351 строка
8.4 KiB
C
351 строка
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* FPU register's regset abstraction, for ptrace, core dumps, etc.
|
|
*/
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/fpu/regset.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include <linux/sched/task_stack.h>
|
|
|
|
/*
|
|
* The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
|
|
* as the "regset->n" for the xstate regset will be updated based on the feature
|
|
* capabilities supported by the xsave.
|
|
*/
|
|
int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
return regset->n;
|
|
}
|
|
|
|
int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
if (boot_cpu_has(X86_FEATURE_FXSR))
|
|
return regset->n;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
struct membuf to)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_FXSR))
|
|
return -ENODEV;
|
|
|
|
fpu__prepare_read(fpu);
|
|
fpstate_sanitize_xstate(fpu);
|
|
|
|
return membuf_write(&to, &fpu->state.fxsave, sizeof(struct fxregs_state));
|
|
}
|
|
|
|
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
int ret;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_FXSR))
|
|
return -ENODEV;
|
|
|
|
fpu__prepare_write(fpu);
|
|
fpstate_sanitize_xstate(fpu);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&fpu->state.fxsave, 0, -1);
|
|
|
|
/*
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
*/
|
|
fpu->state.fxsave.mxcsr &= mxcsr_feature_mask;
|
|
|
|
/*
|
|
* update the header bits in the xsave header, indicating the
|
|
* presence of FP and SSE state.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE))
|
|
fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
struct membuf to)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct xregs_state *xsave;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVE))
|
|
return -ENODEV;
|
|
|
|
xsave = &fpu->state.xsave;
|
|
|
|
fpu__prepare_read(fpu);
|
|
|
|
if (using_compacted_format()) {
|
|
copy_xstate_to_kernel(to, xsave);
|
|
return 0;
|
|
} else {
|
|
fpstate_sanitize_xstate(fpu);
|
|
/*
|
|
* Copy the 48 bytes defined by the software into the xsave
|
|
* area in the thread struct, so that we can copy the whole
|
|
* area to user using one user_regset_copyout().
|
|
*/
|
|
memcpy(&xsave->i387.sw_reserved, xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
|
|
|
|
/*
|
|
* Copy the xstate memory layout.
|
|
*/
|
|
return membuf_write(&to, xsave, fpu_user_xstate_size);
|
|
}
|
|
}
|
|
|
|
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct xregs_state *xsave;
|
|
int ret;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVE))
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* A whole standard-format XSAVE buffer is needed:
|
|
*/
|
|
if ((pos != 0) || (count < fpu_user_xstate_size))
|
|
return -EFAULT;
|
|
|
|
xsave = &fpu->state.xsave;
|
|
|
|
fpu__prepare_write(fpu);
|
|
|
|
if (using_compacted_format()) {
|
|
if (kbuf)
|
|
ret = copy_kernel_to_xstate(xsave, kbuf);
|
|
else
|
|
ret = copy_user_to_xstate(xsave, ubuf);
|
|
} else {
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
|
|
if (!ret)
|
|
ret = validate_user_xstate_header(&xsave->header);
|
|
}
|
|
|
|
/*
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
*/
|
|
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
|
|
|
/*
|
|
* In case of failure, mark all states as init:
|
|
*/
|
|
if (ret)
|
|
fpstate_init(&fpu->state);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
|
|
|
/*
|
|
* FPU tag word conversions.
|
|
*/
|
|
|
|
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
|
|
{
|
|
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
|
|
|
|
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
|
|
tmp = ~twd;
|
|
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
|
|
/* and move the valid bits to the lower byte. */
|
|
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
|
|
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
|
|
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
|
|
|
|
return tmp;
|
|
}
|
|
|
|
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
|
|
#define FP_EXP_TAG_VALID 0
|
|
#define FP_EXP_TAG_ZERO 1
|
|
#define FP_EXP_TAG_SPECIAL 2
|
|
#define FP_EXP_TAG_EMPTY 3
|
|
|
|
static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
|
|
{
|
|
struct _fpxreg *st;
|
|
u32 tos = (fxsave->swd >> 11) & 7;
|
|
u32 twd = (unsigned long) fxsave->twd;
|
|
u32 tag;
|
|
u32 ret = 0xffff0000u;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++, twd >>= 1) {
|
|
if (twd & 0x1) {
|
|
st = FPREG_ADDR(fxsave, (i - tos) & 7);
|
|
|
|
switch (st->exponent & 0x7fff) {
|
|
case 0x7fff:
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
case 0x0000:
|
|
if (!st->significand[0] &&
|
|
!st->significand[1] &&
|
|
!st->significand[2] &&
|
|
!st->significand[3])
|
|
tag = FP_EXP_TAG_ZERO;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
default:
|
|
if (st->significand[3] & 0x8000)
|
|
tag = FP_EXP_TAG_VALID;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
}
|
|
} else {
|
|
tag = FP_EXP_TAG_EMPTY;
|
|
}
|
|
ret |= tag << (2 * i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FXSR floating point environment conversions.
|
|
*/
|
|
|
|
void
|
|
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
|
|
{
|
|
struct fxregs_state *fxsave = &tsk->thread.fpu.state.fxsave;
|
|
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
env->cwd = fxsave->cwd | 0xffff0000u;
|
|
env->swd = fxsave->swd | 0xffff0000u;
|
|
env->twd = twd_fxsr_to_i387(fxsave);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
env->fip = fxsave->rip;
|
|
env->foo = fxsave->rdp;
|
|
/*
|
|
* should be actually ds/cs at fpu exception time, but
|
|
* that information is not available in 64bit mode.
|
|
*/
|
|
env->fcs = task_pt_regs(tsk)->cs;
|
|
if (tsk == current) {
|
|
savesegment(ds, env->fos);
|
|
} else {
|
|
env->fos = tsk->thread.ds;
|
|
}
|
|
env->fos |= 0xffff0000;
|
|
#else
|
|
env->fip = fxsave->fip;
|
|
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
|
|
env->foo = fxsave->foo;
|
|
env->fos = fxsave->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(to[0]));
|
|
}
|
|
|
|
void convert_to_fxsr(struct fxregs_state *fxsave,
|
|
const struct user_i387_ia32_struct *env)
|
|
|
|
{
|
|
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
fxsave->cwd = env->cwd;
|
|
fxsave->swd = env->swd;
|
|
fxsave->twd = twd_i387_to_fxsr(env->twd);
|
|
fxsave->fop = (u16) ((u32) env->fcs >> 16);
|
|
#ifdef CONFIG_X86_64
|
|
fxsave->rip = env->fip;
|
|
fxsave->rdp = env->foo;
|
|
/* cs and ds ignored */
|
|
#else
|
|
fxsave->fip = env->fip;
|
|
fxsave->fcs = (env->fcs & 0xffff);
|
|
fxsave->foo = env->foo;
|
|
fxsave->fos = env->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(from[0]));
|
|
}
|
|
|
|
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
struct membuf to)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct user_i387_ia32_struct env;
|
|
|
|
fpu__prepare_read(fpu);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_get(target, regset, to);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_FXSR)) {
|
|
return membuf_write(&to, &fpu->state.fsave,
|
|
sizeof(struct fregs_state));
|
|
}
|
|
|
|
fpstate_sanitize_xstate(fpu);
|
|
|
|
if (to.left == sizeof(env)) {
|
|
convert_from_fxsr(to.p, target);
|
|
return 0;
|
|
}
|
|
|
|
convert_from_fxsr(&env, target);
|
|
return membuf_write(&to, &env, sizeof(env));
|
|
}
|
|
|
|
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct user_i387_ia32_struct env;
|
|
int ret;
|
|
|
|
fpu__prepare_write(fpu);
|
|
fpstate_sanitize_xstate(fpu);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_FXSR))
|
|
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&fpu->state.fsave, 0,
|
|
-1);
|
|
|
|
if (pos > 0 || count < sizeof(env))
|
|
convert_from_fxsr(&env, target);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
if (!ret)
|
|
convert_to_fxsr(&target->thread.fpu.state.fxsave, &env);
|
|
|
|
/*
|
|
* update the header bit in the xsave header, indicating the
|
|
* presence of FP.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE))
|
|
fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FP;
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
|