458 строки
12 KiB
C
458 строки
12 KiB
C
/*
|
|
* Low-Level PCI Access for i386 machines
|
|
*
|
|
* Copyright 1993, 1994 Drew Eckhardt
|
|
* Visionary Computing
|
|
* (Unix and Linux consulting and custom programming)
|
|
* Drew@Colorado.EDU
|
|
* +1 (303) 786-7975
|
|
*
|
|
* Drew's work was sponsored by:
|
|
* iX Multiuser Multitasking Magazine
|
|
* Hannover, Germany
|
|
* hm@ix.de
|
|
*
|
|
* Copyright 1997--2000 Martin Mares <mj@ucw.cz>
|
|
*
|
|
* For more information, please consult the following manuals (look at
|
|
* http://www.pcisig.com/ for how to get them):
|
|
*
|
|
* PCI BIOS Specification
|
|
* PCI Local Bus Specification
|
|
* PCI to PCI Bridge Specification
|
|
* PCI System Design Guide
|
|
*
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/bootmem.h>
|
|
|
|
#include <asm/pat.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/pci_x86.h>
|
|
#include <asm/io_apic.h>
|
|
|
|
|
|
/*
|
|
* This list of dynamic mappings is for temporarily maintaining
|
|
* original BIOS BAR addresses for possible reinstatement.
|
|
*/
|
|
struct pcibios_fwaddrmap {
|
|
struct list_head list;
|
|
struct pci_dev *dev;
|
|
resource_size_t fw_addr[DEVICE_COUNT_RESOURCE];
|
|
};
|
|
|
|
static LIST_HEAD(pcibios_fwaddrmappings);
|
|
static DEFINE_SPINLOCK(pcibios_fwaddrmap_lock);
|
|
static bool pcibios_fw_addr_done;
|
|
|
|
/* Must be called with 'pcibios_fwaddrmap_lock' lock held. */
|
|
static struct pcibios_fwaddrmap *pcibios_fwaddrmap_lookup(struct pci_dev *dev)
|
|
{
|
|
struct pcibios_fwaddrmap *map;
|
|
|
|
WARN_ON_SMP(!spin_is_locked(&pcibios_fwaddrmap_lock));
|
|
|
|
list_for_each_entry(map, &pcibios_fwaddrmappings, list)
|
|
if (map->dev == dev)
|
|
return map;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
pcibios_save_fw_addr(struct pci_dev *dev, int idx, resource_size_t fw_addr)
|
|
{
|
|
unsigned long flags;
|
|
struct pcibios_fwaddrmap *map;
|
|
|
|
if (pcibios_fw_addr_done)
|
|
return;
|
|
|
|
spin_lock_irqsave(&pcibios_fwaddrmap_lock, flags);
|
|
map = pcibios_fwaddrmap_lookup(dev);
|
|
if (!map) {
|
|
spin_unlock_irqrestore(&pcibios_fwaddrmap_lock, flags);
|
|
map = kzalloc(sizeof(*map), GFP_KERNEL);
|
|
if (!map)
|
|
return;
|
|
|
|
map->dev = pci_dev_get(dev);
|
|
map->fw_addr[idx] = fw_addr;
|
|
INIT_LIST_HEAD(&map->list);
|
|
|
|
spin_lock_irqsave(&pcibios_fwaddrmap_lock, flags);
|
|
list_add_tail(&map->list, &pcibios_fwaddrmappings);
|
|
} else
|
|
map->fw_addr[idx] = fw_addr;
|
|
spin_unlock_irqrestore(&pcibios_fwaddrmap_lock, flags);
|
|
}
|
|
|
|
resource_size_t pcibios_retrieve_fw_addr(struct pci_dev *dev, int idx)
|
|
{
|
|
unsigned long flags;
|
|
struct pcibios_fwaddrmap *map;
|
|
resource_size_t fw_addr = 0;
|
|
|
|
if (pcibios_fw_addr_done)
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&pcibios_fwaddrmap_lock, flags);
|
|
map = pcibios_fwaddrmap_lookup(dev);
|
|
if (map)
|
|
fw_addr = map->fw_addr[idx];
|
|
spin_unlock_irqrestore(&pcibios_fwaddrmap_lock, flags);
|
|
|
|
return fw_addr;
|
|
}
|
|
|
|
static void __init pcibios_fw_addr_list_del(void)
|
|
{
|
|
unsigned long flags;
|
|
struct pcibios_fwaddrmap *entry, *next;
|
|
|
|
spin_lock_irqsave(&pcibios_fwaddrmap_lock, flags);
|
|
list_for_each_entry_safe(entry, next, &pcibios_fwaddrmappings, list) {
|
|
list_del(&entry->list);
|
|
pci_dev_put(entry->dev);
|
|
kfree(entry);
|
|
}
|
|
spin_unlock_irqrestore(&pcibios_fwaddrmap_lock, flags);
|
|
pcibios_fw_addr_done = true;
|
|
}
|
|
|
|
static int
|
|
skip_isa_ioresource_align(struct pci_dev *dev) {
|
|
|
|
if ((pci_probe & PCI_CAN_SKIP_ISA_ALIGN) &&
|
|
!(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We need to avoid collisions with `mirrored' VGA ports
|
|
* and other strange ISA hardware, so we always want the
|
|
* addresses to be allocated in the 0x000-0x0ff region
|
|
* modulo 0x400.
|
|
*
|
|
* Why? Because some silly external IO cards only decode
|
|
* the low 10 bits of the IO address. The 0x00-0xff region
|
|
* is reserved for motherboard devices that decode all 16
|
|
* bits, so it's ok to allocate at, say, 0x2800-0x28ff,
|
|
* but we want to try to avoid allocating at 0x2900-0x2bff
|
|
* which might have be mirrored at 0x0100-0x03ff..
|
|
*/
|
|
resource_size_t
|
|
pcibios_align_resource(void *data, const struct resource *res,
|
|
resource_size_t size, resource_size_t align)
|
|
{
|
|
struct pci_dev *dev = data;
|
|
resource_size_t start = res->start;
|
|
|
|
if (res->flags & IORESOURCE_IO) {
|
|
if (skip_isa_ioresource_align(dev))
|
|
return start;
|
|
if (start & 0x300)
|
|
start = (start + 0x3ff) & ~0x3ff;
|
|
} else if (res->flags & IORESOURCE_MEM) {
|
|
/* The low 1MB range is reserved for ISA cards */
|
|
if (start < BIOS_END)
|
|
start = BIOS_END;
|
|
}
|
|
return start;
|
|
}
|
|
EXPORT_SYMBOL(pcibios_align_resource);
|
|
|
|
/*
|
|
* Handle resources of PCI devices. If the world were perfect, we could
|
|
* just allocate all the resource regions and do nothing more. It isn't.
|
|
* On the other hand, we cannot just re-allocate all devices, as it would
|
|
* require us to know lots of host bridge internals. So we attempt to
|
|
* keep as much of the original configuration as possible, but tweak it
|
|
* when it's found to be wrong.
|
|
*
|
|
* Known BIOS problems we have to work around:
|
|
* - I/O or memory regions not configured
|
|
* - regions configured, but not enabled in the command register
|
|
* - bogus I/O addresses above 64K used
|
|
* - expansion ROMs left enabled (this may sound harmless, but given
|
|
* the fact the PCI specs explicitly allow address decoders to be
|
|
* shared between expansion ROMs and other resource regions, it's
|
|
* at least dangerous)
|
|
* - bad resource sizes or overlaps with other regions
|
|
*
|
|
* Our solution:
|
|
* (1) Allocate resources for all buses behind PCI-to-PCI bridges.
|
|
* This gives us fixed barriers on where we can allocate.
|
|
* (2) Allocate resources for all enabled devices. If there is
|
|
* a collision, just mark the resource as unallocated. Also
|
|
* disable expansion ROMs during this step.
|
|
* (3) Try to allocate resources for disabled devices. If the
|
|
* resources were assigned correctly, everything goes well,
|
|
* if they weren't, they won't disturb allocation of other
|
|
* resources.
|
|
* (4) Assign new addresses to resources which were either
|
|
* not configured at all or misconfigured. If explicitly
|
|
* requested by the user, configure expansion ROM address
|
|
* as well.
|
|
*/
|
|
|
|
static void pcibios_allocate_bridge_resources(struct pci_dev *dev)
|
|
{
|
|
int idx;
|
|
struct resource *r;
|
|
|
|
for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
|
|
r = &dev->resource[idx];
|
|
if (!r->flags)
|
|
continue;
|
|
if (r->parent) /* Already allocated */
|
|
continue;
|
|
if (!r->start || pci_claim_resource(dev, idx) < 0) {
|
|
/*
|
|
* Something is wrong with the region.
|
|
* Invalidate the resource to prevent
|
|
* child resource allocations in this
|
|
* range.
|
|
*/
|
|
r->start = r->end = 0;
|
|
r->flags = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pcibios_allocate_bus_resources(struct pci_bus *bus)
|
|
{
|
|
struct pci_bus *child;
|
|
|
|
/* Depth-First Search on bus tree */
|
|
if (bus->self)
|
|
pcibios_allocate_bridge_resources(bus->self);
|
|
list_for_each_entry(child, &bus->children, node)
|
|
pcibios_allocate_bus_resources(child);
|
|
}
|
|
|
|
struct pci_check_idx_range {
|
|
int start;
|
|
int end;
|
|
};
|
|
|
|
static void pcibios_allocate_dev_resources(struct pci_dev *dev, int pass)
|
|
{
|
|
int idx, disabled, i;
|
|
u16 command;
|
|
struct resource *r;
|
|
|
|
struct pci_check_idx_range idx_range[] = {
|
|
{ PCI_STD_RESOURCES, PCI_STD_RESOURCE_END },
|
|
#ifdef CONFIG_PCI_IOV
|
|
{ PCI_IOV_RESOURCES, PCI_IOV_RESOURCE_END },
|
|
#endif
|
|
};
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &command);
|
|
for (i = 0; i < ARRAY_SIZE(idx_range); i++)
|
|
for (idx = idx_range[i].start; idx <= idx_range[i].end; idx++) {
|
|
r = &dev->resource[idx];
|
|
if (r->parent) /* Already allocated */
|
|
continue;
|
|
if (!r->start) /* Address not assigned at all */
|
|
continue;
|
|
if (r->flags & IORESOURCE_IO)
|
|
disabled = !(command & PCI_COMMAND_IO);
|
|
else
|
|
disabled = !(command & PCI_COMMAND_MEMORY);
|
|
if (pass == disabled) {
|
|
dev_dbg(&dev->dev,
|
|
"BAR %d: reserving %pr (d=%d, p=%d)\n",
|
|
idx, r, disabled, pass);
|
|
if (pci_claim_resource(dev, idx) < 0) {
|
|
if (r->flags & IORESOURCE_PCI_FIXED) {
|
|
dev_info(&dev->dev, "BAR %d %pR is immovable\n",
|
|
idx, r);
|
|
} else {
|
|
/* We'll assign a new address later */
|
|
pcibios_save_fw_addr(dev,
|
|
idx, r->start);
|
|
r->end -= r->start;
|
|
r->start = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!pass) {
|
|
r = &dev->resource[PCI_ROM_RESOURCE];
|
|
if (r->flags & IORESOURCE_ROM_ENABLE) {
|
|
/* Turn the ROM off, leave the resource region,
|
|
* but keep it unregistered. */
|
|
u32 reg;
|
|
dev_dbg(&dev->dev, "disabling ROM %pR\n", r);
|
|
r->flags &= ~IORESOURCE_ROM_ENABLE;
|
|
pci_read_config_dword(dev, dev->rom_base_reg, ®);
|
|
pci_write_config_dword(dev, dev->rom_base_reg,
|
|
reg & ~PCI_ROM_ADDRESS_ENABLE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pcibios_allocate_resources(struct pci_bus *bus, int pass)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *child;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
pcibios_allocate_dev_resources(dev, pass);
|
|
|
|
child = dev->subordinate;
|
|
if (child)
|
|
pcibios_allocate_resources(child, pass);
|
|
}
|
|
}
|
|
|
|
static void pcibios_allocate_dev_rom_resource(struct pci_dev *dev)
|
|
{
|
|
struct resource *r;
|
|
|
|
/*
|
|
* Try to use BIOS settings for ROMs, otherwise let
|
|
* pci_assign_unassigned_resources() allocate the new
|
|
* addresses.
|
|
*/
|
|
r = &dev->resource[PCI_ROM_RESOURCE];
|
|
if (!r->flags || !r->start)
|
|
return;
|
|
if (r->parent) /* Already allocated */
|
|
return;
|
|
|
|
if (pci_claim_resource(dev, PCI_ROM_RESOURCE) < 0) {
|
|
r->end -= r->start;
|
|
r->start = 0;
|
|
}
|
|
}
|
|
static void pcibios_allocate_rom_resources(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *child;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
pcibios_allocate_dev_rom_resource(dev);
|
|
|
|
child = dev->subordinate;
|
|
if (child)
|
|
pcibios_allocate_rom_resources(child);
|
|
}
|
|
}
|
|
|
|
static int __init pcibios_assign_resources(void)
|
|
{
|
|
struct pci_bus *bus;
|
|
|
|
if (!(pci_probe & PCI_ASSIGN_ROMS))
|
|
list_for_each_entry(bus, &pci_root_buses, node)
|
|
pcibios_allocate_rom_resources(bus);
|
|
|
|
pci_assign_unassigned_resources();
|
|
pcibios_fw_addr_list_del();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* called in fs_initcall (one below subsys_initcall),
|
|
* give a chance for motherboard reserve resources
|
|
*/
|
|
fs_initcall(pcibios_assign_resources);
|
|
|
|
void pcibios_resource_survey_bus(struct pci_bus *bus)
|
|
{
|
|
dev_printk(KERN_DEBUG, &bus->dev, "Allocating resources\n");
|
|
|
|
pcibios_allocate_bus_resources(bus);
|
|
|
|
pcibios_allocate_resources(bus, 0);
|
|
pcibios_allocate_resources(bus, 1);
|
|
|
|
if (!(pci_probe & PCI_ASSIGN_ROMS))
|
|
pcibios_allocate_rom_resources(bus);
|
|
}
|
|
|
|
void __init pcibios_resource_survey(void)
|
|
{
|
|
struct pci_bus *bus;
|
|
|
|
DBG("PCI: Allocating resources\n");
|
|
|
|
list_for_each_entry(bus, &pci_root_buses, node)
|
|
pcibios_allocate_bus_resources(bus);
|
|
|
|
list_for_each_entry(bus, &pci_root_buses, node)
|
|
pcibios_allocate_resources(bus, 0);
|
|
list_for_each_entry(bus, &pci_root_buses, node)
|
|
pcibios_allocate_resources(bus, 1);
|
|
|
|
e820_reserve_resources_late();
|
|
/*
|
|
* Insert the IO APIC resources after PCI initialization has
|
|
* occurred to handle IO APICS that are mapped in on a BAR in
|
|
* PCI space, but before trying to assign unassigned pci res.
|
|
*/
|
|
ioapic_insert_resources();
|
|
}
|
|
|
|
static const struct vm_operations_struct pci_mmap_ops = {
|
|
.access = generic_access_phys,
|
|
};
|
|
|
|
int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
|
|
enum pci_mmap_state mmap_state, int write_combine)
|
|
{
|
|
unsigned long prot;
|
|
|
|
/* I/O space cannot be accessed via normal processor loads and
|
|
* stores on this platform.
|
|
*/
|
|
if (mmap_state == pci_mmap_io)
|
|
return -EINVAL;
|
|
|
|
prot = pgprot_val(vma->vm_page_prot);
|
|
|
|
/*
|
|
* Return error if pat is not enabled and write_combine is requested.
|
|
* Caller can followup with UC MINUS request and add a WC mtrr if there
|
|
* is a free mtrr slot.
|
|
*/
|
|
if (!pat_enabled && write_combine)
|
|
return -EINVAL;
|
|
|
|
if (pat_enabled && write_combine)
|
|
prot |= _PAGE_CACHE_WC;
|
|
else if (pat_enabled || boot_cpu_data.x86 > 3)
|
|
/*
|
|
* ioremap() and ioremap_nocache() defaults to UC MINUS for now.
|
|
* To avoid attribute conflicts, request UC MINUS here
|
|
* as well.
|
|
*/
|
|
prot |= _PAGE_CACHE_UC_MINUS;
|
|
|
|
prot |= _PAGE_IOMAP; /* creating a mapping for IO */
|
|
|
|
vma->vm_page_prot = __pgprot(prot);
|
|
|
|
if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
|
|
vma->vm_ops = &pci_mmap_ops;
|
|
|
|
return 0;
|
|
}
|