WSL2-Linux-Kernel/drivers/powercap/intel_rapl_common.c

1463 строки
38 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Common code for Intel Running Average Power Limit (RAPL) support.
* Copyright (c) 2019, Intel Corporation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/cpu.h>
#include <linux/powercap.h>
#include <linux/suspend.h>
#include <linux/intel_rapl.h>
#include <linux/processor.h>
#include <linux/platform_device.h>
#include <asm/iosf_mbi.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
/* Local defines */
#define MSR_PLATFORM_POWER_LIMIT 0x0000065C
/* bitmasks for RAPL MSRs, used by primitive access functions */
#define ENERGY_STATUS_MASK 0xffffffff
#define POWER_LIMIT1_MASK 0x7FFF
#define POWER_LIMIT1_ENABLE BIT(15)
#define POWER_LIMIT1_CLAMP BIT(16)
#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
#define POWER_LIMIT2_ENABLE BIT_ULL(47)
#define POWER_LIMIT2_CLAMP BIT_ULL(48)
#define POWER_HIGH_LOCK BIT_ULL(63)
#define POWER_LOW_LOCK BIT(31)
#define TIME_WINDOW1_MASK (0x7FULL<<17)
#define TIME_WINDOW2_MASK (0x7FULL<<49)
#define POWER_UNIT_OFFSET 0
#define POWER_UNIT_MASK 0x0F
#define ENERGY_UNIT_OFFSET 0x08
#define ENERGY_UNIT_MASK 0x1F00
#define TIME_UNIT_OFFSET 0x10
#define TIME_UNIT_MASK 0xF0000
#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
#define PP_POLICY_MASK 0x1F
/* Non HW constants */
#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
#define RAPL_PRIMITIVE_DUMMY BIT(2)
#define TIME_WINDOW_MAX_MSEC 40000
#define TIME_WINDOW_MIN_MSEC 250
#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
enum unit_type {
ARBITRARY_UNIT, /* no translation */
POWER_UNIT,
ENERGY_UNIT,
TIME_UNIT,
};
/* per domain data, some are optional */
#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
#define DOMAIN_STATE_INACTIVE BIT(0)
#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
#define DOMAIN_STATE_BIOS_LOCKED BIT(2)
static const char pl1_name[] = "long_term";
static const char pl2_name[] = "short_term";
#define power_zone_to_rapl_domain(_zone) \
container_of(_zone, struct rapl_domain, power_zone)
struct rapl_defaults {
u8 floor_freq_reg_addr;
int (*check_unit)(struct rapl_package *rp, int cpu);
void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
bool to_raw);
unsigned int dram_domain_energy_unit;
};
static struct rapl_defaults *rapl_defaults;
/* Sideband MBI registers */
#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
#define PACKAGE_PLN_INT_SAVED BIT(0)
#define MAX_PRIM_NAME (32)
/* per domain data. used to describe individual knobs such that access function
* can be consolidated into one instead of many inline functions.
*/
struct rapl_primitive_info {
const char *name;
u64 mask;
int shift;
enum rapl_domain_reg_id id;
enum unit_type unit;
u32 flag;
};
#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
.name = #p, \
.mask = m, \
.shift = s, \
.id = i, \
.unit = u, \
.flag = f \
}
static void rapl_init_domains(struct rapl_package *rp);
static int rapl_read_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
bool xlate, u64 *data);
static int rapl_write_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
unsigned long long value);
static u64 rapl_unit_xlate(struct rapl_domain *rd,
enum unit_type type, u64 value, int to_raw);
static void package_power_limit_irq_save(struct rapl_package *rp);
static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
static const char *const rapl_domain_names[] = {
"package",
"core",
"uncore",
"dram",
"psys",
};
static int get_energy_counter(struct powercap_zone *power_zone,
u64 *energy_raw)
{
struct rapl_domain *rd;
u64 energy_now;
/* prevent CPU hotplug, make sure the RAPL domain does not go
* away while reading the counter.
*/
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
*energy_raw = energy_now;
put_online_cpus();
return 0;
}
put_online_cpus();
return -EIO;
}
static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
return 0;
}
static int release_zone(struct powercap_zone *power_zone)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
struct rapl_package *rp = rd->rp;
/* package zone is the last zone of a package, we can free
* memory here since all children has been unregistered.
*/
if (rd->id == RAPL_DOMAIN_PACKAGE) {
kfree(rd);
rp->domains = NULL;
}
return 0;
}
static int find_nr_power_limit(struct rapl_domain *rd)
{
int i, nr_pl = 0;
for (i = 0; i < NR_POWER_LIMITS; i++) {
if (rd->rpl[i].name)
nr_pl++;
}
return nr_pl;
}
static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
return -EACCES;
get_online_cpus();
rapl_write_data_raw(rd, PL1_ENABLE, mode);
if (rapl_defaults->set_floor_freq)
rapl_defaults->set_floor_freq(rd, mode);
put_online_cpus();
return 0;
}
static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
u64 val;
if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
*mode = false;
return 0;
}
get_online_cpus();
if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
put_online_cpus();
return -EIO;
}
*mode = val;
put_online_cpus();
return 0;
}
/* per RAPL domain ops, in the order of rapl_domain_type */
static const struct powercap_zone_ops zone_ops[] = {
/* RAPL_DOMAIN_PACKAGE */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PP0 */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PP1 */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_DRAM */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PLATFORM */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
};
/*
* Constraint index used by powercap can be different than power limit (PL)
* index in that some PLs maybe missing due to non-existent MSRs. So we
* need to convert here by finding the valid PLs only (name populated).
*/
static int contraint_to_pl(struct rapl_domain *rd, int cid)
{
int i, j;
for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
if ((rd->rpl[i].name) && j++ == cid) {
pr_debug("%s: index %d\n", __func__, i);
return i;
}
}
pr_err("Cannot find matching power limit for constraint %d\n", cid);
return -EINVAL;
}
static int set_power_limit(struct powercap_zone *power_zone, int cid,
u64 power_limit)
{
struct rapl_domain *rd;
struct rapl_package *rp;
int ret = 0;
int id;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto set_exit;
}
rp = rd->rp;
if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
dev_warn(&power_zone->dev,
"%s locked by BIOS, monitoring only\n", rd->name);
ret = -EACCES;
goto set_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
break;
case PL2_ENABLE:
rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
break;
default:
ret = -EINVAL;
}
if (!ret)
package_power_limit_irq_save(rp);
set_exit:
put_online_cpus();
return ret;
}
static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
u64 *data)
{
struct rapl_domain *rd;
u64 val;
int prim;
int ret = 0;
int id;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto get_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
prim = POWER_LIMIT1;
break;
case PL2_ENABLE:
prim = POWER_LIMIT2;
break;
default:
put_online_cpus();
return -EINVAL;
}
if (rapl_read_data_raw(rd, prim, true, &val))
ret = -EIO;
else
*data = val;
get_exit:
put_online_cpus();
return ret;
}
static int set_time_window(struct powercap_zone *power_zone, int cid,
u64 window)
{
struct rapl_domain *rd;
int ret = 0;
int id;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto set_time_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
rapl_write_data_raw(rd, TIME_WINDOW1, window);
break;
case PL2_ENABLE:
rapl_write_data_raw(rd, TIME_WINDOW2, window);
break;
default:
ret = -EINVAL;
}
set_time_exit:
put_online_cpus();
return ret;
}
static int get_time_window(struct powercap_zone *power_zone, int cid,
u64 *data)
{
struct rapl_domain *rd;
u64 val;
int ret = 0;
int id;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto get_time_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
break;
case PL2_ENABLE:
ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
break;
default:
put_online_cpus();
return -EINVAL;
}
if (!ret)
*data = val;
get_time_exit:
put_online_cpus();
return ret;
}
static const char *get_constraint_name(struct powercap_zone *power_zone,
int cid)
{
struct rapl_domain *rd;
int id;
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id >= 0)
return rd->rpl[id].name;
return NULL;
}
static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
{
struct rapl_domain *rd;
u64 val;
int prim;
int ret = 0;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
prim = THERMAL_SPEC_POWER;
break;
case PL2_ENABLE:
prim = MAX_POWER;
break;
default:
put_online_cpus();
return -EINVAL;
}
if (rapl_read_data_raw(rd, prim, true, &val))
ret = -EIO;
else
*data = val;
put_online_cpus();
return ret;
}
static const struct powercap_zone_constraint_ops constraint_ops = {
.set_power_limit_uw = set_power_limit,
.get_power_limit_uw = get_current_power_limit,
.set_time_window_us = set_time_window,
.get_time_window_us = get_time_window,
.get_max_power_uw = get_max_power,
.get_name = get_constraint_name,
};
/* called after domain detection and package level data are set */
static void rapl_init_domains(struct rapl_package *rp)
{
enum rapl_domain_type i;
enum rapl_domain_reg_id j;
struct rapl_domain *rd = rp->domains;
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
unsigned int mask = rp->domain_map & (1 << i);
if (!mask)
continue;
rd->rp = rp;
rd->name = rapl_domain_names[i];
rd->id = i;
rd->rpl[0].prim_id = PL1_ENABLE;
rd->rpl[0].name = pl1_name;
/* some domain may support two power limits */
if (rp->priv->limits[i] == 2) {
rd->rpl[1].prim_id = PL2_ENABLE;
rd->rpl[1].name = pl2_name;
}
for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
rd->regs[j] = rp->priv->regs[i][j];
if (i == RAPL_DOMAIN_DRAM) {
rd->domain_energy_unit =
rapl_defaults->dram_domain_energy_unit;
if (rd->domain_energy_unit)
pr_info("DRAM domain energy unit %dpj\n",
rd->domain_energy_unit);
}
rd++;
}
}
static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
u64 value, int to_raw)
{
u64 units = 1;
struct rapl_package *rp = rd->rp;
u64 scale = 1;
switch (type) {
case POWER_UNIT:
units = rp->power_unit;
break;
case ENERGY_UNIT:
scale = ENERGY_UNIT_SCALE;
/* per domain unit takes precedence */
if (rd->domain_energy_unit)
units = rd->domain_energy_unit;
else
units = rp->energy_unit;
break;
case TIME_UNIT:
return rapl_defaults->compute_time_window(rp, value, to_raw);
case ARBITRARY_UNIT:
default:
return value;
};
if (to_raw)
return div64_u64(value, units) * scale;
value *= units;
return div64_u64(value, scale);
}
/* in the order of enum rapl_primitives */
static struct rapl_primitive_info rpi[] = {
/* name, mask, shift, msr index, unit divisor */
PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
/* non-hardware */
PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
RAPL_PRIMITIVE_DERIVED),
{NULL, 0, 0, 0},
};
/* Read primitive data based on its related struct rapl_primitive_info.
* if xlate flag is set, return translated data based on data units, i.e.
* time, energy, and power.
* RAPL MSRs are non-architectual and are laid out not consistently across
* domains. Here we use primitive info to allow writing consolidated access
* functions.
* For a given primitive, it is processed by MSR mask and shift. Unit conversion
* is pre-assigned based on RAPL unit MSRs read at init time.
* 63-------------------------- 31--------------------------- 0
* | xxxxx (mask) |
* | |<- shift ----------------|
* 63-------------------------- 31--------------------------- 0
*/
static int rapl_read_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim, bool xlate, u64 *data)
{
u64 value;
struct rapl_primitive_info *rp = &rpi[prim];
struct reg_action ra;
int cpu;
if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
return -EINVAL;
ra.reg = rd->regs[rp->id];
if (!ra.reg)
return -EINVAL;
cpu = rd->rp->lead_cpu;
/* domain with 2 limits has different bit */
if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
rp->mask = POWER_HIGH_LOCK;
rp->shift = 63;
}
/* non-hardware data are collected by the polling thread */
if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
*data = rd->rdd.primitives[prim];
return 0;
}
ra.mask = rp->mask;
if (rd->rp->priv->read_raw(cpu, &ra)) {
pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
return -EIO;
}
value = ra.value >> rp->shift;
if (xlate)
*data = rapl_unit_xlate(rd, rp->unit, value, 0);
else
*data = value;
return 0;
}
/* Similar use of primitive info in the read counterpart */
static int rapl_write_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
unsigned long long value)
{
struct rapl_primitive_info *rp = &rpi[prim];
int cpu;
u64 bits;
struct reg_action ra;
int ret;
cpu = rd->rp->lead_cpu;
bits = rapl_unit_xlate(rd, rp->unit, value, 1);
bits <<= rp->shift;
bits &= rp->mask;
memset(&ra, 0, sizeof(ra));
ra.reg = rd->regs[rp->id];
ra.mask = rp->mask;
ra.value = bits;
ret = rd->rp->priv->write_raw(cpu, &ra);
return ret;
}
/*
* Raw RAPL data stored in MSRs are in certain scales. We need to
* convert them into standard units based on the units reported in
* the RAPL unit MSRs. This is specific to CPUs as the method to
* calculate units differ on different CPUs.
* We convert the units to below format based on CPUs.
* i.e.
* energy unit: picoJoules : Represented in picoJoules by default
* power unit : microWatts : Represented in milliWatts by default
* time unit : microseconds: Represented in seconds by default
*/
static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
{
struct reg_action ra;
u32 value;
ra.reg = rp->priv->reg_unit;
ra.mask = ~0;
if (rp->priv->read_raw(cpu, &ra)) {
pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
rp->priv->reg_unit, cpu);
return -ENODEV;
}
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
rp->power_unit = 1000000 / (1 << value);
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
rp->time_unit = 1000000 / (1 << value);
pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
return 0;
}
static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
{
struct reg_action ra;
u32 value;
ra.reg = rp->priv->reg_unit;
ra.mask = ~0;
if (rp->priv->read_raw(cpu, &ra)) {
pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
rp->priv->reg_unit, cpu);
return -ENODEV;
}
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
rp->power_unit = (1 << value) * 1000;
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
rp->time_unit = 1000000 / (1 << value);
pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
return 0;
}
static void power_limit_irq_save_cpu(void *info)
{
u32 l, h = 0;
struct rapl_package *rp = (struct rapl_package *)info;
/* save the state of PLN irq mask bit before disabling it */
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
}
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
/* REVISIT:
* When package power limit is set artificially low by RAPL, LVT
* thermal interrupt for package power limit should be ignored
* since we are not really exceeding the real limit. The intention
* is to avoid excessive interrupts while we are trying to save power.
* A useful feature might be routing the package_power_limit interrupt
* to userspace via eventfd. once we have a usecase, this is simple
* to do by adding an atomic notifier.
*/
static void package_power_limit_irq_save(struct rapl_package *rp)
{
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
return;
smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
}
/*
* Restore per package power limit interrupt enable state. Called from cpu
* hotplug code on package removal.
*/
static void package_power_limit_irq_restore(struct rapl_package *rp)
{
u32 l, h;
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
return;
/* irq enable state not saved, nothing to restore */
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
return;
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
l |= PACKAGE_THERM_INT_PLN_ENABLE;
else
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
{
int nr_powerlimit = find_nr_power_limit(rd);
/* always enable clamp such that p-state can go below OS requested
* range. power capping priority over guranteed frequency.
*/
rapl_write_data_raw(rd, PL1_CLAMP, mode);
/* some domains have pl2 */
if (nr_powerlimit > 1) {
rapl_write_data_raw(rd, PL2_ENABLE, mode);
rapl_write_data_raw(rd, PL2_CLAMP, mode);
}
}
static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
{
static u32 power_ctrl_orig_val;
u32 mdata;
if (!rapl_defaults->floor_freq_reg_addr) {
pr_err("Invalid floor frequency config register\n");
return;
}
if (!power_ctrl_orig_val)
iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
rapl_defaults->floor_freq_reg_addr,
&power_ctrl_orig_val);
mdata = power_ctrl_orig_val;
if (enable) {
mdata &= ~(0x7f << 8);
mdata |= 1 << 8;
}
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
rapl_defaults->floor_freq_reg_addr, mdata);
}
static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
bool to_raw)
{
u64 f, y; /* fraction and exp. used for time unit */
/*
* Special processing based on 2^Y*(1+F/4), refer
* to Intel Software Developer's manual Vol.3B: CH 14.9.3.
*/
if (!to_raw) {
f = (value & 0x60) >> 5;
y = value & 0x1f;
value = (1 << y) * (4 + f) * rp->time_unit / 4;
} else {
do_div(value, rp->time_unit);
y = ilog2(value);
f = div64_u64(4 * (value - (1 << y)), 1 << y);
value = (y & 0x1f) | ((f & 0x3) << 5);
}
return value;
}
static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
bool to_raw)
{
/*
* Atom time unit encoding is straight forward val * time_unit,
* where time_unit is default to 1 sec. Never 0.
*/
if (!to_raw)
return (value) ? value *= rp->time_unit : rp->time_unit;
value = div64_u64(value, rp->time_unit);
return value;
}
static const struct rapl_defaults rapl_defaults_core = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
};
static const struct rapl_defaults rapl_defaults_hsw_server = {
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
.dram_domain_energy_unit = 15300,
};
static const struct rapl_defaults rapl_defaults_byt = {
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = set_floor_freq_atom,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_tng = {
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = set_floor_freq_atom,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_ann = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = NULL,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_cht = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = NULL,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct x86_cpu_id rapl_ids[] __initconst = {
INTEL_CPU_FAM6(SANDYBRIDGE, rapl_defaults_core),
INTEL_CPU_FAM6(SANDYBRIDGE_X, rapl_defaults_core),
INTEL_CPU_FAM6(IVYBRIDGE, rapl_defaults_core),
INTEL_CPU_FAM6(IVYBRIDGE_X, rapl_defaults_core),
INTEL_CPU_FAM6(HASWELL_CORE, rapl_defaults_core),
INTEL_CPU_FAM6(HASWELL_ULT, rapl_defaults_core),
INTEL_CPU_FAM6(HASWELL_GT3E, rapl_defaults_core),
INTEL_CPU_FAM6(HASWELL_X, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(BROADWELL_CORE, rapl_defaults_core),
INTEL_CPU_FAM6(BROADWELL_GT3E, rapl_defaults_core),
INTEL_CPU_FAM6(BROADWELL_XEON_D, rapl_defaults_core),
INTEL_CPU_FAM6(BROADWELL_X, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(SKYLAKE_DESKTOP, rapl_defaults_core),
INTEL_CPU_FAM6(SKYLAKE_MOBILE, rapl_defaults_core),
INTEL_CPU_FAM6(SKYLAKE_X, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(KABYLAKE_MOBILE, rapl_defaults_core),
INTEL_CPU_FAM6(KABYLAKE_DESKTOP, rapl_defaults_core),
INTEL_CPU_FAM6(CANNONLAKE_MOBILE, rapl_defaults_core),
INTEL_CPU_FAM6(ICELAKE_MOBILE, rapl_defaults_core),
INTEL_CPU_FAM6(ICELAKE_DESKTOP, rapl_defaults_core),
INTEL_CPU_FAM6(ICELAKE_NNPI, rapl_defaults_core),
INTEL_CPU_FAM6(ICELAKE_X, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(ICELAKE_XEON_D, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(ATOM_SILVERMONT, rapl_defaults_byt),
INTEL_CPU_FAM6(ATOM_AIRMONT, rapl_defaults_cht),
INTEL_CPU_FAM6(ATOM_SILVERMONT_MID, rapl_defaults_tng),
INTEL_CPU_FAM6(ATOM_AIRMONT_MID, rapl_defaults_ann),
INTEL_CPU_FAM6(ATOM_GOLDMONT, rapl_defaults_core),
INTEL_CPU_FAM6(ATOM_GOLDMONT_PLUS, rapl_defaults_core),
INTEL_CPU_FAM6(ATOM_GOLDMONT_X, rapl_defaults_core),
INTEL_CPU_FAM6(ATOM_TREMONT_X, rapl_defaults_core),
INTEL_CPU_FAM6(XEON_PHI_KNL, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(XEON_PHI_KNM, rapl_defaults_hsw_server),
{}
};
MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
/* Read once for all raw primitive data for domains */
static void rapl_update_domain_data(struct rapl_package *rp)
{
int dmn, prim;
u64 val;
for (dmn = 0; dmn < rp->nr_domains; dmn++) {
pr_debug("update %s domain %s data\n", rp->name,
rp->domains[dmn].name);
/* exclude non-raw primitives */
for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
if (!rapl_read_data_raw(&rp->domains[dmn], prim,
rpi[prim].unit, &val))
rp->domains[dmn].rdd.primitives[prim] = val;
}
}
}
static int rapl_package_register_powercap(struct rapl_package *rp)
{
struct rapl_domain *rd;
struct powercap_zone *power_zone = NULL;
int nr_pl, ret;
/* Update the domain data of the new package */
rapl_update_domain_data(rp);
/* first we register package domain as the parent zone */
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
if (rd->id == RAPL_DOMAIN_PACKAGE) {
nr_pl = find_nr_power_limit(rd);
pr_debug("register package domain %s\n", rp->name);
power_zone = powercap_register_zone(&rd->power_zone,
rp->priv->control_type, rp->name,
NULL, &zone_ops[rd->id], nr_pl,
&constraint_ops);
if (IS_ERR(power_zone)) {
pr_debug("failed to register power zone %s\n",
rp->name);
return PTR_ERR(power_zone);
}
/* track parent zone in per package/socket data */
rp->power_zone = power_zone;
/* done, only one package domain per socket */
break;
}
}
if (!power_zone) {
pr_err("no package domain found, unknown topology!\n");
return -ENODEV;
}
/* now register domains as children of the socket/package */
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
if (rd->id == RAPL_DOMAIN_PACKAGE)
continue;
/* number of power limits per domain varies */
nr_pl = find_nr_power_limit(rd);
power_zone = powercap_register_zone(&rd->power_zone,
rp->priv->control_type,
rd->name, rp->power_zone,
&zone_ops[rd->id], nr_pl,
&constraint_ops);
if (IS_ERR(power_zone)) {
pr_debug("failed to register power_zone, %s:%s\n",
rp->name, rd->name);
ret = PTR_ERR(power_zone);
goto err_cleanup;
}
}
return 0;
err_cleanup:
/*
* Clean up previously initialized domains within the package if we
* failed after the first domain setup.
*/
while (--rd >= rp->domains) {
pr_debug("unregister %s domain %s\n", rp->name, rd->name);
powercap_unregister_zone(rp->priv->control_type,
&rd->power_zone);
}
return ret;
}
int rapl_add_platform_domain(struct rapl_if_priv *priv)
{
struct rapl_domain *rd;
struct powercap_zone *power_zone;
struct reg_action ra;
int ret;
ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
ra.mask = ~0;
ret = priv->read_raw(0, &ra);
if (ret || !ra.value)
return -ENODEV;
ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
ra.mask = ~0;
ret = priv->read_raw(0, &ra);
if (ret || !ra.value)
return -ENODEV;
rd = kzalloc(sizeof(*rd), GFP_KERNEL);
if (!rd)
return -ENOMEM;
rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
rd->id = RAPL_DOMAIN_PLATFORM;
rd->regs[RAPL_DOMAIN_REG_LIMIT] =
priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
rd->regs[RAPL_DOMAIN_REG_STATUS] =
priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
rd->rpl[0].prim_id = PL1_ENABLE;
rd->rpl[0].name = pl1_name;
rd->rpl[1].prim_id = PL2_ENABLE;
rd->rpl[1].name = pl2_name;
rd->rp = rapl_find_package_domain(0, priv);
power_zone = powercap_register_zone(&rd->power_zone, priv->control_type,
"psys", NULL,
&zone_ops[RAPL_DOMAIN_PLATFORM],
2, &constraint_ops);
if (IS_ERR(power_zone)) {
kfree(rd);
return PTR_ERR(power_zone);
}
priv->platform_rapl_domain = rd;
return 0;
}
EXPORT_SYMBOL_GPL(rapl_add_platform_domain);
void rapl_remove_platform_domain(struct rapl_if_priv *priv)
{
if (priv->platform_rapl_domain) {
powercap_unregister_zone(priv->control_type,
&priv->platform_rapl_domain->power_zone);
kfree(priv->platform_rapl_domain);
}
}
EXPORT_SYMBOL_GPL(rapl_remove_platform_domain);
static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
{
struct reg_action ra;
switch (domain) {
case RAPL_DOMAIN_PACKAGE:
case RAPL_DOMAIN_PP0:
case RAPL_DOMAIN_PP1:
case RAPL_DOMAIN_DRAM:
ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
break;
case RAPL_DOMAIN_PLATFORM:
/* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
return -EINVAL;
default:
pr_err("invalid domain id %d\n", domain);
return -EINVAL;
}
/* make sure domain counters are available and contains non-zero
* values, otherwise skip it.
*/
ra.mask = ~0;
if (rp->priv->read_raw(cpu, &ra) || !ra.value)
return -ENODEV;
return 0;
}
/*
* Check if power limits are available. Two cases when they are not available:
* 1. Locked by BIOS, in this case we still provide read-only access so that
* users can see what limit is set by the BIOS.
* 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
* exist at all. In this case, we do not show the constraints in powercap.
*
* Called after domains are detected and initialized.
*/
static void rapl_detect_powerlimit(struct rapl_domain *rd)
{
u64 val64;
int i;
/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
if (val64) {
pr_info("RAPL %s domain %s locked by BIOS\n",
rd->rp->name, rd->name);
rd->state |= DOMAIN_STATE_BIOS_LOCKED;
}
}
/* check if power limit MSR exists, otherwise domain is monitoring only */
for (i = 0; i < NR_POWER_LIMITS; i++) {
int prim = rd->rpl[i].prim_id;
if (rapl_read_data_raw(rd, prim, false, &val64))
rd->rpl[i].name = NULL;
}
}
/* Detect active and valid domains for the given CPU, caller must
* ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
*/
static int rapl_detect_domains(struct rapl_package *rp, int cpu)
{
struct rapl_domain *rd;
int i;
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
/* use physical package id to read counters */
if (!rapl_check_domain(cpu, i, rp)) {
rp->domain_map |= 1 << i;
pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
}
}
rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
if (!rp->nr_domains) {
pr_debug("no valid rapl domains found in %s\n", rp->name);
return -ENODEV;
}
pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
GFP_KERNEL);
if (!rp->domains)
return -ENOMEM;
rapl_init_domains(rp);
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
rapl_detect_powerlimit(rd);
return 0;
}
/* called from CPU hotplug notifier, hotplug lock held */
void rapl_remove_package(struct rapl_package *rp)
{
struct rapl_domain *rd, *rd_package = NULL;
package_power_limit_irq_restore(rp);
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
rapl_write_data_raw(rd, PL1_ENABLE, 0);
rapl_write_data_raw(rd, PL1_CLAMP, 0);
if (find_nr_power_limit(rd) > 1) {
rapl_write_data_raw(rd, PL2_ENABLE, 0);
rapl_write_data_raw(rd, PL2_CLAMP, 0);
}
if (rd->id == RAPL_DOMAIN_PACKAGE) {
rd_package = rd;
continue;
}
pr_debug("remove package, undo power limit on %s: %s\n",
rp->name, rd->name);
powercap_unregister_zone(rp->priv->control_type,
&rd->power_zone);
}
/* do parent zone last */
powercap_unregister_zone(rp->priv->control_type,
&rd_package->power_zone);
list_del(&rp->plist);
kfree(rp);
}
EXPORT_SYMBOL_GPL(rapl_remove_package);
/* caller to ensure CPU hotplug lock is held */
struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
{
int id = topology_logical_die_id(cpu);
struct rapl_package *rp;
list_for_each_entry(rp, &rapl_packages, plist) {
if (rp->id == id
&& rp->priv->control_type == priv->control_type)
return rp;
}
return NULL;
}
EXPORT_SYMBOL_GPL(rapl_find_package_domain);
/* called from CPU hotplug notifier, hotplug lock held */
struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
{
int id = topology_logical_die_id(cpu);
struct rapl_package *rp;
struct cpuinfo_x86 *c = &cpu_data(cpu);
int ret;
rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
if (!rp)
return ERR_PTR(-ENOMEM);
/* add the new package to the list */
rp->id = id;
rp->lead_cpu = cpu;
rp->priv = priv;
if (topology_max_die_per_package() > 1)
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
"package-%d-die-%d", c->phys_proc_id, c->cpu_die_id);
else
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
c->phys_proc_id);
/* check if the package contains valid domains */
if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
ret = -ENODEV;
goto err_free_package;
}
ret = rapl_package_register_powercap(rp);
if (!ret) {
INIT_LIST_HEAD(&rp->plist);
list_add(&rp->plist, &rapl_packages);
return rp;
}
err_free_package:
kfree(rp->domains);
kfree(rp);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(rapl_add_package);
static void power_limit_state_save(void)
{
struct rapl_package *rp;
struct rapl_domain *rd;
int nr_pl, ret, i;
get_online_cpus();
list_for_each_entry(rp, &rapl_packages, plist) {
if (!rp->power_zone)
continue;
rd = power_zone_to_rapl_domain(rp->power_zone);
nr_pl = find_nr_power_limit(rd);
for (i = 0; i < nr_pl; i++) {
switch (rd->rpl[i].prim_id) {
case PL1_ENABLE:
ret = rapl_read_data_raw(rd,
POWER_LIMIT1, true,
&rd->rpl[i].last_power_limit);
if (ret)
rd->rpl[i].last_power_limit = 0;
break;
case PL2_ENABLE:
ret = rapl_read_data_raw(rd,
POWER_LIMIT2, true,
&rd->rpl[i].last_power_limit);
if (ret)
rd->rpl[i].last_power_limit = 0;
break;
}
}
}
put_online_cpus();
}
static void power_limit_state_restore(void)
{
struct rapl_package *rp;
struct rapl_domain *rd;
int nr_pl, i;
get_online_cpus();
list_for_each_entry(rp, &rapl_packages, plist) {
if (!rp->power_zone)
continue;
rd = power_zone_to_rapl_domain(rp->power_zone);
nr_pl = find_nr_power_limit(rd);
for (i = 0; i < nr_pl; i++) {
switch (rd->rpl[i].prim_id) {
case PL1_ENABLE:
if (rd->rpl[i].last_power_limit)
rapl_write_data_raw(rd, POWER_LIMIT1,
rd->rpl[i].last_power_limit);
break;
case PL2_ENABLE:
if (rd->rpl[i].last_power_limit)
rapl_write_data_raw(rd, POWER_LIMIT2,
rd->rpl[i].last_power_limit);
break;
}
}
}
put_online_cpus();
}
static int rapl_pm_callback(struct notifier_block *nb,
unsigned long mode, void *_unused)
{
switch (mode) {
case PM_SUSPEND_PREPARE:
power_limit_state_save();
break;
case PM_POST_SUSPEND:
power_limit_state_restore();
break;
}
return NOTIFY_OK;
}
static struct notifier_block rapl_pm_notifier = {
.notifier_call = rapl_pm_callback,
};
static struct platform_device *rapl_msr_platdev;
static int __init rapl_init(void)
{
const struct x86_cpu_id *id;
int ret;
id = x86_match_cpu(rapl_ids);
if (!id) {
pr_err("driver does not support CPU family %d model %d\n",
boot_cpu_data.x86, boot_cpu_data.x86_model);
return -ENODEV;
}
rapl_defaults = (struct rapl_defaults *)id->driver_data;
ret = register_pm_notifier(&rapl_pm_notifier);
if (ret)
return ret;
rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
if (!rapl_msr_platdev) {
ret = -ENOMEM;
goto end;
}
ret = platform_device_add(rapl_msr_platdev);
if (ret)
platform_device_put(rapl_msr_platdev);
end:
if (ret)
unregister_pm_notifier(&rapl_pm_notifier);
return ret;
}
static void __exit rapl_exit(void)
{
platform_device_unregister(rapl_msr_platdev);
unregister_pm_notifier(&rapl_pm_notifier);
}
module_init(rapl_init);
module_exit(rapl_exit);
MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
MODULE_LICENSE("GPL v2");