + 4, so we register a dummy client.
*/
chip->client_t = i2c_new_dummy_device(client->adapter, client->addr + 4);
if (IS_ERR(chip->client_t))
return PTR_ERR(chip->client_t);
chip->regmap_t = devm_regmap_init_i2c(chip->client_t, &regmap_config);
if (IS_ERR(chip->regmap_t)) {
ret = PTR_ERR(chip->regmap_t);
goto err_i2c_t;
}
chip->clk_freq = clk_get_rate(chip->mclk);
memcpy(&chip->fe.ops, &mn88443x_ops, sizeof(mn88443x_ops));
chip->fe.demodulator_priv = chip;
i2c_set_clientdata(client, chip);
ret = mn88443x_cmn_power_on(chip);
if (ret)
goto err_i2c_t;
mn88443x_s_sleep(chip);
mn88443x_t_sleep(chip);
return 0;
err_i2c_t:
i2c_unregister_device(chip->client_t);
return ret;
}
static int mn88443x_remove(struct i2c_client *client)
{
struct mn88443x_priv *chip = i2c_get_clientdata(client);
mn88443x_cmn_power_off(chip);
i2c_unregister_device(chip->client_t);
return 0;
}
static const struct mn88443x_spec mn88443x_spec_pri = {
.primary = true,
};
static const struct mn88443x_spec mn88443x_spec_sec = {
.primary = false,
};
static const struct of_device_id mn88443x_of_match[] = {
{ .compatible = "socionext,mn884433", .data = &mn88443x_spec_pri, },
{ .compatible = "socionext,mn884434-0", .data = &mn88443x_spec_pri, },
{ .compatible = "socionext,mn884434-1", .data = &mn88443x_spec_sec, },
{}
};
MODULE_DEVICE_TABLE(of, mn88443x_of_match);
static const struct i2c_device_id mn88443x_i2c_id[] = {
{ "mn884433", (kernel_ulong_t)&mn88443x_spec_pri },
{ "mn884434-0", (kernel_ulong_t)&mn88443x_spec_pri },
{ "mn884434-1", (kernel_ulong_t)&mn88443x_spec_sec },
{}
};
MODULE_DEVICE_TABLE(i2c, mn88443x_i2c_id);
static struct i2c_driver mn88443x_driver = {
.driver = {
.name = "mn88443x",
.of_match_table = of_match_ptr(mn88443x_of_match),
},
.probe = mn88443x_probe,
.remove = mn88443x_remove,
.id_table = mn88443x_i2c_id,
};
module_i2c_driver(mn88443x_driver);
MODULE_AUTHOR("Katsuhiro Suzuki <suzuki.katsuhiro@socionext.com>");
MODULE_DESCRIPTION("Socionext MN88443x series demodulator driver.");
MODULE_LICENSE("GPL v2");