WSL2-Linux-Kernel/drivers/mtd/nand/sunxi_nand.c

1933 строки
50 KiB
C

/*
* Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
*
* Derived from:
* https://github.com/yuq/sunxi-nfc-mtd
* Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
*
* https://github.com/hno/Allwinner-Info
* Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
*
* Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
* Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#define NFC_REG_CTL 0x0000
#define NFC_REG_ST 0x0004
#define NFC_REG_INT 0x0008
#define NFC_REG_TIMING_CTL 0x000C
#define NFC_REG_TIMING_CFG 0x0010
#define NFC_REG_ADDR_LOW 0x0014
#define NFC_REG_ADDR_HIGH 0x0018
#define NFC_REG_SECTOR_NUM 0x001C
#define NFC_REG_CNT 0x0020
#define NFC_REG_CMD 0x0024
#define NFC_REG_RCMD_SET 0x0028
#define NFC_REG_WCMD_SET 0x002C
#define NFC_REG_IO_DATA 0x0030
#define NFC_REG_ECC_CTL 0x0034
#define NFC_REG_ECC_ST 0x0038
#define NFC_REG_DEBUG 0x003C
#define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3)
#define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4))
#define NFC_REG_SPARE_AREA 0x00A0
#define NFC_REG_PAT_ID 0x00A4
#define NFC_RAM0_BASE 0x0400
#define NFC_RAM1_BASE 0x0800
/* define bit use in NFC_CTL */
#define NFC_EN BIT(0)
#define NFC_RESET BIT(1)
#define NFC_BUS_WIDTH_MSK BIT(2)
#define NFC_BUS_WIDTH_8 (0 << 2)
#define NFC_BUS_WIDTH_16 (1 << 2)
#define NFC_RB_SEL_MSK BIT(3)
#define NFC_RB_SEL(x) ((x) << 3)
#define NFC_CE_SEL_MSK GENMASK(26, 24)
#define NFC_CE_SEL(x) ((x) << 24)
#define NFC_CE_CTL BIT(6)
#define NFC_PAGE_SHIFT_MSK GENMASK(11, 8)
#define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8)
#define NFC_SAM BIT(12)
#define NFC_RAM_METHOD BIT(14)
#define NFC_DEBUG_CTL BIT(31)
/* define bit use in NFC_ST */
#define NFC_RB_B2R BIT(0)
#define NFC_CMD_INT_FLAG BIT(1)
#define NFC_DMA_INT_FLAG BIT(2)
#define NFC_CMD_FIFO_STATUS BIT(3)
#define NFC_STA BIT(4)
#define NFC_NATCH_INT_FLAG BIT(5)
#define NFC_RB_STATE(x) BIT(x + 8)
/* define bit use in NFC_INT */
#define NFC_B2R_INT_ENABLE BIT(0)
#define NFC_CMD_INT_ENABLE BIT(1)
#define NFC_DMA_INT_ENABLE BIT(2)
#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \
NFC_CMD_INT_ENABLE | \
NFC_DMA_INT_ENABLE)
/* define bit use in NFC_TIMING_CTL */
#define NFC_TIMING_CTL_EDO BIT(8)
/* define NFC_TIMING_CFG register layout */
#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \
(((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \
(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \
(((tCAD) & 0x7) << 8))
/* define bit use in NFC_CMD */
#define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0)
#define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8)
#define NFC_CMD(x) (x)
#define NFC_ADR_NUM_MSK GENMASK(18, 16)
#define NFC_ADR_NUM(x) (((x) - 1) << 16)
#define NFC_SEND_ADR BIT(19)
#define NFC_ACCESS_DIR BIT(20)
#define NFC_DATA_TRANS BIT(21)
#define NFC_SEND_CMD1 BIT(22)
#define NFC_WAIT_FLAG BIT(23)
#define NFC_SEND_CMD2 BIT(24)
#define NFC_SEQ BIT(25)
#define NFC_DATA_SWAP_METHOD BIT(26)
#define NFC_ROW_AUTO_INC BIT(27)
#define NFC_SEND_CMD3 BIT(28)
#define NFC_SEND_CMD4 BIT(29)
#define NFC_CMD_TYPE_MSK GENMASK(31, 30)
#define NFC_NORMAL_OP (0 << 30)
#define NFC_ECC_OP (1 << 30)
#define NFC_PAGE_OP (2 << 30)
/* define bit use in NFC_RCMD_SET */
#define NFC_READ_CMD_MSK GENMASK(7, 0)
#define NFC_RND_READ_CMD0_MSK GENMASK(15, 8)
#define NFC_RND_READ_CMD1_MSK GENMASK(23, 16)
/* define bit use in NFC_WCMD_SET */
#define NFC_PROGRAM_CMD_MSK GENMASK(7, 0)
#define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8)
#define NFC_READ_CMD0_MSK GENMASK(23, 16)
#define NFC_READ_CMD1_MSK GENMASK(31, 24)
/* define bit use in NFC_ECC_CTL */
#define NFC_ECC_EN BIT(0)
#define NFC_ECC_PIPELINE BIT(3)
#define NFC_ECC_EXCEPTION BIT(4)
#define NFC_ECC_BLOCK_SIZE_MSK BIT(5)
#define NFC_RANDOM_EN BIT(9)
#define NFC_RANDOM_DIRECTION BIT(10)
#define NFC_ECC_MODE_MSK GENMASK(15, 12)
#define NFC_ECC_MODE(x) ((x) << 12)
#define NFC_RANDOM_SEED_MSK GENMASK(30, 16)
#define NFC_RANDOM_SEED(x) ((x) << 16)
/* define bit use in NFC_ECC_ST */
#define NFC_ECC_ERR(x) BIT(x)
#define NFC_ECC_PAT_FOUND(x) BIT(x + 16)
#define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff)
#define NFC_DEFAULT_TIMEOUT_MS 1000
#define NFC_SRAM_SIZE 1024
#define NFC_MAX_CS 7
/*
* Ready/Busy detection type: describes the Ready/Busy detection modes
*
* @RB_NONE: no external detection available, rely on STATUS command
* and software timeouts
* @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy
* pin of the NAND flash chip must be connected to one of the
* native NAND R/B pins (those which can be muxed to the NAND
* Controller)
* @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy
* pin of the NAND flash chip must be connected to a GPIO capable
* pin.
*/
enum sunxi_nand_rb_type {
RB_NONE,
RB_NATIVE,
RB_GPIO,
};
/*
* Ready/Busy structure: stores information related to Ready/Busy detection
*
* @type: the Ready/Busy detection mode
* @info: information related to the R/B detection mode. Either a gpio
* id or a native R/B id (those supported by the NAND controller).
*/
struct sunxi_nand_rb {
enum sunxi_nand_rb_type type;
union {
int gpio;
int nativeid;
} info;
};
/*
* Chip Select structure: stores information related to NAND Chip Select
*
* @cs: the NAND CS id used to communicate with a NAND Chip
* @rb: the Ready/Busy description
*/
struct sunxi_nand_chip_sel {
u8 cs;
struct sunxi_nand_rb rb;
};
/*
* sunxi HW ECC infos: stores information related to HW ECC support
*
* @mode: the sunxi ECC mode field deduced from ECC requirements
*/
struct sunxi_nand_hw_ecc {
int mode;
};
/*
* NAND chip structure: stores NAND chip device related information
*
* @node: used to store NAND chips into a list
* @nand: base NAND chip structure
* @mtd: base MTD structure
* @clk_rate: clk_rate required for this NAND chip
* @timing_cfg TIMING_CFG register value for this NAND chip
* @selected: current active CS
* @nsels: number of CS lines required by the NAND chip
* @sels: array of CS lines descriptions
*/
struct sunxi_nand_chip {
struct list_head node;
struct nand_chip nand;
unsigned long clk_rate;
u32 timing_cfg;
u32 timing_ctl;
int selected;
int addr_cycles;
u32 addr[2];
int cmd_cycles;
u8 cmd[2];
int nsels;
struct sunxi_nand_chip_sel sels[0];
};
static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
{
return container_of(nand, struct sunxi_nand_chip, nand);
}
/*
* NAND Controller structure: stores sunxi NAND controller information
*
* @controller: base controller structure
* @dev: parent device (used to print error messages)
* @regs: NAND controller registers
* @ahb_clk: NAND Controller AHB clock
* @mod_clk: NAND Controller mod clock
* @assigned_cs: bitmask describing already assigned CS lines
* @clk_rate: NAND controller current clock rate
* @chips: a list containing all the NAND chips attached to
* this NAND controller
* @complete: a completion object used to wait for NAND
* controller events
*/
struct sunxi_nfc {
struct nand_hw_control controller;
struct device *dev;
void __iomem *regs;
struct clk *ahb_clk;
struct clk *mod_clk;
unsigned long assigned_cs;
unsigned long clk_rate;
struct list_head chips;
struct completion complete;
};
static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
{
return container_of(ctrl, struct sunxi_nfc, controller);
}
static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
{
struct sunxi_nfc *nfc = dev_id;
u32 st = readl(nfc->regs + NFC_REG_ST);
u32 ien = readl(nfc->regs + NFC_REG_INT);
if (!(ien & st))
return IRQ_NONE;
if ((ien & st) == ien)
complete(&nfc->complete);
writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
return IRQ_HANDLED;
}
static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events,
bool use_polling, unsigned int timeout_ms)
{
int ret;
if (events & ~NFC_INT_MASK)
return -EINVAL;
if (!timeout_ms)
timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
if (!use_polling) {
init_completion(&nfc->complete);
writel(events, nfc->regs + NFC_REG_INT);
ret = wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(timeout_ms));
writel(0, nfc->regs + NFC_REG_INT);
} else {
u32 status;
ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
(status & events) == events, 1,
timeout_ms * 1000);
}
writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
if (ret)
dev_err(nfc->dev, "wait interrupt timedout\n");
return ret;
}
static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
{
u32 status;
int ret;
ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
!(status & NFC_CMD_FIFO_STATUS), 1,
NFC_DEFAULT_TIMEOUT_MS * 1000);
if (ret)
dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
return ret;
}
static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
{
u32 ctl;
int ret;
writel(0, nfc->regs + NFC_REG_ECC_CTL);
writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl,
!(ctl & NFC_RESET), 1,
NFC_DEFAULT_TIMEOUT_MS * 1000);
if (ret)
dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
return ret;
}
static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
struct sunxi_nand_rb *rb;
int ret;
if (sunxi_nand->selected < 0)
return 0;
rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
switch (rb->type) {
case RB_NATIVE:
ret = !!(readl(nfc->regs + NFC_REG_ST) &
NFC_RB_STATE(rb->info.nativeid));
break;
case RB_GPIO:
ret = gpio_get_value(rb->info.gpio);
break;
case RB_NONE:
default:
ret = 0;
dev_err(nfc->dev, "cannot check R/B NAND status!\n");
break;
}
return ret;
}
static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
struct sunxi_nand_chip_sel *sel;
u32 ctl;
if (chip > 0 && chip >= sunxi_nand->nsels)
return;
if (chip == sunxi_nand->selected)
return;
ctl = readl(nfc->regs + NFC_REG_CTL) &
~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
if (chip >= 0) {
sel = &sunxi_nand->sels[chip];
ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
NFC_PAGE_SHIFT(nand->page_shift);
if (sel->rb.type == RB_NONE) {
nand->dev_ready = NULL;
} else {
nand->dev_ready = sunxi_nfc_dev_ready;
if (sel->rb.type == RB_NATIVE)
ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
}
writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
if (nfc->clk_rate != sunxi_nand->clk_rate) {
clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
nfc->clk_rate = sunxi_nand->clk_rate;
}
}
writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
writel(ctl, nfc->regs + NFC_REG_CTL);
sunxi_nand->selected = chip;
}
static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
int ret;
int cnt;
int offs = 0;
u32 tmp;
while (len > offs) {
cnt = min(len - offs, NFC_SRAM_SIZE);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
break;
writel(cnt, nfc->regs + NFC_REG_CNT);
tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
writel(tmp, nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
if (ret)
break;
if (buf)
memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
cnt);
offs += cnt;
}
}
static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
int ret;
int cnt;
int offs = 0;
u32 tmp;
while (len > offs) {
cnt = min(len - offs, NFC_SRAM_SIZE);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
break;
writel(cnt, nfc->regs + NFC_REG_CNT);
memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
NFC_ACCESS_DIR;
writel(tmp, nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
if (ret)
break;
offs += cnt;
}
}
static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
{
uint8_t ret;
sunxi_nfc_read_buf(mtd, &ret, 1);
return ret;
}
static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
unsigned int ctrl)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
int ret;
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
return;
if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
!(ctrl & (NAND_CLE | NAND_ALE))) {
u32 cmd = 0;
if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
return;
if (sunxi_nand->cmd_cycles--)
cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];
if (sunxi_nand->cmd_cycles--) {
cmd |= NFC_SEND_CMD2;
writel(sunxi_nand->cmd[1],
nfc->regs + NFC_REG_RCMD_SET);
}
sunxi_nand->cmd_cycles = 0;
if (sunxi_nand->addr_cycles) {
cmd |= NFC_SEND_ADR |
NFC_ADR_NUM(sunxi_nand->addr_cycles);
writel(sunxi_nand->addr[0],
nfc->regs + NFC_REG_ADDR_LOW);
}
if (sunxi_nand->addr_cycles > 4)
writel(sunxi_nand->addr[1],
nfc->regs + NFC_REG_ADDR_HIGH);
writel(cmd, nfc->regs + NFC_REG_CMD);
sunxi_nand->addr[0] = 0;
sunxi_nand->addr[1] = 0;
sunxi_nand->addr_cycles = 0;
sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
}
if (ctrl & NAND_CLE) {
sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
} else if (ctrl & NAND_ALE) {
sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
dat << ((sunxi_nand->addr_cycles % 4) * 8);
sunxi_nand->addr_cycles++;
}
}
/* These seed values have been extracted from Allwinner's BSP */
static const u16 sunxi_nfc_randomizer_page_seeds[] = {
0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
};
/*
* sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
* have been generated using
* sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
* the randomizer engine does internally before de/scrambling OOB data.
*
* Those tables are statically defined to avoid calculating randomizer state
* at runtime.
*/
static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
};
static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
};
static u16 sunxi_nfc_randomizer_step(u16 state, int count)
{
state &= 0x7fff;
/*
* This loop is just a simple implementation of a Fibonacci LFSR using
* the x16 + x15 + 1 polynomial.
*/
while (count--)
state = ((state >> 1) |
(((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;
return state;
}
static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
{
const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
int mod = mtd_div_by_ws(mtd->erasesize, mtd);
if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);
if (ecc) {
if (mtd->ecc_step_size == 512)
seeds = sunxi_nfc_randomizer_ecc512_seeds;
else
seeds = sunxi_nfc_randomizer_ecc1024_seeds;
}
return seeds[page % mod];
}
static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
int page, bool ecc)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
u16 state;
if (!(nand->options & NAND_NEED_SCRAMBLING))
return;
ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
state = sunxi_nfc_randomizer_state(mtd, page, ecc);
ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
}
static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
if (!(nand->options & NAND_NEED_SCRAMBLING))
return;
writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
nfc->regs + NFC_REG_ECC_CTL);
}
static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
if (!(nand->options & NAND_NEED_SCRAMBLING))
return;
writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
nfc->regs + NFC_REG_ECC_CTL);
}
static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
{
u16 state = sunxi_nfc_randomizer_state(mtd, page, true);
bbm[0] ^= state;
bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
}
static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
const uint8_t *buf, int len,
bool ecc, int page)
{
sunxi_nfc_randomizer_config(mtd, page, ecc);
sunxi_nfc_randomizer_enable(mtd);
sunxi_nfc_write_buf(mtd, buf, len);
sunxi_nfc_randomizer_disable(mtd);
}
static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
int len, bool ecc, int page)
{
sunxi_nfc_randomizer_config(mtd, page, ecc);
sunxi_nfc_randomizer_enable(mtd);
sunxi_nfc_read_buf(mtd, buf, len);
sunxi_nfc_randomizer_disable(mtd);
}
static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
u32 ecc_ctl;
ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
NFC_ECC_BLOCK_SIZE_MSK);
ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION |
NFC_ECC_PIPELINE;
writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
}
static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
nfc->regs + NFC_REG_ECC_CTL);
}
static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
{
buf[0] = user_data;
buf[1] = user_data >> 8;
buf[2] = user_data >> 16;
buf[3] = user_data >> 24;
}
static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
{
return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
}
static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob,
int step, bool bbm, int page)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)),
oob);
/* De-randomize the Bad Block Marker. */
if (bbm && (nand->options & NAND_NEED_SCRAMBLING))
sunxi_nfc_randomize_bbm(mtd, page, oob);
}
static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd,
const u8 *oob, int step,
bool bbm, int page)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
u8 user_data[4];
/* Randomize the Bad Block Marker. */
if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) {
memcpy(user_data, oob, sizeof(user_data));
sunxi_nfc_randomize_bbm(mtd, page, user_data);
oob = user_data;
}
writel(sunxi_nfc_buf_to_user_data(oob),
nfc->regs + NFC_REG_USER_DATA(step));
}
static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
unsigned int *max_bitflips, int ret)
{
if (ret < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += ret;
*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
}
}
static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
int step, bool *erased)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
struct nand_ecc_ctrl *ecc = &nand->ecc;
u32 status, tmp;
*erased = false;
status = readl(nfc->regs + NFC_REG_ECC_ST);
if (status & NFC_ECC_ERR(step))
return -EBADMSG;
if (status & NFC_ECC_PAT_FOUND(step)) {
u8 pattern;
if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) {
pattern = 0x0;
} else {
pattern = 0xff;
*erased = true;
}
if (data)
memset(data, pattern, ecc->size);
if (oob)
memset(oob, pattern, ecc->bytes + 4);
return 0;
}
tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step));
return NFC_ECC_ERR_CNT(step, tmp);
}
static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
u8 *data, int data_off,
u8 *oob, int oob_off,
int *cur_off,
unsigned int *max_bitflips,
bool bbm, bool oob_required, int page)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
struct nand_ecc_ctrl *ecc = &nand->ecc;
int raw_mode = 0;
bool erased;
int ret;
if (*cur_off != data_off)
nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
if (data_off + ecc->size != oob_off)
nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
return ret;
sunxi_nfc_randomizer_enable(mtd);
writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
sunxi_nfc_randomizer_disable(mtd);
if (ret)
return ret;
*cur_off = oob_off + ecc->bytes + 4;
ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0,
&erased);
if (erased)
return 1;
if (ret < 0) {
/*
* Re-read the data with the randomizer disabled to identify
* bitflips in erased pages.
*/
if (nand->options & NAND_NEED_SCRAMBLING) {
nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
nand->read_buf(mtd, data, ecc->size);
} else {
memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE,
ecc->size);
}
nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
nand->read_buf(mtd, oob, ecc->bytes + 4);
ret = nand_check_erased_ecc_chunk(data, ecc->size,
oob, ecc->bytes + 4,
NULL, 0, ecc->strength);
if (ret >= 0)
raw_mode = 1;
} else {
memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
if (oob_required) {
nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4,
true, page);
sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0,
bbm, page);
}
}
sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret);
return raw_mode;
}
static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
u8 *oob, int *cur_off,
bool randomize, int page)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &nand->ecc;
int offset = ((ecc->bytes + 4) * ecc->steps);
int len = mtd->oobsize - offset;
if (len <= 0)
return;
if (!cur_off || *cur_off != offset)
nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
offset + mtd->writesize, -1);
if (!randomize)
sunxi_nfc_read_buf(mtd, oob + offset, len);
else
sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
false, page);
if (cur_off)
*cur_off = mtd->oobsize + mtd->writesize;
}
static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
const u8 *data, int data_off,
const u8 *oob, int oob_off,
int *cur_off, bool bbm,
int page)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
struct nand_ecc_ctrl *ecc = &nand->ecc;
int ret;
if (data_off != *cur_off)
nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
if (data_off + ecc->size != oob_off)
nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
return ret;
sunxi_nfc_randomizer_enable(mtd);
sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page);
writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
NFC_ACCESS_DIR | NFC_ECC_OP,
nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
sunxi_nfc_randomizer_disable(mtd);
if (ret)
return ret;
*cur_off = oob_off + ecc->bytes + 4;
return 0;
}
static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
u8 *oob, int *cur_off,
int page)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &nand->ecc;
int offset = ((ecc->bytes + 4) * ecc->steps);
int len = mtd->oobsize - offset;
if (len <= 0)
return;
if (!cur_off || *cur_off != offset)
nand->cmdfunc(mtd, NAND_CMD_RNDIN,
offset + mtd->writesize, -1);
sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
if (cur_off)
*cur_off = mtd->oobsize + mtd->writesize;
}
static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
unsigned int max_bitflips = 0;
int ret, i, cur_off = 0;
bool raw_mode = false;
sunxi_nfc_hw_ecc_enable(mtd);
for (i = 0; i < ecc->steps; i++) {
int data_off = i * ecc->size;
int oob_off = i * (ecc->bytes + 4);
u8 *data = buf + data_off;
u8 *oob = chip->oob_poi + oob_off;
ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
oob_off + mtd->writesize,
&cur_off, &max_bitflips,
!i, oob_required, page);
if (ret < 0)
return ret;
else if (ret)
raw_mode = true;
}
if (oob_required)
sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
!raw_mode, page);
sunxi_nfc_hw_ecc_disable(mtd);
return max_bitflips;
}
static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
struct nand_chip *chip,
u32 data_offs, u32 readlen,
u8 *bufpoi, int page)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
int ret, i, cur_off = 0;
unsigned int max_bitflips = 0;
sunxi_nfc_hw_ecc_enable(mtd);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
for (i = data_offs / ecc->size;
i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
int data_off = i * ecc->size;
int oob_off = i * (ecc->bytes + 4);
u8 *data = bufpoi + data_off;
u8 *oob = chip->oob_poi + oob_off;
ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
oob,
oob_off + mtd->writesize,
&cur_off, &max_bitflips, !i,
false, page);
if (ret < 0)
return ret;
}
sunxi_nfc_hw_ecc_disable(mtd);
return max_bitflips;
}
static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
int ret, i, cur_off = 0;
sunxi_nfc_hw_ecc_enable(mtd);
for (i = 0; i < ecc->steps; i++) {
int data_off = i * ecc->size;
int oob_off = i * (ecc->bytes + 4);
const u8 *data = buf + data_off;
const u8 *oob = chip->oob_poi + oob_off;
ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
oob_off + mtd->writesize,
&cur_off, !i, page);
if (ret)
return ret;
}
if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
&cur_off, page);
sunxi_nfc_hw_ecc_disable(mtd);
return 0;
}
static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf, int oob_required,
int page)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
unsigned int max_bitflips = 0;
int ret, i, cur_off = 0;
bool raw_mode = false;
sunxi_nfc_hw_ecc_enable(mtd);
for (i = 0; i < ecc->steps; i++) {
int data_off = i * (ecc->size + ecc->bytes + 4);
int oob_off = data_off + ecc->size;
u8 *data = buf + (i * ecc->size);
u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
oob_off, &cur_off,
&max_bitflips, !i,
oob_required,
page);
if (ret < 0)
return ret;
else if (ret)
raw_mode = true;
}
if (oob_required)
sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
!raw_mode, page);
sunxi_nfc_hw_ecc_disable(mtd);
return max_bitflips;
}
static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf,
int oob_required, int page)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
int ret, i, cur_off = 0;
sunxi_nfc_hw_ecc_enable(mtd);
for (i = 0; i < ecc->steps; i++) {
int data_off = i * (ecc->size + ecc->bytes + 4);
int oob_off = data_off + ecc->size;
const u8 *data = buf + (i * ecc->size);
const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
oob, oob_off, &cur_off,
false, page);
if (ret)
return ret;
}
if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
&cur_off, page);
sunxi_nfc_hw_ecc_disable(mtd);
return 0;
}
static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd,
struct nand_chip *chip,
int page)
{
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
chip->pagebuf = -1;
return chip->ecc.read_page(mtd, chip, chip->buffers->databuf, 1, page);
}
static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd,
struct nand_chip *chip,
int page)
{
int ret, status;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);
chip->pagebuf = -1;
memset(chip->buffers->databuf, 0xff, mtd->writesize);
ret = chip->ecc.write_page(mtd, chip, chip->buffers->databuf, 1, page);
if (ret)
return ret;
/* Send command to program the OOB data */
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
static const s32 tWB_lut[] = {6, 12, 16, 20};
static const s32 tRHW_lut[] = {4, 8, 12, 20};
static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
u32 clk_period)
{
u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
int i;
for (i = 0; i < lut_size; i++) {
if (clk_cycles <= lut[i])
return i;
}
/* Doesn't fit */
return -EINVAL;
}
#define sunxi_nand_lookup_timing(l, p, c) \
_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
const struct nand_sdr_timings *timings)
{
struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
u32 min_clk_period = 0;
s32 tWB, tADL, tWHR, tRHW, tCAD;
long real_clk_rate;
/* T1 <=> tCLS */
if (timings->tCLS_min > min_clk_period)
min_clk_period = timings->tCLS_min;
/* T2 <=> tCLH */
if (timings->tCLH_min > min_clk_period)
min_clk_period = timings->tCLH_min;
/* T3 <=> tCS */
if (timings->tCS_min > min_clk_period)
min_clk_period = timings->tCS_min;
/* T4 <=> tCH */
if (timings->tCH_min > min_clk_period)
min_clk_period = timings->tCH_min;
/* T5 <=> tWP */
if (timings->tWP_min > min_clk_period)
min_clk_period = timings->tWP_min;
/* T6 <=> tWH */
if (timings->tWH_min > min_clk_period)
min_clk_period = timings->tWH_min;
/* T7 <=> tALS */
if (timings->tALS_min > min_clk_period)
min_clk_period = timings->tALS_min;
/* T8 <=> tDS */
if (timings->tDS_min > min_clk_period)
min_clk_period = timings->tDS_min;
/* T9 <=> tDH */
if (timings->tDH_min > min_clk_period)
min_clk_period = timings->tDH_min;
/* T10 <=> tRR */
if (timings->tRR_min > (min_clk_period * 3))
min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
/* T11 <=> tALH */
if (timings->tALH_min > min_clk_period)
min_clk_period = timings->tALH_min;
/* T12 <=> tRP */
if (timings->tRP_min > min_clk_period)
min_clk_period = timings->tRP_min;
/* T13 <=> tREH */
if (timings->tREH_min > min_clk_period)
min_clk_period = timings->tREH_min;
/* T14 <=> tRC */
if (timings->tRC_min > (min_clk_period * 2))
min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
/* T15 <=> tWC */
if (timings->tWC_min > (min_clk_period * 2))
min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
/* T16 - T19 + tCAD */
if (timings->tWB_max > (min_clk_period * 20))
min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20);
if (timings->tADL_min > (min_clk_period * 32))
min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32);
if (timings->tWHR_min > (min_clk_period * 32))
min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32);
if (timings->tRHW_min > (min_clk_period * 20))
min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20);
tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
min_clk_period);
if (tWB < 0) {
dev_err(nfc->dev, "unsupported tWB\n");
return tWB;
}
tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
if (tADL > 3) {
dev_err(nfc->dev, "unsupported tADL\n");
return -EINVAL;
}
tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
if (tWHR > 3) {
dev_err(nfc->dev, "unsupported tWHR\n");
return -EINVAL;
}
tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
min_clk_period);
if (tRHW < 0) {
dev_err(nfc->dev, "unsupported tRHW\n");
return tRHW;
}
/*
* TODO: according to ONFI specs this value only applies for DDR NAND,
* but Allwinner seems to set this to 0x7. Mimic them for now.
*/
tCAD = 0x7;
/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
/* Convert min_clk_period from picoseconds to nanoseconds */
min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
/*
* Unlike what is stated in Allwinner datasheet, the clk_rate should
* be set to (1 / min_clk_period), and not (2 / min_clk_period).
* This new formula was verified with a scope and validated by
* Allwinner engineers.
*/
chip->clk_rate = NSEC_PER_SEC / min_clk_period;
real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate);
/*
* ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
* output cycle timings shall be used if the host drives tRC less than
* 30 ns.
*/
min_clk_period = NSEC_PER_SEC / real_clk_rate;
chip->timing_ctl = ((min_clk_period * 2) < 30) ?
NFC_TIMING_CTL_EDO : 0;
return 0;
}
static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
struct device_node *np)
{
struct mtd_info *mtd = nand_to_mtd(&chip->nand);
const struct nand_sdr_timings *timings;
int ret;
int mode;
mode = onfi_get_async_timing_mode(&chip->nand);
if (mode == ONFI_TIMING_MODE_UNKNOWN) {
mode = chip->nand.onfi_timing_mode_default;
} else {
uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
int i;
mode = fls(mode) - 1;
if (mode < 0)
mode = 0;
feature[0] = mode;
for (i = 0; i < chip->nsels; i++) {
chip->nand.select_chip(mtd, i);
ret = chip->nand.onfi_set_features(mtd, &chip->nand,
ONFI_FEATURE_ADDR_TIMING_MODE,
feature);
chip->nand.select_chip(mtd, -1);
if (ret)
return ret;
}
}
timings = onfi_async_timing_mode_to_sdr_timings(mode);
if (IS_ERR(timings))
return PTR_ERR(timings);
return sunxi_nand_chip_set_timings(chip, timings);
}
static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &nand->ecc;
if (section >= ecc->steps)
return -ERANGE;
oobregion->offset = section * (ecc->bytes + 4) + 4;
oobregion->length = ecc->bytes;
return 0;
}
static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &nand->ecc;
if (section > ecc->steps)
return -ERANGE;
/*
* The first 2 bytes are used for BB markers, hence we
* only have 2 bytes available in the first user data
* section.
*/
if (!section && ecc->mode == NAND_ECC_HW) {
oobregion->offset = 2;
oobregion->length = 2;
return 0;
}
oobregion->offset = section * (ecc->bytes + 4);
if (section < ecc->steps)
oobregion->length = 4;
else
oobregion->offset = mtd->oobsize - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = {
.ecc = sunxi_nand_ooblayout_ecc,
.free = sunxi_nand_ooblayout_free,
};
static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
struct sunxi_nand_hw_ecc *data;
int nsectors;
int ret;
int i;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
/* Add ECC info retrieval from DT */
for (i = 0; i < ARRAY_SIZE(strengths); i++) {
if (ecc->strength <= strengths[i])
break;
}
if (i >= ARRAY_SIZE(strengths)) {
dev_err(nfc->dev, "unsupported strength\n");
ret = -ENOTSUPP;
goto err;
}
data->mode = i;
/* HW ECC always request ECC bytes for 1024 bytes blocks */
ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
/* HW ECC always work with even numbers of ECC bytes */
ecc->bytes = ALIGN(ecc->bytes, 2);
nsectors = mtd->writesize / ecc->size;
if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
ret = -EINVAL;
goto err;
}
ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob;
ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob;
mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops);
ecc->priv = data;
return 0;
err:
kfree(data);
return ret;
}
static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
{
kfree(ecc->priv);
}
static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
int ret;
ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
ecc->read_page = sunxi_nfc_hw_ecc_read_page;
ecc->write_page = sunxi_nfc_hw_ecc_write_page;
ecc->read_oob_raw = nand_read_oob_std;
ecc->write_oob_raw = nand_write_oob_std;
ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
return 0;
}
static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
int ret;
ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
ecc->prepad = 4;
ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
ecc->read_oob_raw = nand_read_oob_syndrome;
ecc->write_oob_raw = nand_write_oob_syndrome;
return 0;
}
static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
{
switch (ecc->mode) {
case NAND_ECC_HW:
case NAND_ECC_HW_SYNDROME:
sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
break;
case NAND_ECC_NONE:
default:
break;
}
}
static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
struct nand_chip *nand = mtd_to_nand(mtd);
int ret;
if (!ecc->size) {
ecc->size = nand->ecc_step_ds;
ecc->strength = nand->ecc_strength_ds;
}
if (!ecc->size || !ecc->strength)
return -EINVAL;
switch (ecc->mode) {
case NAND_ECC_HW:
ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
break;
case NAND_ECC_HW_SYNDROME:
ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
break;
case NAND_ECC_NONE:
case NAND_ECC_SOFT:
break;
default:
return -EINVAL;
}
return 0;
}
static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
struct device_node *np)
{
const struct nand_sdr_timings *timings;
struct sunxi_nand_chip *chip;
struct mtd_info *mtd;
struct nand_chip *nand;
int nsels;
int ret;
int i;
u32 tmp;
if (!of_get_property(np, "reg", &nsels))
return -EINVAL;
nsels /= sizeof(u32);
if (!nsels) {
dev_err(dev, "invalid reg property size\n");
return -EINVAL;
}
chip = devm_kzalloc(dev,
sizeof(*chip) +
(nsels * sizeof(struct sunxi_nand_chip_sel)),
GFP_KERNEL);
if (!chip) {
dev_err(dev, "could not allocate chip\n");
return -ENOMEM;
}
chip->nsels = nsels;
chip->selected = -1;
for (i = 0; i < nsels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &tmp);
if (ret) {
dev_err(dev, "could not retrieve reg property: %d\n",
ret);
return ret;
}
if (tmp > NFC_MAX_CS) {
dev_err(dev,
"invalid reg value: %u (max CS = 7)\n",
tmp);
return -EINVAL;
}
if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
dev_err(dev, "CS %d already assigned\n", tmp);
return -EINVAL;
}
chip->sels[i].cs = tmp;
if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
tmp < 2) {
chip->sels[i].rb.type = RB_NATIVE;
chip->sels[i].rb.info.nativeid = tmp;
} else {
ret = of_get_named_gpio(np, "rb-gpios", i);
if (ret >= 0) {
tmp = ret;
chip->sels[i].rb.type = RB_GPIO;
chip->sels[i].rb.info.gpio = tmp;
ret = devm_gpio_request(dev, tmp, "nand-rb");
if (ret)
return ret;
ret = gpio_direction_input(tmp);
if (ret)
return ret;
} else {
chip->sels[i].rb.type = RB_NONE;
}
}
}
nand = &chip->nand;
/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
nand->chip_delay = 200;
nand->controller = &nfc->controller;
/*
* Set the ECC mode to the default value in case nothing is specified
* in the DT.
*/
nand->ecc.mode = NAND_ECC_HW;
nand_set_flash_node(nand, np);
nand->select_chip = sunxi_nfc_select_chip;
nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
nand->read_buf = sunxi_nfc_read_buf;
nand->write_buf = sunxi_nfc_write_buf;
nand->read_byte = sunxi_nfc_read_byte;
mtd = nand_to_mtd(nand);
mtd->dev.parent = dev;
timings = onfi_async_timing_mode_to_sdr_timings(0);
if (IS_ERR(timings)) {
ret = PTR_ERR(timings);
dev_err(dev,
"could not retrieve timings for ONFI mode 0: %d\n",
ret);
return ret;
}
ret = sunxi_nand_chip_set_timings(chip, timings);
if (ret) {
dev_err(dev, "could not configure chip timings: %d\n", ret);
return ret;
}
ret = nand_scan_ident(mtd, nsels, NULL);
if (ret)
return ret;
if (nand->bbt_options & NAND_BBT_USE_FLASH)
nand->bbt_options |= NAND_BBT_NO_OOB;
if (nand->options & NAND_NEED_SCRAMBLING)
nand->options |= NAND_NO_SUBPAGE_WRITE;
nand->options |= NAND_SUBPAGE_READ;
ret = sunxi_nand_chip_init_timings(chip, np);
if (ret) {
dev_err(dev, "could not configure chip timings: %d\n", ret);
return ret;
}
ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
if (ret) {
dev_err(dev, "ECC init failed: %d\n", ret);
return ret;
}
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(dev, "nand_scan_tail failed: %d\n", ret);
return ret;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(dev, "failed to register mtd device: %d\n", ret);
nand_release(mtd);
return ret;
}
list_add_tail(&chip->node, &nfc->chips);
return 0;
}
static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
{
struct device_node *np = dev->of_node;
struct device_node *nand_np;
int nchips = of_get_child_count(np);
int ret;
if (nchips > 8) {
dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
return -EINVAL;
}
for_each_child_of_node(np, nand_np) {
ret = sunxi_nand_chip_init(dev, nfc, nand_np);
if (ret) {
of_node_put(nand_np);
return ret;
}
}
return 0;
}
static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
{
struct sunxi_nand_chip *chip;
while (!list_empty(&nfc->chips)) {
chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
node);
nand_release(nand_to_mtd(&chip->nand));
sunxi_nand_ecc_cleanup(&chip->nand.ecc);
list_del(&chip->node);
}
}
static int sunxi_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct resource *r;
struct sunxi_nfc *nfc;
int irq;
int ret;
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->dev = dev;
spin_lock_init(&nfc->controller.lock);
init_waitqueue_head(&nfc->controller.wq);
INIT_LIST_HEAD(&nfc->chips);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nfc->regs = devm_ioremap_resource(dev, r);
if (IS_ERR(nfc->regs))
return PTR_ERR(nfc->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "failed to retrieve irq\n");
return irq;
}
nfc->ahb_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(nfc->ahb_clk)) {
dev_err(dev, "failed to retrieve ahb clk\n");
return PTR_ERR(nfc->ahb_clk);
}
ret = clk_prepare_enable(nfc->ahb_clk);
if (ret)
return ret;
nfc->mod_clk = devm_clk_get(dev, "mod");
if (IS_ERR(nfc->mod_clk)) {
dev_err(dev, "failed to retrieve mod clk\n");
ret = PTR_ERR(nfc->mod_clk);
goto out_ahb_clk_unprepare;
}
ret = clk_prepare_enable(nfc->mod_clk);
if (ret)
goto out_ahb_clk_unprepare;
ret = sunxi_nfc_rst(nfc);
if (ret)
goto out_mod_clk_unprepare;
writel(0, nfc->regs + NFC_REG_INT);
ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
0, "sunxi-nand", nfc);
if (ret)
goto out_mod_clk_unprepare;
platform_set_drvdata(pdev, nfc);
ret = sunxi_nand_chips_init(dev, nfc);
if (ret) {
dev_err(dev, "failed to init nand chips\n");
goto out_mod_clk_unprepare;
}
return 0;
out_mod_clk_unprepare:
clk_disable_unprepare(nfc->mod_clk);
out_ahb_clk_unprepare:
clk_disable_unprepare(nfc->ahb_clk);
return ret;
}
static int sunxi_nfc_remove(struct platform_device *pdev)
{
struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
sunxi_nand_chips_cleanup(nfc);
clk_disable_unprepare(nfc->mod_clk);
clk_disable_unprepare(nfc->ahb_clk);
return 0;
}
static const struct of_device_id sunxi_nfc_ids[] = {
{ .compatible = "allwinner,sun4i-a10-nand" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
static struct platform_driver sunxi_nfc_driver = {
.driver = {
.name = "sunxi_nand",
.of_match_table = sunxi_nfc_ids,
},
.probe = sunxi_nfc_probe,
.remove = sunxi_nfc_remove,
};
module_platform_driver(sunxi_nfc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Boris BREZILLON");
MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
MODULE_ALIAS("platform:sunxi_nand");