609 строки
17 KiB
C
609 строки
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* HugeTLB Vmemmap Optimization (HVO)
|
|
*
|
|
* Copyright (c) 2020, ByteDance. All rights reserved.
|
|
*
|
|
* Author: Muchun Song <songmuchun@bytedance.com>
|
|
*
|
|
* See Documentation/mm/vmemmap_dedup.rst
|
|
*/
|
|
#define pr_fmt(fmt) "HugeTLB: " fmt
|
|
|
|
#include <linux/pgtable.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/bootmem_info.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include "hugetlb_vmemmap.h"
|
|
|
|
/**
|
|
* struct vmemmap_remap_walk - walk vmemmap page table
|
|
*
|
|
* @remap_pte: called for each lowest-level entry (PTE).
|
|
* @nr_walked: the number of walked pte.
|
|
* @reuse_page: the page which is reused for the tail vmemmap pages.
|
|
* @reuse_addr: the virtual address of the @reuse_page page.
|
|
* @vmemmap_pages: the list head of the vmemmap pages that can be freed
|
|
* or is mapped from.
|
|
*/
|
|
struct vmemmap_remap_walk {
|
|
void (*remap_pte)(pte_t *pte, unsigned long addr,
|
|
struct vmemmap_remap_walk *walk);
|
|
unsigned long nr_walked;
|
|
struct page *reuse_page;
|
|
unsigned long reuse_addr;
|
|
struct list_head *vmemmap_pages;
|
|
};
|
|
|
|
static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
|
|
{
|
|
pmd_t __pmd;
|
|
int i;
|
|
unsigned long addr = start;
|
|
struct page *page = pmd_page(*pmd);
|
|
pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
|
|
|
|
if (!pgtable)
|
|
return -ENOMEM;
|
|
|
|
pmd_populate_kernel(&init_mm, &__pmd, pgtable);
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
|
|
pte_t entry, *pte;
|
|
pgprot_t pgprot = PAGE_KERNEL;
|
|
|
|
entry = mk_pte(page + i, pgprot);
|
|
pte = pte_offset_kernel(&__pmd, addr);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
}
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
if (likely(pmd_leaf(*pmd))) {
|
|
/*
|
|
* Higher order allocations from buddy allocator must be able to
|
|
* be treated as indepdenent small pages (as they can be freed
|
|
* individually).
|
|
*/
|
|
if (!PageReserved(page))
|
|
split_page(page, get_order(PMD_SIZE));
|
|
|
|
/* Make pte visible before pmd. See comment in pmd_install(). */
|
|
smp_wmb();
|
|
pmd_populate_kernel(&init_mm, pmd, pgtable);
|
|
flush_tlb_kernel_range(start, start + PMD_SIZE);
|
|
} else {
|
|
pte_free_kernel(&init_mm, pgtable);
|
|
}
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
|
|
{
|
|
int leaf;
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
leaf = pmd_leaf(*pmd);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
|
|
if (!leaf)
|
|
return 0;
|
|
|
|
return __split_vmemmap_huge_pmd(pmd, start);
|
|
}
|
|
|
|
static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmd, addr);
|
|
|
|
/*
|
|
* The reuse_page is found 'first' in table walk before we start
|
|
* remapping (which is calling @walk->remap_pte).
|
|
*/
|
|
if (!walk->reuse_page) {
|
|
walk->reuse_page = pte_page(*pte);
|
|
/*
|
|
* Because the reuse address is part of the range that we are
|
|
* walking, skip the reuse address range.
|
|
*/
|
|
addr += PAGE_SIZE;
|
|
pte++;
|
|
walk->nr_walked++;
|
|
}
|
|
|
|
for (; addr != end; addr += PAGE_SIZE, pte++) {
|
|
walk->remap_pte(pte, addr, walk);
|
|
walk->nr_walked++;
|
|
}
|
|
}
|
|
|
|
static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
|
|
unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
int ret;
|
|
|
|
ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
vmemmap_pte_range(pmd, addr, next, walk);
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
|
|
unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
do {
|
|
int ret;
|
|
|
|
next = pud_addr_end(addr, end);
|
|
ret = vmemmap_pmd_range(pud, addr, next, walk);
|
|
if (ret)
|
|
return ret;
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
int ret;
|
|
|
|
next = p4d_addr_end(addr, end);
|
|
ret = vmemmap_pud_range(p4d, addr, next, walk);
|
|
if (ret)
|
|
return ret;
|
|
} while (p4d++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmemmap_remap_range(unsigned long start, unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
unsigned long addr = start;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
|
|
VM_BUG_ON(!PAGE_ALIGNED(start));
|
|
VM_BUG_ON(!PAGE_ALIGNED(end));
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
int ret;
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
ret = vmemmap_p4d_range(pgd, addr, next, walk);
|
|
if (ret)
|
|
return ret;
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
flush_tlb_kernel_range(start, end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free a vmemmap page. A vmemmap page can be allocated from the memblock
|
|
* allocator or buddy allocator. If the PG_reserved flag is set, it means
|
|
* that it allocated from the memblock allocator, just free it via the
|
|
* free_bootmem_page(). Otherwise, use __free_page().
|
|
*/
|
|
static inline void free_vmemmap_page(struct page *page)
|
|
{
|
|
if (PageReserved(page))
|
|
free_bootmem_page(page);
|
|
else
|
|
__free_page(page);
|
|
}
|
|
|
|
/* Free a list of the vmemmap pages */
|
|
static void free_vmemmap_page_list(struct list_head *list)
|
|
{
|
|
struct page *page, *next;
|
|
|
|
list_for_each_entry_safe(page, next, list, lru)
|
|
free_vmemmap_page(page);
|
|
}
|
|
|
|
static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
/*
|
|
* Remap the tail pages as read-only to catch illegal write operation
|
|
* to the tail pages.
|
|
*/
|
|
pgprot_t pgprot = PAGE_KERNEL_RO;
|
|
struct page *page = pte_page(*pte);
|
|
pte_t entry;
|
|
|
|
/* Remapping the head page requires r/w */
|
|
if (unlikely(addr == walk->reuse_addr)) {
|
|
pgprot = PAGE_KERNEL;
|
|
list_del(&walk->reuse_page->lru);
|
|
|
|
/*
|
|
* Makes sure that preceding stores to the page contents from
|
|
* vmemmap_remap_free() become visible before the set_pte_at()
|
|
* write.
|
|
*/
|
|
smp_wmb();
|
|
}
|
|
|
|
entry = mk_pte(walk->reuse_page, pgprot);
|
|
list_add_tail(&page->lru, walk->vmemmap_pages);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
}
|
|
|
|
/*
|
|
* How many struct page structs need to be reset. When we reuse the head
|
|
* struct page, the special metadata (e.g. page->flags or page->mapping)
|
|
* cannot copy to the tail struct page structs. The invalid value will be
|
|
* checked in the free_tail_pages_check(). In order to avoid the message
|
|
* of "corrupted mapping in tail page". We need to reset at least 3 (one
|
|
* head struct page struct and two tail struct page structs) struct page
|
|
* structs.
|
|
*/
|
|
#define NR_RESET_STRUCT_PAGE 3
|
|
|
|
static inline void reset_struct_pages(struct page *start)
|
|
{
|
|
struct page *from = start + NR_RESET_STRUCT_PAGE;
|
|
|
|
BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
|
|
memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
|
|
}
|
|
|
|
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pgprot_t pgprot = PAGE_KERNEL;
|
|
struct page *page;
|
|
void *to;
|
|
|
|
BUG_ON(pte_page(*pte) != walk->reuse_page);
|
|
|
|
page = list_first_entry(walk->vmemmap_pages, struct page, lru);
|
|
list_del(&page->lru);
|
|
to = page_to_virt(page);
|
|
copy_page(to, (void *)walk->reuse_addr);
|
|
reset_struct_pages(to);
|
|
|
|
/*
|
|
* Makes sure that preceding stores to the page contents become visible
|
|
* before the set_pte_at() write.
|
|
*/
|
|
smp_wmb();
|
|
set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
|
|
}
|
|
|
|
/**
|
|
* vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
|
|
* to the page which @reuse is mapped to, then free vmemmap
|
|
* which the range are mapped to.
|
|
* @start: start address of the vmemmap virtual address range that we want
|
|
* to remap.
|
|
* @end: end address of the vmemmap virtual address range that we want to
|
|
* remap.
|
|
* @reuse: reuse address.
|
|
*
|
|
* Return: %0 on success, negative error code otherwise.
|
|
*/
|
|
static int vmemmap_remap_free(unsigned long start, unsigned long end,
|
|
unsigned long reuse)
|
|
{
|
|
int ret;
|
|
LIST_HEAD(vmemmap_pages);
|
|
struct vmemmap_remap_walk walk = {
|
|
.remap_pte = vmemmap_remap_pte,
|
|
.reuse_addr = reuse,
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
};
|
|
int nid = page_to_nid((struct page *)start);
|
|
gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY |
|
|
__GFP_NOWARN;
|
|
|
|
/*
|
|
* Allocate a new head vmemmap page to avoid breaking a contiguous
|
|
* block of struct page memory when freeing it back to page allocator
|
|
* in free_vmemmap_page_list(). This will allow the likely contiguous
|
|
* struct page backing memory to be kept contiguous and allowing for
|
|
* more allocations of hugepages. Fallback to the currently
|
|
* mapped head page in case should it fail to allocate.
|
|
*/
|
|
walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
|
|
if (walk.reuse_page) {
|
|
copy_page(page_to_virt(walk.reuse_page),
|
|
(void *)walk.reuse_addr);
|
|
list_add(&walk.reuse_page->lru, &vmemmap_pages);
|
|
}
|
|
|
|
/*
|
|
* In order to make remapping routine most efficient for the huge pages,
|
|
* the routine of vmemmap page table walking has the following rules
|
|
* (see more details from the vmemmap_pte_range()):
|
|
*
|
|
* - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
|
|
* should be continuous.
|
|
* - The @reuse address is part of the range [@reuse, @end) that we are
|
|
* walking which is passed to vmemmap_remap_range().
|
|
* - The @reuse address is the first in the complete range.
|
|
*
|
|
* So we need to make sure that @start and @reuse meet the above rules.
|
|
*/
|
|
BUG_ON(start - reuse != PAGE_SIZE);
|
|
|
|
mmap_read_lock(&init_mm);
|
|
ret = vmemmap_remap_range(reuse, end, &walk);
|
|
if (ret && walk.nr_walked) {
|
|
end = reuse + walk.nr_walked * PAGE_SIZE;
|
|
/*
|
|
* vmemmap_pages contains pages from the previous
|
|
* vmemmap_remap_range call which failed. These
|
|
* are pages which were removed from the vmemmap.
|
|
* They will be restored in the following call.
|
|
*/
|
|
walk = (struct vmemmap_remap_walk) {
|
|
.remap_pte = vmemmap_restore_pte,
|
|
.reuse_addr = reuse,
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
};
|
|
|
|
vmemmap_remap_range(reuse, end, &walk);
|
|
}
|
|
mmap_read_unlock(&init_mm);
|
|
|
|
free_vmemmap_page_list(&vmemmap_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
|
|
gfp_t gfp_mask, struct list_head *list)
|
|
{
|
|
unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
|
|
int nid = page_to_nid((struct page *)start);
|
|
struct page *page, *next;
|
|
|
|
while (nr_pages--) {
|
|
page = alloc_pages_node(nid, gfp_mask, 0);
|
|
if (!page)
|
|
goto out;
|
|
list_add_tail(&page->lru, list);
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
list_for_each_entry_safe(page, next, list, lru)
|
|
__free_pages(page, 0);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
|
|
* to the page which is from the @vmemmap_pages
|
|
* respectively.
|
|
* @start: start address of the vmemmap virtual address range that we want
|
|
* to remap.
|
|
* @end: end address of the vmemmap virtual address range that we want to
|
|
* remap.
|
|
* @reuse: reuse address.
|
|
* @gfp_mask: GFP flag for allocating vmemmap pages.
|
|
*
|
|
* Return: %0 on success, negative error code otherwise.
|
|
*/
|
|
static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
|
|
unsigned long reuse, gfp_t gfp_mask)
|
|
{
|
|
LIST_HEAD(vmemmap_pages);
|
|
struct vmemmap_remap_walk walk = {
|
|
.remap_pte = vmemmap_restore_pte,
|
|
.reuse_addr = reuse,
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
};
|
|
|
|
/* See the comment in the vmemmap_remap_free(). */
|
|
BUG_ON(start - reuse != PAGE_SIZE);
|
|
|
|
if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
|
|
return -ENOMEM;
|
|
|
|
mmap_read_lock(&init_mm);
|
|
vmemmap_remap_range(reuse, end, &walk);
|
|
mmap_read_unlock(&init_mm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
|
|
EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
|
|
|
|
static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
|
|
core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
|
|
|
|
/**
|
|
* hugetlb_vmemmap_restore - restore previously optimized (by
|
|
* hugetlb_vmemmap_optimize()) vmemmap pages which
|
|
* will be reallocated and remapped.
|
|
* @h: struct hstate.
|
|
* @head: the head page whose vmemmap pages will be restored.
|
|
*
|
|
* Return: %0 if @head's vmemmap pages have been reallocated and remapped,
|
|
* negative error code otherwise.
|
|
*/
|
|
int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
|
|
{
|
|
int ret;
|
|
unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
|
|
unsigned long vmemmap_reuse;
|
|
|
|
if (!HPageVmemmapOptimized(head))
|
|
return 0;
|
|
|
|
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
|
|
vmemmap_reuse = vmemmap_start;
|
|
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
|
|
|
|
/*
|
|
* The pages which the vmemmap virtual address range [@vmemmap_start,
|
|
* @vmemmap_end) are mapped to are freed to the buddy allocator, and
|
|
* the range is mapped to the page which @vmemmap_reuse is mapped to.
|
|
* When a HugeTLB page is freed to the buddy allocator, previously
|
|
* discarded vmemmap pages must be allocated and remapping.
|
|
*/
|
|
ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
|
|
GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
|
|
if (!ret) {
|
|
ClearHPageVmemmapOptimized(head);
|
|
static_branch_dec(&hugetlb_optimize_vmemmap_key);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
|
|
static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
|
|
{
|
|
if (!READ_ONCE(vmemmap_optimize_enabled))
|
|
return false;
|
|
|
|
if (!hugetlb_vmemmap_optimizable(h))
|
|
return false;
|
|
|
|
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
|
|
pmd_t *pmdp, pmd;
|
|
struct page *vmemmap_page;
|
|
unsigned long vaddr = (unsigned long)head;
|
|
|
|
/*
|
|
* Only the vmemmap page's vmemmap page can be self-hosted.
|
|
* Walking the page tables to find the backing page of the
|
|
* vmemmap page.
|
|
*/
|
|
pmdp = pmd_off_k(vaddr);
|
|
/*
|
|
* The READ_ONCE() is used to stabilize *pmdp in a register or
|
|
* on the stack so that it will stop changing under the code.
|
|
* The only concurrent operation where it can be changed is
|
|
* split_vmemmap_huge_pmd() (*pmdp will be stable after this
|
|
* operation).
|
|
*/
|
|
pmd = READ_ONCE(*pmdp);
|
|
if (pmd_leaf(pmd))
|
|
vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
|
|
else
|
|
vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
|
|
/*
|
|
* Due to HugeTLB alignment requirements and the vmemmap pages
|
|
* being at the start of the hotplugged memory region in
|
|
* memory_hotplug.memmap_on_memory case. Checking any vmemmap
|
|
* page's vmemmap page if it is marked as VmemmapSelfHosted is
|
|
* sufficient.
|
|
*
|
|
* [ hotplugged memory ]
|
|
* [ section ][...][ section ]
|
|
* [ vmemmap ][ usable memory ]
|
|
* ^ | | |
|
|
* +---+ | |
|
|
* ^ | |
|
|
* +-------+ |
|
|
* ^ |
|
|
* +-------------------------------------------+
|
|
*/
|
|
if (PageVmemmapSelfHosted(vmemmap_page))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
|
|
* @h: struct hstate.
|
|
* @head: the head page whose vmemmap pages will be optimized.
|
|
*
|
|
* This function only tries to optimize @head's vmemmap pages and does not
|
|
* guarantee that the optimization will succeed after it returns. The caller
|
|
* can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
|
|
* have been optimized.
|
|
*/
|
|
void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
|
|
{
|
|
unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
|
|
unsigned long vmemmap_reuse;
|
|
|
|
if (!vmemmap_should_optimize(h, head))
|
|
return;
|
|
|
|
static_branch_inc(&hugetlb_optimize_vmemmap_key);
|
|
|
|
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
|
|
vmemmap_reuse = vmemmap_start;
|
|
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
|
|
|
|
/*
|
|
* Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
|
|
* to the page which @vmemmap_reuse is mapped to, then free the pages
|
|
* which the range [@vmemmap_start, @vmemmap_end] is mapped to.
|
|
*/
|
|
if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
|
|
static_branch_dec(&hugetlb_optimize_vmemmap_key);
|
|
else
|
|
SetHPageVmemmapOptimized(head);
|
|
}
|
|
|
|
static struct ctl_table hugetlb_vmemmap_sysctls[] = {
|
|
{
|
|
.procname = "hugetlb_optimize_vmemmap",
|
|
.data = &vmemmap_optimize_enabled,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dobool,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static int __init hugetlb_vmemmap_init(void)
|
|
{
|
|
/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
|
|
BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
|
|
|
|
if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
|
|
const struct hstate *h;
|
|
|
|
for_each_hstate(h) {
|
|
if (hugetlb_vmemmap_optimizable(h)) {
|
|
register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
late_initcall(hugetlb_vmemmap_init);
|