WSL2-Linux-Kernel/include/linux/bpf.h

2976 строки
92 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*/
#ifndef _LINUX_BPF_H
#define _LINUX_BPF_H 1
#include <uapi/linux/bpf.h>
#include <uapi/linux/filter.h>
#include <linux/workqueue.h>
#include <linux/file.h>
#include <linux/percpu.h>
#include <linux/err.h>
#include <linux/rbtree_latch.h>
#include <linux/numa.h>
#include <linux/mm_types.h>
#include <linux/wait.h>
#include <linux/refcount.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/capability.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/percpu-refcount.h>
#include <linux/stddef.h>
#include <linux/bpfptr.h>
#include <linux/btf.h>
#include <linux/rcupdate_trace.h>
#include <linux/static_call.h>
#include <linux/memcontrol.h>
struct bpf_verifier_env;
struct bpf_verifier_log;
struct perf_event;
struct bpf_prog;
struct bpf_prog_aux;
struct bpf_map;
struct sock;
struct seq_file;
struct btf;
struct btf_type;
struct exception_table_entry;
struct seq_operations;
struct bpf_iter_aux_info;
struct bpf_local_storage;
struct bpf_local_storage_map;
struct kobject;
struct mem_cgroup;
struct module;
struct bpf_func_state;
struct ftrace_ops;
struct cgroup;
extern struct idr btf_idr;
extern spinlock_t btf_idr_lock;
extern struct kobject *btf_kobj;
extern struct bpf_mem_alloc bpf_global_ma;
extern bool bpf_global_ma_set;
typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
typedef unsigned int (*bpf_func_t)(const void *,
const struct bpf_insn *);
struct bpf_iter_seq_info {
const struct seq_operations *seq_ops;
bpf_iter_init_seq_priv_t init_seq_private;
bpf_iter_fini_seq_priv_t fini_seq_private;
u32 seq_priv_size;
};
/* map is generic key/value storage optionally accessible by eBPF programs */
struct bpf_map_ops {
/* funcs callable from userspace (via syscall) */
int (*map_alloc_check)(union bpf_attr *attr);
struct bpf_map *(*map_alloc)(union bpf_attr *attr);
void (*map_release)(struct bpf_map *map, struct file *map_file);
void (*map_free)(struct bpf_map *map);
int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
void (*map_release_uref)(struct bpf_map *map);
void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
union bpf_attr __user *uattr);
int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
void *value, u64 flags);
int (*map_lookup_and_delete_batch)(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
union bpf_attr __user *uattr);
/* funcs callable from userspace and from eBPF programs */
void *(*map_lookup_elem)(struct bpf_map *map, void *key);
int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
int (*map_delete_elem)(struct bpf_map *map, void *key);
int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
int (*map_pop_elem)(struct bpf_map *map, void *value);
int (*map_peek_elem)(struct bpf_map *map, void *value);
void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
/* funcs called by prog_array and perf_event_array map */
void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
int fd);
void (*map_fd_put_ptr)(void *ptr);
int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
u32 (*map_fd_sys_lookup_elem)(void *ptr);
void (*map_seq_show_elem)(struct bpf_map *map, void *key,
struct seq_file *m);
int (*map_check_btf)(const struct bpf_map *map,
const struct btf *btf,
const struct btf_type *key_type,
const struct btf_type *value_type);
/* Prog poke tracking helpers. */
int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
struct bpf_prog *new);
/* Direct value access helpers. */
int (*map_direct_value_addr)(const struct bpf_map *map,
u64 *imm, u32 off);
int (*map_direct_value_meta)(const struct bpf_map *map,
u64 imm, u32 *off);
int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
struct poll_table_struct *pts);
/* Functions called by bpf_local_storage maps */
int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
void *owner, u32 size);
void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
void *owner, u32 size);
struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
/* Misc helpers.*/
int (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
/* map_meta_equal must be implemented for maps that can be
* used as an inner map. It is a runtime check to ensure
* an inner map can be inserted to an outer map.
*
* Some properties of the inner map has been used during the
* verification time. When inserting an inner map at the runtime,
* map_meta_equal has to ensure the inserting map has the same
* properties that the verifier has used earlier.
*/
bool (*map_meta_equal)(const struct bpf_map *meta0,
const struct bpf_map *meta1);
int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee);
int (*map_for_each_callback)(struct bpf_map *map,
bpf_callback_t callback_fn,
void *callback_ctx, u64 flags);
/* BTF id of struct allocated by map_alloc */
int *map_btf_id;
/* bpf_iter info used to open a seq_file */
const struct bpf_iter_seq_info *iter_seq_info;
};
enum {
/* Support at most 10 fields in a BTF type */
BTF_FIELDS_MAX = 10,
};
enum btf_field_type {
BPF_SPIN_LOCK = (1 << 0),
BPF_TIMER = (1 << 1),
BPF_KPTR_UNREF = (1 << 2),
BPF_KPTR_REF = (1 << 3),
BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF,
BPF_LIST_HEAD = (1 << 4),
BPF_LIST_NODE = (1 << 5),
BPF_RB_ROOT = (1 << 6),
BPF_RB_NODE = (1 << 7),
BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
BPF_RB_NODE | BPF_RB_ROOT,
};
struct btf_field_kptr {
struct btf *btf;
struct module *module;
btf_dtor_kfunc_t dtor;
u32 btf_id;
};
struct btf_field_graph_root {
struct btf *btf;
u32 value_btf_id;
u32 node_offset;
struct btf_record *value_rec;
};
struct btf_field {
u32 offset;
enum btf_field_type type;
union {
struct btf_field_kptr kptr;
struct btf_field_graph_root graph_root;
};
};
struct btf_record {
u32 cnt;
u32 field_mask;
int spin_lock_off;
int timer_off;
struct btf_field fields[];
};
struct btf_field_offs {
u32 cnt;
u32 field_off[BTF_FIELDS_MAX];
u8 field_sz[BTF_FIELDS_MAX];
};
struct bpf_map {
/* The first two cachelines with read-mostly members of which some
* are also accessed in fast-path (e.g. ops, max_entries).
*/
const struct bpf_map_ops *ops ____cacheline_aligned;
struct bpf_map *inner_map_meta;
#ifdef CONFIG_SECURITY
void *security;
#endif
enum bpf_map_type map_type;
u32 key_size;
u32 value_size;
u32 max_entries;
u64 map_extra; /* any per-map-type extra fields */
u32 map_flags;
u32 id;
struct btf_record *record;
int numa_node;
u32 btf_key_type_id;
u32 btf_value_type_id;
u32 btf_vmlinux_value_type_id;
struct btf *btf;
#ifdef CONFIG_MEMCG_KMEM
struct obj_cgroup *objcg;
#endif
char name[BPF_OBJ_NAME_LEN];
struct btf_field_offs *field_offs;
/* The 3rd and 4th cacheline with misc members to avoid false sharing
* particularly with refcounting.
*/
atomic64_t refcnt ____cacheline_aligned;
atomic64_t usercnt;
struct work_struct work;
struct mutex freeze_mutex;
atomic64_t writecnt;
/* 'Ownership' of program-containing map is claimed by the first program
* that is going to use this map or by the first program which FD is
* stored in the map to make sure that all callers and callees have the
* same prog type, JITed flag and xdp_has_frags flag.
*/
struct {
spinlock_t lock;
enum bpf_prog_type type;
bool jited;
bool xdp_has_frags;
} owner;
bool bypass_spec_v1;
bool frozen; /* write-once; write-protected by freeze_mutex */
};
static inline const char *btf_field_type_name(enum btf_field_type type)
{
switch (type) {
case BPF_SPIN_LOCK:
return "bpf_spin_lock";
case BPF_TIMER:
return "bpf_timer";
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
return "kptr";
case BPF_LIST_HEAD:
return "bpf_list_head";
case BPF_LIST_NODE:
return "bpf_list_node";
case BPF_RB_ROOT:
return "bpf_rb_root";
case BPF_RB_NODE:
return "bpf_rb_node";
default:
WARN_ON_ONCE(1);
return "unknown";
}
}
static inline u32 btf_field_type_size(enum btf_field_type type)
{
switch (type) {
case BPF_SPIN_LOCK:
return sizeof(struct bpf_spin_lock);
case BPF_TIMER:
return sizeof(struct bpf_timer);
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
return sizeof(u64);
case BPF_LIST_HEAD:
return sizeof(struct bpf_list_head);
case BPF_LIST_NODE:
return sizeof(struct bpf_list_node);
case BPF_RB_ROOT:
return sizeof(struct bpf_rb_root);
case BPF_RB_NODE:
return sizeof(struct bpf_rb_node);
default:
WARN_ON_ONCE(1);
return 0;
}
}
static inline u32 btf_field_type_align(enum btf_field_type type)
{
switch (type) {
case BPF_SPIN_LOCK:
return __alignof__(struct bpf_spin_lock);
case BPF_TIMER:
return __alignof__(struct bpf_timer);
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
return __alignof__(u64);
case BPF_LIST_HEAD:
return __alignof__(struct bpf_list_head);
case BPF_LIST_NODE:
return __alignof__(struct bpf_list_node);
case BPF_RB_ROOT:
return __alignof__(struct bpf_rb_root);
case BPF_RB_NODE:
return __alignof__(struct bpf_rb_node);
default:
WARN_ON_ONCE(1);
return 0;
}
}
static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
{
if (IS_ERR_OR_NULL(rec))
return false;
return rec->field_mask & type;
}
static inline void bpf_obj_init(const struct btf_field_offs *foffs, void *obj)
{
int i;
if (!foffs)
return;
for (i = 0; i < foffs->cnt; i++)
memset(obj + foffs->field_off[i], 0, foffs->field_sz[i]);
}
/* 'dst' must be a temporary buffer and should not point to memory that is being
* used in parallel by a bpf program or bpf syscall, otherwise the access from
* the bpf program or bpf syscall may be corrupted by the reinitialization,
* leading to weird problems. Even 'dst' is newly-allocated from bpf memory
* allocator, it is still possible for 'dst' to be used in parallel by a bpf
* program or bpf syscall.
*/
static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
{
bpf_obj_init(map->field_offs, dst);
}
/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
* forced to use 'long' read/writes to try to atomically copy long counters.
* Best-effort only. No barriers here, since it _will_ race with concurrent
* updates from BPF programs. Called from bpf syscall and mostly used with
* size 8 or 16 bytes, so ask compiler to inline it.
*/
static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
{
const long *lsrc = src;
long *ldst = dst;
size /= sizeof(long);
while (size--)
*ldst++ = *lsrc++;
}
/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
static inline void bpf_obj_memcpy(struct btf_field_offs *foffs,
void *dst, void *src, u32 size,
bool long_memcpy)
{
u32 curr_off = 0;
int i;
if (likely(!foffs)) {
if (long_memcpy)
bpf_long_memcpy(dst, src, round_up(size, 8));
else
memcpy(dst, src, size);
return;
}
for (i = 0; i < foffs->cnt; i++) {
u32 next_off = foffs->field_off[i];
u32 sz = next_off - curr_off;
memcpy(dst + curr_off, src + curr_off, sz);
curr_off += foffs->field_sz[i] + sz;
}
memcpy(dst + curr_off, src + curr_off, size - curr_off);
}
static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
{
bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, false);
}
static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
{
bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, true);
}
static inline void bpf_obj_memzero(struct btf_field_offs *foffs, void *dst, u32 size)
{
u32 curr_off = 0;
int i;
if (likely(!foffs)) {
memset(dst, 0, size);
return;
}
for (i = 0; i < foffs->cnt; i++) {
u32 next_off = foffs->field_off[i];
u32 sz = next_off - curr_off;
memset(dst + curr_off, 0, sz);
curr_off += foffs->field_sz[i] + sz;
}
memset(dst + curr_off, 0, size - curr_off);
}
static inline void zero_map_value(struct bpf_map *map, void *dst)
{
bpf_obj_memzero(map->field_offs, dst, map->value_size);
}
void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
bool lock_src);
void bpf_timer_cancel_and_free(void *timer);
void bpf_list_head_free(const struct btf_field *field, void *list_head,
struct bpf_spin_lock *spin_lock);
void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
struct bpf_spin_lock *spin_lock);
int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
struct bpf_offload_dev;
struct bpf_offloaded_map;
struct bpf_map_dev_ops {
int (*map_get_next_key)(struct bpf_offloaded_map *map,
void *key, void *next_key);
int (*map_lookup_elem)(struct bpf_offloaded_map *map,
void *key, void *value);
int (*map_update_elem)(struct bpf_offloaded_map *map,
void *key, void *value, u64 flags);
int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
};
struct bpf_offloaded_map {
struct bpf_map map;
struct net_device *netdev;
const struct bpf_map_dev_ops *dev_ops;
void *dev_priv;
struct list_head offloads;
};
static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
{
return container_of(map, struct bpf_offloaded_map, map);
}
static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
{
return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
}
static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
{
return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
map->ops->map_seq_show_elem;
}
int map_check_no_btf(const struct bpf_map *map,
const struct btf *btf,
const struct btf_type *key_type,
const struct btf_type *value_type);
bool bpf_map_meta_equal(const struct bpf_map *meta0,
const struct bpf_map *meta1);
extern const struct bpf_map_ops bpf_map_offload_ops;
/* bpf_type_flag contains a set of flags that are applicable to the values of
* arg_type, ret_type and reg_type. For example, a pointer value may be null,
* or a memory is read-only. We classify types into two categories: base types
* and extended types. Extended types are base types combined with a type flag.
*
* Currently there are no more than 32 base types in arg_type, ret_type and
* reg_types.
*/
#define BPF_BASE_TYPE_BITS 8
enum bpf_type_flag {
/* PTR may be NULL. */
PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
* compatible with both mutable and immutable memory.
*/
MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
/* MEM points to BPF ring buffer reservation. */
MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
/* MEM is in user address space. */
MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
* with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
* order to drop this tag, it must be passed into bpf_per_cpu_ptr()
* or bpf_this_cpu_ptr(), which will return the pointer corresponding
* to the specified cpu.
*/
MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
/* Indicates that the argument will be released. */
OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
* unreferenced and referenced kptr loaded from map value using a load
* instruction, so that they can only be dereferenced but not escape the
* BPF program into the kernel (i.e. cannot be passed as arguments to
* kfunc or bpf helpers).
*/
PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
/* DYNPTR points to memory local to the bpf program. */
DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
/* DYNPTR points to a kernel-produced ringbuf record. */
DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
/* Size is known at compile time. */
MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
/* MEM is of an allocated object of type in program BTF. This is used to
* tag PTR_TO_BTF_ID allocated using bpf_obj_new.
*/
MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
/* PTR was passed from the kernel in a trusted context, and may be
* passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
* Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
* PTR_UNTRUSTED refers to a kptr that was read directly from a map
* without invoking bpf_kptr_xchg(). What we really need to know is
* whether a pointer is safe to pass to a kfunc or BPF helper function.
* While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
* helpers, they do not cover all possible instances of unsafe
* pointers. For example, a pointer that was obtained from walking a
* struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
* fact that it may be NULL, invalid, etc. This is due to backwards
* compatibility requirements, as this was the behavior that was first
* introduced when kptrs were added. The behavior is now considered
* deprecated, and PTR_UNTRUSTED will eventually be removed.
*
* PTR_TRUSTED, on the other hand, is a pointer that the kernel
* guarantees to be valid and safe to pass to kfuncs and BPF helpers.
* For example, pointers passed to tracepoint arguments are considered
* PTR_TRUSTED, as are pointers that are passed to struct_ops
* callbacks. As alluded to above, pointers that are obtained from
* walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
* struct task_struct *task is PTR_TRUSTED, then accessing
* task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
* in a BPF register. Similarly, pointers passed to certain programs
* types such as kretprobes are not guaranteed to be valid, as they may
* for example contain an object that was recently freed.
*/
PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
* Currently only valid for linked-list and rbtree nodes.
*/
NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
__BPF_TYPE_FLAG_MAX,
__BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
};
#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF)
/* Max number of base types. */
#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
/* Max number of all types. */
#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
/* function argument constraints */
enum bpf_arg_type {
ARG_DONTCARE = 0, /* unused argument in helper function */
/* the following constraints used to prototype
* bpf_map_lookup/update/delete_elem() functions
*/
ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
/* Used to prototype bpf_memcmp() and other functions that access data
* on eBPF program stack
*/
ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
ARG_CONST_SIZE, /* number of bytes accessed from memory */
ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
ARG_PTR_TO_CTX, /* pointer to context */
ARG_ANYTHING, /* any (initialized) argument is ok */
ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
ARG_PTR_TO_INT, /* pointer to int */
ARG_PTR_TO_LONG, /* pointer to long */
ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
ARG_PTR_TO_STACK, /* pointer to stack */
ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
__BPF_ARG_TYPE_MAX,
/* Extended arg_types. */
ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
/* pointer to memory does not need to be initialized, helper function must fill
* all bytes or clear them in error case.
*/
ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM,
/* Pointer to valid memory of size known at compile time. */
ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
/* This must be the last entry. Its purpose is to ensure the enum is
* wide enough to hold the higher bits reserved for bpf_type_flag.
*/
__BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
};
static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
/* type of values returned from helper functions */
enum bpf_return_type {
RET_INTEGER, /* function returns integer */
RET_VOID, /* function doesn't return anything */
RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
RET_PTR_TO_MEM, /* returns a pointer to memory */
RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
__BPF_RET_TYPE_MAX,
/* Extended ret_types. */
RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
/* This must be the last entry. Its purpose is to ensure the enum is
* wide enough to hold the higher bits reserved for bpf_type_flag.
*/
__BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
};
static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
* to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
* instructions after verifying
*/
struct bpf_func_proto {
u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
bool gpl_only;
bool pkt_access;
bool might_sleep;
enum bpf_return_type ret_type;
union {
struct {
enum bpf_arg_type arg1_type;
enum bpf_arg_type arg2_type;
enum bpf_arg_type arg3_type;
enum bpf_arg_type arg4_type;
enum bpf_arg_type arg5_type;
};
enum bpf_arg_type arg_type[5];
};
union {
struct {
u32 *arg1_btf_id;
u32 *arg2_btf_id;
u32 *arg3_btf_id;
u32 *arg4_btf_id;
u32 *arg5_btf_id;
};
u32 *arg_btf_id[5];
struct {
size_t arg1_size;
size_t arg2_size;
size_t arg3_size;
size_t arg4_size;
size_t arg5_size;
};
size_t arg_size[5];
};
int *ret_btf_id; /* return value btf_id */
bool (*allowed)(const struct bpf_prog *prog);
};
/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
* the first argument to eBPF programs.
* For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
*/
struct bpf_context;
enum bpf_access_type {
BPF_READ = 1,
BPF_WRITE = 2
};
/* types of values stored in eBPF registers */
/* Pointer types represent:
* pointer
* pointer + imm
* pointer + (u16) var
* pointer + (u16) var + imm
* if (range > 0) then [ptr, ptr + range - off) is safe to access
* if (id > 0) means that some 'var' was added
* if (off > 0) means that 'imm' was added
*/
enum bpf_reg_type {
NOT_INIT = 0, /* nothing was written into register */
SCALAR_VALUE, /* reg doesn't contain a valid pointer */
PTR_TO_CTX, /* reg points to bpf_context */
CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
PTR_TO_MAP_VALUE, /* reg points to map element value */
PTR_TO_MAP_KEY, /* reg points to a map element key */
PTR_TO_STACK, /* reg == frame_pointer + offset */
PTR_TO_PACKET_META, /* skb->data - meta_len */
PTR_TO_PACKET, /* reg points to skb->data */
PTR_TO_PACKET_END, /* skb->data + headlen */
PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
PTR_TO_SOCKET, /* reg points to struct bpf_sock */
PTR_TO_SOCK_COMMON, /* reg points to sock_common */
PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
/* PTR_TO_BTF_ID points to a kernel struct that does not need
* to be null checked by the BPF program. This does not imply the
* pointer is _not_ null and in practice this can easily be a null
* pointer when reading pointer chains. The assumption is program
* context will handle null pointer dereference typically via fault
* handling. The verifier must keep this in mind and can make no
* assumptions about null or non-null when doing branch analysis.
* Further, when passed into helpers the helpers can not, without
* additional context, assume the value is non-null.
*/
PTR_TO_BTF_ID,
/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
* been checked for null. Used primarily to inform the verifier
* an explicit null check is required for this struct.
*/
PTR_TO_MEM, /* reg points to valid memory region */
PTR_TO_BUF, /* reg points to a read/write buffer */
PTR_TO_FUNC, /* reg points to a bpf program function */
CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
__BPF_REG_TYPE_MAX,
/* Extended reg_types. */
PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
/* This must be the last entry. Its purpose is to ensure the enum is
* wide enough to hold the higher bits reserved for bpf_type_flag.
*/
__BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
};
static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
/* The information passed from prog-specific *_is_valid_access
* back to the verifier.
*/
struct bpf_insn_access_aux {
enum bpf_reg_type reg_type;
union {
int ctx_field_size;
struct {
struct btf *btf;
u32 btf_id;
};
};
struct bpf_verifier_log *log; /* for verbose logs */
};
static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
{
aux->ctx_field_size = size;
}
static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
{
return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
insn->src_reg == BPF_PSEUDO_FUNC;
}
struct bpf_prog_ops {
int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
};
struct bpf_reg_state;
struct bpf_verifier_ops {
/* return eBPF function prototype for verification */
const struct bpf_func_proto *
(*get_func_proto)(enum bpf_func_id func_id,
const struct bpf_prog *prog);
/* return true if 'size' wide access at offset 'off' within bpf_context
* with 'type' (read or write) is allowed
*/
bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info);
int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
const struct bpf_prog *prog);
int (*gen_ld_abs)(const struct bpf_insn *orig,
struct bpf_insn *insn_buf);
u32 (*convert_ctx_access)(enum bpf_access_type type,
const struct bpf_insn *src,
struct bpf_insn *dst,
struct bpf_prog *prog, u32 *target_size);
int (*btf_struct_access)(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg,
int off, int size, enum bpf_access_type atype,
u32 *next_btf_id, enum bpf_type_flag *flag);
};
struct bpf_prog_offload_ops {
/* verifier basic callbacks */
int (*insn_hook)(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx);
int (*finalize)(struct bpf_verifier_env *env);
/* verifier optimization callbacks (called after .finalize) */
int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
struct bpf_insn *insn);
int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
/* program management callbacks */
int (*prepare)(struct bpf_prog *prog);
int (*translate)(struct bpf_prog *prog);
void (*destroy)(struct bpf_prog *prog);
};
struct bpf_prog_offload {
struct bpf_prog *prog;
struct net_device *netdev;
struct bpf_offload_dev *offdev;
void *dev_priv;
struct list_head offloads;
bool dev_state;
bool opt_failed;
void *jited_image;
u32 jited_len;
};
enum bpf_cgroup_storage_type {
BPF_CGROUP_STORAGE_SHARED,
BPF_CGROUP_STORAGE_PERCPU,
__BPF_CGROUP_STORAGE_MAX
};
#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
/* The longest tracepoint has 12 args.
* See include/trace/bpf_probe.h
*/
#define MAX_BPF_FUNC_ARGS 12
/* The maximum number of arguments passed through registers
* a single function may have.
*/
#define MAX_BPF_FUNC_REG_ARGS 5
/* The argument is a structure. */
#define BTF_FMODEL_STRUCT_ARG BIT(0)
/* The argument is signed. */
#define BTF_FMODEL_SIGNED_ARG BIT(1)
struct btf_func_model {
u8 ret_size;
u8 ret_flags;
u8 nr_args;
u8 arg_size[MAX_BPF_FUNC_ARGS];
u8 arg_flags[MAX_BPF_FUNC_ARGS];
};
/* Restore arguments before returning from trampoline to let original function
* continue executing. This flag is used for fentry progs when there are no
* fexit progs.
*/
#define BPF_TRAMP_F_RESTORE_REGS BIT(0)
/* Call original function after fentry progs, but before fexit progs.
* Makes sense for fentry/fexit, normal calls and indirect calls.
*/
#define BPF_TRAMP_F_CALL_ORIG BIT(1)
/* Skip current frame and return to parent. Makes sense for fentry/fexit
* programs only. Should not be used with normal calls and indirect calls.
*/
#define BPF_TRAMP_F_SKIP_FRAME BIT(2)
/* Store IP address of the caller on the trampoline stack,
* so it's available for trampoline's programs.
*/
#define BPF_TRAMP_F_IP_ARG BIT(3)
/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
/* Get original function from stack instead of from provided direct address.
* Makes sense for trampolines with fexit or fmod_ret programs.
*/
#define BPF_TRAMP_F_ORIG_STACK BIT(5)
/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
* e.g., a live patch. This flag is set and cleared by ftrace call backs,
*/
#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
* bytes on x86.
*/
enum {
#if defined(__s390x__)
BPF_MAX_TRAMP_LINKS = 27,
#else
BPF_MAX_TRAMP_LINKS = 38,
#endif
};
struct bpf_tramp_links {
struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
int nr_links;
};
struct bpf_tramp_run_ctx;
/* Different use cases for BPF trampoline:
* 1. replace nop at the function entry (kprobe equivalent)
* flags = BPF_TRAMP_F_RESTORE_REGS
* fentry = a set of programs to run before returning from trampoline
*
* 2. replace nop at the function entry (kprobe + kretprobe equivalent)
* flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
* orig_call = fentry_ip + MCOUNT_INSN_SIZE
* fentry = a set of program to run before calling original function
* fexit = a set of program to run after original function
*
* 3. replace direct call instruction anywhere in the function body
* or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
* With flags = 0
* fentry = a set of programs to run before returning from trampoline
* With flags = BPF_TRAMP_F_CALL_ORIG
* orig_call = original callback addr or direct function addr
* fentry = a set of program to run before calling original function
* fexit = a set of program to run after original function
*/
struct bpf_tramp_image;
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
const struct btf_func_model *m, u32 flags,
struct bpf_tramp_links *tlinks,
void *orig_call);
u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
struct bpf_tramp_run_ctx *run_ctx);
void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
struct bpf_tramp_run_ctx *run_ctx);
void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
struct bpf_tramp_run_ctx *run_ctx);
typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
struct bpf_tramp_run_ctx *run_ctx);
bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
struct bpf_ksym {
unsigned long start;
unsigned long end;
char name[KSYM_NAME_LEN];
struct list_head lnode;
struct latch_tree_node tnode;
bool prog;
};
enum bpf_tramp_prog_type {
BPF_TRAMP_FENTRY,
BPF_TRAMP_FEXIT,
BPF_TRAMP_MODIFY_RETURN,
BPF_TRAMP_MAX,
BPF_TRAMP_REPLACE, /* more than MAX */
};
struct bpf_tramp_image {
void *image;
struct bpf_ksym ksym;
struct percpu_ref pcref;
void *ip_after_call;
void *ip_epilogue;
union {
struct rcu_head rcu;
struct work_struct work;
};
};
struct bpf_trampoline {
/* hlist for trampoline_table */
struct hlist_node hlist;
struct ftrace_ops *fops;
/* serializes access to fields of this trampoline */
struct mutex mutex;
refcount_t refcnt;
u32 flags;
u64 key;
struct {
struct btf_func_model model;
void *addr;
bool ftrace_managed;
} func;
/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
* program by replacing one of its functions. func.addr is the address
* of the function it replaced.
*/
struct bpf_prog *extension_prog;
/* list of BPF programs using this trampoline */
struct hlist_head progs_hlist[BPF_TRAMP_MAX];
/* Number of attached programs. A counter per kind. */
int progs_cnt[BPF_TRAMP_MAX];
/* Executable image of trampoline */
struct bpf_tramp_image *cur_image;
u64 selector;
struct module *mod;
};
struct bpf_attach_target_info {
struct btf_func_model fmodel;
long tgt_addr;
const char *tgt_name;
const struct btf_type *tgt_type;
};
#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
struct bpf_dispatcher_prog {
struct bpf_prog *prog;
refcount_t users;
};
struct bpf_dispatcher {
/* dispatcher mutex */
struct mutex mutex;
void *func;
struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
int num_progs;
void *image;
void *rw_image;
u32 image_off;
struct bpf_ksym ksym;
#ifdef CONFIG_HAVE_STATIC_CALL
struct static_call_key *sc_key;
void *sc_tramp;
#endif
};
static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
const void *ctx,
const struct bpf_insn *insnsi,
bpf_func_t bpf_func)
{
return bpf_func(ctx, insnsi);
}
#ifdef CONFIG_BPF_JIT
int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
struct bpf_trampoline *bpf_trampoline_get(u64 key,
struct bpf_attach_target_info *tgt_info);
void bpf_trampoline_put(struct bpf_trampoline *tr);
int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
/*
* When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
* indirection with a direct call to the bpf program. If the architecture does
* not have STATIC_CALL, avoid a double-indirection.
*/
#ifdef CONFIG_HAVE_STATIC_CALL
#define __BPF_DISPATCHER_SC_INIT(_name) \
.sc_key = &STATIC_CALL_KEY(_name), \
.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
#define __BPF_DISPATCHER_SC(name) \
DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
#define __BPF_DISPATCHER_CALL(name) \
static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
#define __BPF_DISPATCHER_UPDATE(_d, _new) \
__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
#else
#define __BPF_DISPATCHER_SC_INIT(name)
#define __BPF_DISPATCHER_SC(name)
#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
#define __BPF_DISPATCHER_UPDATE(_d, _new)
#endif
#define BPF_DISPATCHER_INIT(_name) { \
.mutex = __MUTEX_INITIALIZER(_name.mutex), \
.func = &_name##_func, \
.progs = {}, \
.num_progs = 0, \
.image = NULL, \
.image_off = 0, \
.ksym = { \
.name = #_name, \
.lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
}, \
__BPF_DISPATCHER_SC_INIT(_name##_call) \
}
#define DEFINE_BPF_DISPATCHER(name) \
__BPF_DISPATCHER_SC(name); \
noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \
const void *ctx, \
const struct bpf_insn *insnsi, \
bpf_func_t bpf_func) \
{ \
return __BPF_DISPATCHER_CALL(name); \
} \
EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
struct bpf_dispatcher bpf_dispatcher_##name = \
BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
#define DECLARE_BPF_DISPATCHER(name) \
unsigned int bpf_dispatcher_##name##_func( \
const void *ctx, \
const struct bpf_insn *insnsi, \
bpf_func_t bpf_func); \
extern struct bpf_dispatcher bpf_dispatcher_##name;
#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
struct bpf_prog *to);
/* Called only from JIT-enabled code, so there's no need for stubs. */
void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
void bpf_image_ksym_del(struct bpf_ksym *ksym);
void bpf_ksym_add(struct bpf_ksym *ksym);
void bpf_ksym_del(struct bpf_ksym *ksym);
int bpf_jit_charge_modmem(u32 size);
void bpf_jit_uncharge_modmem(u32 size);
bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
#else
static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
struct bpf_trampoline *tr)
{
return -ENOTSUPP;
}
static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
struct bpf_trampoline *tr)
{
return -ENOTSUPP;
}
static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
struct bpf_attach_target_info *tgt_info)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
#define DEFINE_BPF_DISPATCHER(name)
#define DECLARE_BPF_DISPATCHER(name)
#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
#define BPF_DISPATCHER_PTR(name) NULL
static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
struct bpf_prog *from,
struct bpf_prog *to) {}
static inline bool is_bpf_image_address(unsigned long address)
{
return false;
}
static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
{
return false;
}
#endif
struct bpf_func_info_aux {
u16 linkage;
bool unreliable;
};
enum bpf_jit_poke_reason {
BPF_POKE_REASON_TAIL_CALL,
};
/* Descriptor of pokes pointing /into/ the JITed image. */
struct bpf_jit_poke_descriptor {
void *tailcall_target;
void *tailcall_bypass;
void *bypass_addr;
void *aux;
union {
struct {
struct bpf_map *map;
u32 key;
} tail_call;
};
bool tailcall_target_stable;
u8 adj_off;
u16 reason;
u32 insn_idx;
};
/* reg_type info for ctx arguments */
struct bpf_ctx_arg_aux {
u32 offset;
enum bpf_reg_type reg_type;
u32 btf_id;
};
struct btf_mod_pair {
struct btf *btf;
struct module *module;
};
struct bpf_kfunc_desc_tab;
struct bpf_prog_aux {
atomic64_t refcnt;
u32 used_map_cnt;
u32 used_btf_cnt;
u32 max_ctx_offset;
u32 max_pkt_offset;
u32 max_tp_access;
u32 stack_depth;
u32 id;
u32 func_cnt; /* used by non-func prog as the number of func progs */
u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
u32 attach_btf_id; /* in-kernel BTF type id to attach to */
u32 ctx_arg_info_size;
u32 max_rdonly_access;
u32 max_rdwr_access;
struct btf *attach_btf;
const struct bpf_ctx_arg_aux *ctx_arg_info;
struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
struct bpf_prog *dst_prog;
struct bpf_trampoline *dst_trampoline;
enum bpf_prog_type saved_dst_prog_type;
enum bpf_attach_type saved_dst_attach_type;
bool verifier_zext; /* Zero extensions has been inserted by verifier. */
bool dev_bound; /* Program is bound to the netdev. */
bool offload_requested; /* Program is bound and offloaded to the netdev. */
bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
bool func_proto_unreliable;
bool sleepable;
bool tail_call_reachable;
bool xdp_has_frags;
/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
const struct btf_type *attach_func_proto;
/* function name for valid attach_btf_id */
const char *attach_func_name;
struct bpf_prog **func;
void *jit_data; /* JIT specific data. arch dependent */
struct bpf_jit_poke_descriptor *poke_tab;
struct bpf_kfunc_desc_tab *kfunc_tab;
struct bpf_kfunc_btf_tab *kfunc_btf_tab;
u32 size_poke_tab;
struct bpf_ksym ksym;
const struct bpf_prog_ops *ops;
struct bpf_map **used_maps;
struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
struct btf_mod_pair *used_btfs;
struct bpf_prog *prog;
struct user_struct *user;
u64 load_time; /* ns since boottime */
u32 verified_insns;
int cgroup_atype; /* enum cgroup_bpf_attach_type */
struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
char name[BPF_OBJ_NAME_LEN];
#ifdef CONFIG_SECURITY
void *security;
#endif
struct bpf_prog_offload *offload;
struct btf *btf;
struct bpf_func_info *func_info;
struct bpf_func_info_aux *func_info_aux;
/* bpf_line_info loaded from userspace. linfo->insn_off
* has the xlated insn offset.
* Both the main and sub prog share the same linfo.
* The subprog can access its first linfo by
* using the linfo_idx.
*/
struct bpf_line_info *linfo;
/* jited_linfo is the jited addr of the linfo. It has a
* one to one mapping to linfo:
* jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
* Both the main and sub prog share the same jited_linfo.
* The subprog can access its first jited_linfo by
* using the linfo_idx.
*/
void **jited_linfo;
u32 func_info_cnt;
u32 nr_linfo;
/* subprog can use linfo_idx to access its first linfo and
* jited_linfo.
* main prog always has linfo_idx == 0
*/
u32 linfo_idx;
u32 num_exentries;
struct exception_table_entry *extable;
union {
struct work_struct work;
struct rcu_head rcu;
};
};
struct bpf_prog {
u16 pages; /* Number of allocated pages */
u16 jited:1, /* Is our filter JIT'ed? */
jit_requested:1,/* archs need to JIT the prog */
gpl_compatible:1, /* Is filter GPL compatible? */
cb_access:1, /* Is control block accessed? */
dst_needed:1, /* Do we need dst entry? */
blinding_requested:1, /* needs constant blinding */
blinded:1, /* Was blinded */
is_func:1, /* program is a bpf function */
kprobe_override:1, /* Do we override a kprobe? */
has_callchain_buf:1, /* callchain buffer allocated? */
enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
call_get_func_ip:1, /* Do we call get_func_ip() */
tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
enum bpf_prog_type type; /* Type of BPF program */
enum bpf_attach_type expected_attach_type; /* For some prog types */
u32 len; /* Number of filter blocks */
u32 jited_len; /* Size of jited insns in bytes */
u8 tag[BPF_TAG_SIZE];
struct bpf_prog_stats __percpu *stats;
int __percpu *active;
unsigned int (*bpf_func)(const void *ctx,
const struct bpf_insn *insn);
struct bpf_prog_aux *aux; /* Auxiliary fields */
struct sock_fprog_kern *orig_prog; /* Original BPF program */
/* Instructions for interpreter */
union {
DECLARE_FLEX_ARRAY(struct sock_filter, insns);
DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
};
};
struct bpf_array_aux {
/* Programs with direct jumps into programs part of this array. */
struct list_head poke_progs;
struct bpf_map *map;
struct mutex poke_mutex;
struct work_struct work;
};
struct bpf_link {
atomic64_t refcnt;
u32 id;
enum bpf_link_type type;
const struct bpf_link_ops *ops;
struct bpf_prog *prog;
struct work_struct work;
};
struct bpf_link_ops {
void (*release)(struct bpf_link *link);
void (*dealloc)(struct bpf_link *link);
int (*detach)(struct bpf_link *link);
int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
struct bpf_prog *old_prog);
void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
int (*fill_link_info)(const struct bpf_link *link,
struct bpf_link_info *info);
};
struct bpf_tramp_link {
struct bpf_link link;
struct hlist_node tramp_hlist;
u64 cookie;
};
struct bpf_shim_tramp_link {
struct bpf_tramp_link link;
struct bpf_trampoline *trampoline;
};
struct bpf_tracing_link {
struct bpf_tramp_link link;
enum bpf_attach_type attach_type;
struct bpf_trampoline *trampoline;
struct bpf_prog *tgt_prog;
};
struct bpf_link_primer {
struct bpf_link *link;
struct file *file;
int fd;
u32 id;
};
struct bpf_struct_ops_value;
struct btf_member;
#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
struct bpf_struct_ops {
const struct bpf_verifier_ops *verifier_ops;
int (*init)(struct btf *btf);
int (*check_member)(const struct btf_type *t,
const struct btf_member *member,
const struct bpf_prog *prog);
int (*init_member)(const struct btf_type *t,
const struct btf_member *member,
void *kdata, const void *udata);
int (*reg)(void *kdata);
void (*unreg)(void *kdata);
const struct btf_type *type;
const struct btf_type *value_type;
const char *name;
struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
u32 type_id;
u32 value_id;
};
#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
bool bpf_struct_ops_get(const void *kdata);
void bpf_struct_ops_put(const void *kdata);
int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
void *value);
int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
struct bpf_tramp_link *link,
const struct btf_func_model *model,
void *image, void *image_end);
static inline bool bpf_try_module_get(const void *data, struct module *owner)
{
if (owner == BPF_MODULE_OWNER)
return bpf_struct_ops_get(data);
else
return try_module_get(owner);
}
static inline void bpf_module_put(const void *data, struct module *owner)
{
if (owner == BPF_MODULE_OWNER)
bpf_struct_ops_put(data);
else
module_put(owner);
}
#ifdef CONFIG_NET
/* Define it here to avoid the use of forward declaration */
struct bpf_dummy_ops_state {
int val;
};
struct bpf_dummy_ops {
int (*test_1)(struct bpf_dummy_ops_state *cb);
int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
char a3, unsigned long a4);
int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
};
int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
#endif
#else
static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
{
return NULL;
}
static inline void bpf_struct_ops_init(struct btf *btf,
struct bpf_verifier_log *log)
{
}
static inline bool bpf_try_module_get(const void *data, struct module *owner)
{
return try_module_get(owner);
}
static inline void bpf_module_put(const void *data, struct module *owner)
{
module_put(owner);
}
static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
void *key,
void *value)
{
return -EINVAL;
}
#endif
#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
int cgroup_atype);
void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
#else
static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
int cgroup_atype)
{
return -EOPNOTSUPP;
}
static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
{
}
#endif
struct bpf_array {
struct bpf_map map;
u32 elem_size;
u32 index_mask;
struct bpf_array_aux *aux;
union {
DECLARE_FLEX_ARRAY(char, value) __aligned(8);
DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
};
};
#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
#define MAX_TAIL_CALL_CNT 33
/* Maximum number of loops for bpf_loop */
#define BPF_MAX_LOOPS BIT(23)
#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
BPF_F_RDONLY_PROG | \
BPF_F_WRONLY | \
BPF_F_WRONLY_PROG)
#define BPF_MAP_CAN_READ BIT(0)
#define BPF_MAP_CAN_WRITE BIT(1)
/* Maximum number of user-producer ring buffer samples that can be drained in
* a call to bpf_user_ringbuf_drain().
*/
#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
{
u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
* not possible.
*/
if (access_flags & BPF_F_RDONLY_PROG)
return BPF_MAP_CAN_READ;
else if (access_flags & BPF_F_WRONLY_PROG)
return BPF_MAP_CAN_WRITE;
else
return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
}
static inline bool bpf_map_flags_access_ok(u32 access_flags)
{
return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
(BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
}
struct bpf_event_entry {
struct perf_event *event;
struct file *perf_file;
struct file *map_file;
struct rcu_head rcu;
};
static inline bool map_type_contains_progs(struct bpf_map *map)
{
return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
map->map_type == BPF_MAP_TYPE_DEVMAP ||
map->map_type == BPF_MAP_TYPE_CPUMAP;
}
bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
int bpf_prog_calc_tag(struct bpf_prog *fp);
const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
unsigned long off, unsigned long len);
typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
const struct bpf_insn *src,
struct bpf_insn *dst,
struct bpf_prog *prog,
u32 *target_size);
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
/* an array of programs to be executed under rcu_lock.
*
* Typical usage:
* ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
*
* the structure returned by bpf_prog_array_alloc() should be populated
* with program pointers and the last pointer must be NULL.
* The user has to keep refcnt on the program and make sure the program
* is removed from the array before bpf_prog_put().
* The 'struct bpf_prog_array *' should only be replaced with xchg()
* since other cpus are walking the array of pointers in parallel.
*/
struct bpf_prog_array_item {
struct bpf_prog *prog;
union {
struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
u64 bpf_cookie;
};
};
struct bpf_prog_array {
struct rcu_head rcu;
struct bpf_prog_array_item items[];
};
struct bpf_empty_prog_array {
struct bpf_prog_array hdr;
struct bpf_prog *null_prog;
};
/* to avoid allocating empty bpf_prog_array for cgroups that
* don't have bpf program attached use one global 'bpf_empty_prog_array'
* It will not be modified the caller of bpf_prog_array_alloc()
* (since caller requested prog_cnt == 0)
* that pointer should be 'freed' by bpf_prog_array_free()
*/
extern struct bpf_empty_prog_array bpf_empty_prog_array;
struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
void bpf_prog_array_free(struct bpf_prog_array *progs);
/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
int bpf_prog_array_length(struct bpf_prog_array *progs);
bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
__u32 __user *prog_ids, u32 cnt);
void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
struct bpf_prog *old_prog);
int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
struct bpf_prog *prog);
int bpf_prog_array_copy_info(struct bpf_prog_array *array,
u32 *prog_ids, u32 request_cnt,
u32 *prog_cnt);
int bpf_prog_array_copy(struct bpf_prog_array *old_array,
struct bpf_prog *exclude_prog,
struct bpf_prog *include_prog,
u64 bpf_cookie,
struct bpf_prog_array **new_array);
struct bpf_run_ctx {};
struct bpf_cg_run_ctx {
struct bpf_run_ctx run_ctx;
const struct bpf_prog_array_item *prog_item;
int retval;
};
struct bpf_trace_run_ctx {
struct bpf_run_ctx run_ctx;
u64 bpf_cookie;
};
struct bpf_tramp_run_ctx {
struct bpf_run_ctx run_ctx;
u64 bpf_cookie;
struct bpf_run_ctx *saved_run_ctx;
};
static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
{
struct bpf_run_ctx *old_ctx = NULL;
#ifdef CONFIG_BPF_SYSCALL
old_ctx = current->bpf_ctx;
current->bpf_ctx = new_ctx;
#endif
return old_ctx;
}
static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
{
#ifdef CONFIG_BPF_SYSCALL
current->bpf_ctx = old_ctx;
#endif
}
/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
/* BPF program asks to set CN on the packet. */
#define BPF_RET_SET_CN (1 << 0)
typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array *array,
const void *ctx, bpf_prog_run_fn run_prog)
{
const struct bpf_prog_array_item *item;
const struct bpf_prog *prog;
struct bpf_run_ctx *old_run_ctx;
struct bpf_trace_run_ctx run_ctx;
u32 ret = 1;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
if (unlikely(!array))
return ret;
migrate_disable();
old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
item = &array->items[0];
while ((prog = READ_ONCE(item->prog))) {
run_ctx.bpf_cookie = item->bpf_cookie;
ret &= run_prog(prog, ctx);
item++;
}
bpf_reset_run_ctx(old_run_ctx);
migrate_enable();
return ret;
}
/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
*
* We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
* overall. As a result, we must use the bpf_prog_array_free_sleepable
* in order to use the tasks_trace rcu grace period.
*
* When a non-sleepable program is inside the array, we take the rcu read
* section and disable preemption for that program alone, so it can access
* rcu-protected dynamically sized maps.
*/
static __always_inline u32
bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu,
const void *ctx, bpf_prog_run_fn run_prog)
{
const struct bpf_prog_array_item *item;
const struct bpf_prog *prog;
const struct bpf_prog_array *array;
struct bpf_run_ctx *old_run_ctx;
struct bpf_trace_run_ctx run_ctx;
u32 ret = 1;
might_fault();
rcu_read_lock_trace();
migrate_disable();
array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
if (unlikely(!array))
goto out;
old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
item = &array->items[0];
while ((prog = READ_ONCE(item->prog))) {
if (!prog->aux->sleepable)
rcu_read_lock();
run_ctx.bpf_cookie = item->bpf_cookie;
ret &= run_prog(prog, ctx);
item++;
if (!prog->aux->sleepable)
rcu_read_unlock();
}
bpf_reset_run_ctx(old_run_ctx);
out:
migrate_enable();
rcu_read_unlock_trace();
return ret;
}
#ifdef CONFIG_BPF_SYSCALL
DECLARE_PER_CPU(int, bpf_prog_active);
extern struct mutex bpf_stats_enabled_mutex;
/*
* Block execution of BPF programs attached to instrumentation (perf,
* kprobes, tracepoints) to prevent deadlocks on map operations as any of
* these events can happen inside a region which holds a map bucket lock
* and can deadlock on it.
*/
static inline void bpf_disable_instrumentation(void)
{
migrate_disable();
this_cpu_inc(bpf_prog_active);
}
static inline void bpf_enable_instrumentation(void)
{
this_cpu_dec(bpf_prog_active);
migrate_enable();
}
extern const struct file_operations bpf_map_fops;
extern const struct file_operations bpf_prog_fops;
extern const struct file_operations bpf_iter_fops;
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
extern const struct bpf_prog_ops _name ## _prog_ops; \
extern const struct bpf_verifier_ops _name ## _verifier_ops;
#define BPF_MAP_TYPE(_id, _ops) \
extern const struct bpf_map_ops _ops;
#define BPF_LINK_TYPE(_id, _name)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
#undef BPF_LINK_TYPE
extern const struct bpf_prog_ops bpf_offload_prog_ops;
extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
extern const struct bpf_verifier_ops xdp_analyzer_ops;
struct bpf_prog *bpf_prog_get(u32 ufd);
struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
bool attach_drv);
void bpf_prog_add(struct bpf_prog *prog, int i);
void bpf_prog_sub(struct bpf_prog *prog, int i);
void bpf_prog_inc(struct bpf_prog *prog);
struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
void bpf_prog_put(struct bpf_prog *prog);
void bpf_prog_free_id(struct bpf_prog *prog);
void bpf_map_free_id(struct bpf_map *map);
struct btf_field *btf_record_find(const struct btf_record *rec,
u32 offset, enum btf_field_type type);
void btf_record_free(struct btf_record *rec);
void bpf_map_free_record(struct bpf_map *map);
struct btf_record *btf_record_dup(const struct btf_record *rec);
bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
struct bpf_map *bpf_map_get(u32 ufd);
struct bpf_map *bpf_map_get_with_uref(u32 ufd);
struct bpf_map *__bpf_map_get(struct fd f);
void bpf_map_inc(struct bpf_map *map);
void bpf_map_inc_with_uref(struct bpf_map *map);
struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
void bpf_map_put_with_uref(struct bpf_map *map);
void bpf_map_put(struct bpf_map *map);
void *bpf_map_area_alloc(u64 size, int numa_node);
void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
void bpf_map_area_free(void *base);
bool bpf_map_write_active(const struct bpf_map *map);
void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
int generic_map_lookup_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
int generic_map_delete_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
#ifdef CONFIG_MEMCG_KMEM
void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
int node);
void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
gfp_t flags);
void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
size_t align, gfp_t flags);
#else
static inline void *
bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
int node)
{
return kmalloc_node(size, flags, node);
}
static inline void *
bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
{
return kzalloc(size, flags);
}
static inline void *
bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
{
return kvcalloc(n, size, flags);
}
static inline void __percpu *
bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
gfp_t flags)
{
return __alloc_percpu_gfp(size, align, flags);
}
#endif
extern int sysctl_unprivileged_bpf_disabled;
static inline bool bpf_allow_ptr_leaks(void)
{
return perfmon_capable();
}
static inline bool bpf_allow_uninit_stack(void)
{
return perfmon_capable();
}
static inline bool bpf_bypass_spec_v1(void)
{
return perfmon_capable();
}
static inline bool bpf_bypass_spec_v4(void)
{
return perfmon_capable();
}
int bpf_map_new_fd(struct bpf_map *map, int flags);
int bpf_prog_new_fd(struct bpf_prog *prog);
void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
const struct bpf_link_ops *ops, struct bpf_prog *prog);
int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
int bpf_link_settle(struct bpf_link_primer *primer);
void bpf_link_cleanup(struct bpf_link_primer *primer);
void bpf_link_inc(struct bpf_link *link);
void bpf_link_put(struct bpf_link *link);
int bpf_link_new_fd(struct bpf_link *link);
struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd);
struct bpf_link *bpf_link_get_from_fd(u32 ufd);
struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
int bpf_obj_pin_user(u32 ufd, const char __user *pathname);
int bpf_obj_get_user(const char __user *pathname, int flags);
#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
#define DEFINE_BPF_ITER_FUNC(target, args...) \
extern int bpf_iter_ ## target(args); \
int __init bpf_iter_ ## target(args) { return 0; }
/*
* The task type of iterators.
*
* For BPF task iterators, they can be parameterized with various
* parameters to visit only some of tasks.
*
* BPF_TASK_ITER_ALL (default)
* Iterate over resources of every task.
*
* BPF_TASK_ITER_TID
* Iterate over resources of a task/tid.
*
* BPF_TASK_ITER_TGID
* Iterate over resources of every task of a process / task group.
*/
enum bpf_iter_task_type {
BPF_TASK_ITER_ALL = 0,
BPF_TASK_ITER_TID,
BPF_TASK_ITER_TGID,
};
struct bpf_iter_aux_info {
/* for map_elem iter */
struct bpf_map *map;
/* for cgroup iter */
struct {
struct cgroup *start; /* starting cgroup */
enum bpf_cgroup_iter_order order;
} cgroup;
struct {
enum bpf_iter_task_type type;
u32 pid;
} task;
};
typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
union bpf_iter_link_info *linfo,
struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
struct seq_file *seq);
typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
struct bpf_link_info *info);
typedef const struct bpf_func_proto *
(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
const struct bpf_prog *prog);
enum bpf_iter_feature {
BPF_ITER_RESCHED = BIT(0),
};
#define BPF_ITER_CTX_ARG_MAX 2
struct bpf_iter_reg {
const char *target;
bpf_iter_attach_target_t attach_target;
bpf_iter_detach_target_t detach_target;
bpf_iter_show_fdinfo_t show_fdinfo;
bpf_iter_fill_link_info_t fill_link_info;
bpf_iter_get_func_proto_t get_func_proto;
u32 ctx_arg_info_size;
u32 feature;
struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
const struct bpf_iter_seq_info *seq_info;
};
struct bpf_iter_meta {
__bpf_md_ptr(struct seq_file *, seq);
u64 session_id;
u64 seq_num;
};
struct bpf_iter__bpf_map_elem {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct bpf_map *, map);
__bpf_md_ptr(void *, key);
__bpf_md_ptr(void *, value);
};
int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
bool bpf_iter_prog_supported(struct bpf_prog *prog);
const struct bpf_func_proto *
bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
int bpf_iter_new_fd(struct bpf_link *link);
bool bpf_link_is_iter(struct bpf_link *link);
struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
struct seq_file *seq);
int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
struct bpf_link_info *info);
int map_set_for_each_callback_args(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee);
int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
u64 flags);
int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
u64 flags);
int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
void *key, void *value, u64 map_flags);
int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
void *key, void *value, u64 map_flags);
int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
int bpf_get_file_flag(int flags);
int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
size_t actual_size);
/* verify correctness of eBPF program */
int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr);
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
#endif
struct btf *bpf_get_btf_vmlinux(void);
/* Map specifics */
struct xdp_frame;
struct sk_buff;
struct bpf_dtab_netdev;
struct bpf_cpu_map_entry;
void __dev_flush(void);
int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
struct net_device *dev_rx);
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
struct net_device *dev_rx);
int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
struct bpf_map *map, bool exclude_ingress);
int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
struct bpf_prog *xdp_prog);
int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
struct bpf_prog *xdp_prog, struct bpf_map *map,
bool exclude_ingress);
void __cpu_map_flush(void);
int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
struct net_device *dev_rx);
int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
struct sk_buff *skb);
/* Return map's numa specified by userspace */
static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
{
return (attr->map_flags & BPF_F_NUMA_NODE) ?
attr->numa_node : NUMA_NO_NODE;
}
struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
int array_map_alloc_check(union bpf_attr *attr);
int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_tracing(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
bool btf_ctx_access(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info);
static inline bool bpf_tracing_ctx_access(int off, int size,
enum bpf_access_type type)
{
if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
return true;
}
static inline bool bpf_tracing_btf_ctx_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (!bpf_tracing_ctx_access(off, size, type))
return false;
return btf_ctx_access(off, size, type, prog, info);
}
int btf_struct_access(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg,
int off, int size, enum bpf_access_type atype,
u32 *next_btf_id, enum bpf_type_flag *flag);
bool btf_struct_ids_match(struct bpf_verifier_log *log,
const struct btf *btf, u32 id, int off,
const struct btf *need_btf, u32 need_type_id,
bool strict);
int btf_distill_func_proto(struct bpf_verifier_log *log,
struct btf *btf,
const struct btf_type *func_proto,
const char *func_name,
struct btf_func_model *m);
struct bpf_reg_state;
int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
struct bpf_reg_state *regs);
int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
struct bpf_reg_state *regs);
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
struct bpf_reg_state *reg);
int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
struct btf *btf, const struct btf_type *t);
struct bpf_prog *bpf_prog_by_id(u32 id);
struct bpf_link *bpf_link_by_id(u32 id);
const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
void bpf_task_storage_free(struct task_struct *task);
void bpf_cgrp_storage_free(struct cgroup *cgroup);
bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
const struct bpf_insn *insn);
struct bpf_core_ctx {
struct bpf_verifier_log *log;
const struct btf *btf;
};
bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg,
int off);
bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
const struct btf *reg_btf, u32 reg_id,
const struct btf *arg_btf, u32 arg_id);
int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
int relo_idx, void *insn);
static inline bool unprivileged_ebpf_enabled(void)
{
return !sysctl_unprivileged_bpf_disabled;
}
/* Not all bpf prog type has the bpf_ctx.
* For the bpf prog type that has initialized the bpf_ctx,
* this function can be used to decide if a kernel function
* is called by a bpf program.
*/
static inline bool has_current_bpf_ctx(void)
{
return !!current->bpf_ctx;
}
void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
#else /* !CONFIG_BPF_SYSCALL */
static inline struct bpf_prog *bpf_prog_get(u32 ufd)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
enum bpf_prog_type type,
bool attach_drv)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_prog_add(struct bpf_prog *prog, int i)
{
}
static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
{
}
static inline void bpf_prog_put(struct bpf_prog *prog)
{
}
static inline void bpf_prog_inc(struct bpf_prog *prog)
{
}
static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog *prog)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
const struct bpf_link_ops *ops,
struct bpf_prog *prog)
{
}
static inline int bpf_link_prime(struct bpf_link *link,
struct bpf_link_primer *primer)
{
return -EOPNOTSUPP;
}
static inline int bpf_link_settle(struct bpf_link_primer *primer)
{
return -EOPNOTSUPP;
}
static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
{
}
static inline void bpf_link_inc(struct bpf_link *link)
{
}
static inline void bpf_link_put(struct bpf_link *link)
{
}
static inline int bpf_obj_get_user(const char __user *pathname, int flags)
{
return -EOPNOTSUPP;
}
static inline void __dev_flush(void)
{
}
struct xdp_frame;
struct bpf_dtab_netdev;
struct bpf_cpu_map_entry;
static inline
int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
struct net_device *dev_rx)
{
return 0;
}
static inline
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
struct net_device *dev_rx)
{
return 0;
}
static inline
int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
struct bpf_map *map, bool exclude_ingress)
{
return 0;
}
struct sk_buff;
static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
struct sk_buff *skb,
struct bpf_prog *xdp_prog)
{
return 0;
}
static inline
int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
struct bpf_prog *xdp_prog, struct bpf_map *map,
bool exclude_ingress)
{
return 0;
}
static inline void __cpu_map_flush(void)
{
}
static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
struct xdp_frame *xdpf,
struct net_device *dev_rx)
{
return 0;
}
static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
struct sk_buff *skb)
{
return -EOPNOTSUPP;
}
static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
enum bpf_prog_type type)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline void bpf_map_put(struct bpf_map *map)
{
}
static inline struct bpf_prog *bpf_prog_by_id(u32 id)
{
return ERR_PTR(-ENOTSUPP);
}
static inline int btf_struct_access(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg,
int off, int size, enum bpf_access_type atype,
u32 *next_btf_id, enum bpf_type_flag *flag)
{
return -EACCES;
}
static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)
{
return NULL;
}
static inline void bpf_task_storage_free(struct task_struct *task)
{
}
static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
{
return false;
}
static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
const struct bpf_insn *insn)
{
return NULL;
}
static inline bool unprivileged_ebpf_enabled(void)
{
return false;
}
static inline bool has_current_bpf_ctx(void)
{
return false;
}
static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
{
}
static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
{
}
#endif /* CONFIG_BPF_SYSCALL */
void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
struct btf_mod_pair *used_btfs, u32 len);
static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
enum bpf_prog_type type)
{
return bpf_prog_get_type_dev(ufd, type, false);
}
void __bpf_free_used_maps(struct bpf_prog_aux *aux,
struct bpf_map **used_maps, u32 len);
bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
int bpf_prog_offload_compile(struct bpf_prog *prog);
void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
struct bpf_prog *prog);
int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
int bpf_map_offload_update_elem(struct bpf_map *map,
void *key, void *value, u64 flags);
int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
int bpf_map_offload_get_next_key(struct bpf_map *map,
void *key, void *next_key);
bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
struct bpf_offload_dev *
bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
struct net_device *netdev);
void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
struct net_device *netdev);
bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
void unpriv_ebpf_notify(int new_state);
#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
struct bpf_prog_aux *prog_aux);
void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
void bpf_dev_bound_netdev_unregister(struct net_device *dev);
static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
{
return aux->dev_bound;
}
static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
{
return aux->offload_requested;
}
bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
static inline bool bpf_map_is_offloaded(struct bpf_map *map)
{
return unlikely(map->ops == &bpf_map_offload_ops);
}
struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
void bpf_map_offload_map_free(struct bpf_map *map);
int bpf_prog_test_run_syscall(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
int sock_map_bpf_prog_query(const union bpf_attr *attr,
union bpf_attr __user *uattr);
void sock_map_unhash(struct sock *sk);
void sock_map_destroy(struct sock *sk);
void sock_map_close(struct sock *sk, long timeout);
#else
static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
struct bpf_prog_aux *prog_aux)
{
return -EOPNOTSUPP;
}
static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
u32 func_id)
{
return NULL;
}
static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
union bpf_attr *attr)
{
return -EOPNOTSUPP;
}
static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
struct bpf_prog *old_prog)
{
return -EOPNOTSUPP;
}
static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
{
}
static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
{
return false;
}
static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
{
return false;
}
static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
{
return false;
}
static inline bool bpf_map_is_offloaded(struct bpf_map *map)
{
return false;
}
static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_map_offload_map_free(struct bpf_map *map)
{
}
static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
#ifdef CONFIG_BPF_SYSCALL
static inline int sock_map_get_from_fd(const union bpf_attr *attr,
struct bpf_prog *prog)
{
return -EINVAL;
}
static inline int sock_map_prog_detach(const union bpf_attr *attr,
enum bpf_prog_type ptype)
{
return -EOPNOTSUPP;
}
static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
u64 flags)
{
return -EOPNOTSUPP;
}
static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return -EINVAL;
}
#endif /* CONFIG_BPF_SYSCALL */
#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
void bpf_sk_reuseport_detach(struct sock *sk);
int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
void *value);
int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags);
#else
static inline void bpf_sk_reuseport_detach(struct sock *sk)
{
}
#ifdef CONFIG_BPF_SYSCALL
static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
void *key, void *value)
{
return -EOPNOTSUPP;
}
static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
void *key, void *value,
u64 map_flags)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_BPF_SYSCALL */
#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
/* verifier prototypes for helper functions called from eBPF programs */
extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
extern const struct bpf_func_proto bpf_map_update_elem_proto;
extern const struct bpf_func_proto bpf_map_delete_elem_proto;
extern const struct bpf_func_proto bpf_map_push_elem_proto;
extern const struct bpf_func_proto bpf_map_pop_elem_proto;
extern const struct bpf_func_proto bpf_map_peek_elem_proto;
extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
extern const struct bpf_func_proto bpf_tail_call_proto;
extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
extern const struct bpf_func_proto bpf_get_current_comm_proto;
extern const struct bpf_func_proto bpf_get_stackid_proto;
extern const struct bpf_func_proto bpf_get_stack_proto;
extern const struct bpf_func_proto bpf_get_task_stack_proto;
extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
extern const struct bpf_func_proto bpf_get_stack_proto_pe;
extern const struct bpf_func_proto bpf_sock_map_update_proto;
extern const struct bpf_func_proto bpf_sock_hash_update_proto;
extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
extern const struct bpf_func_proto bpf_spin_lock_proto;
extern const struct bpf_func_proto bpf_spin_unlock_proto;
extern const struct bpf_func_proto bpf_get_local_storage_proto;
extern const struct bpf_func_proto bpf_strtol_proto;
extern const struct bpf_func_proto bpf_strtoul_proto;
extern const struct bpf_func_proto bpf_tcp_sock_proto;
extern const struct bpf_func_proto bpf_jiffies64_proto;
extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
extern const struct bpf_func_proto bpf_event_output_data_proto;
extern const struct bpf_func_proto bpf_ringbuf_output_proto;
extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
extern const struct bpf_func_proto bpf_ringbuf_query_proto;
extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
extern const struct bpf_func_proto bpf_copy_from_user_proto;
extern const struct bpf_func_proto bpf_snprintf_btf_proto;
extern const struct bpf_func_proto bpf_snprintf_proto;
extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
extern const struct bpf_func_proto bpf_sock_from_file_proto;
extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
extern const struct bpf_func_proto bpf_task_storage_get_proto;
extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
extern const struct bpf_func_proto bpf_task_storage_delete_proto;
extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
extern const struct bpf_func_proto bpf_find_vma_proto;
extern const struct bpf_func_proto bpf_loop_proto;
extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
extern const struct bpf_func_proto bpf_set_retval_proto;
extern const struct bpf_func_proto bpf_get_retval_proto;
extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
const struct bpf_func_proto *tracing_prog_func_proto(
enum bpf_func_id func_id, const struct bpf_prog *prog);
/* Shared helpers among cBPF and eBPF. */
void bpf_user_rnd_init_once(void);
u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
#if defined(CONFIG_NET)
bool bpf_sock_common_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info);
bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info);
u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size);
#else
static inline bool bpf_sock_common_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
return false;
}
static inline bool bpf_sock_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
return false;
}
static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size)
{
return 0;
}
#endif
#ifdef CONFIG_INET
struct sk_reuseport_kern {
struct sk_buff *skb;
struct sock *sk;
struct sock *selected_sk;
struct sock *migrating_sk;
void *data_end;
u32 hash;
u32 reuseport_id;
bool bind_inany;
};
bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info);
u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size);
bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info);
u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size);
#else
static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
return false;
}
static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size)
{
return 0;
}
static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
return false;
}
static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size)
{
return 0;
}
#endif /* CONFIG_INET */
enum bpf_text_poke_type {
BPF_MOD_CALL,
BPF_MOD_JUMP,
};
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
void *addr1, void *addr2);
void *bpf_arch_text_copy(void *dst, void *src, size_t len);
int bpf_arch_text_invalidate(void *dst, size_t len);
struct btf_id_set;
bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
#define MAX_BPRINTF_VARARGS 12
#define MAX_BPRINTF_BUF 1024
struct bpf_bprintf_data {
u32 *bin_args;
char *buf;
bool get_bin_args;
bool get_buf;
};
int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
u32 num_args, struct bpf_bprintf_data *data);
void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
/* the implementation of the opaque uapi struct bpf_dynptr */
struct bpf_dynptr_kern {
void *data;
/* Size represents the number of usable bytes of dynptr data.
* If for example the offset is at 4 for a local dynptr whose data is
* of type u64, the number of usable bytes is 4.
*
* The upper 8 bits are reserved. It is as follows:
* Bits 0 - 23 = size
* Bits 24 - 30 = dynptr type
* Bit 31 = whether dynptr is read-only
*/
u32 size;
u32 offset;
} __aligned(8);
enum bpf_dynptr_type {
BPF_DYNPTR_TYPE_INVALID,
/* Points to memory that is local to the bpf program */
BPF_DYNPTR_TYPE_LOCAL,
/* Underlying data is a kernel-produced ringbuf record */
BPF_DYNPTR_TYPE_RINGBUF,
};
void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
enum bpf_dynptr_type type, u32 offset, u32 size);
void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
int bpf_dynptr_check_size(u32 size);
u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr);
#ifdef CONFIG_BPF_LSM
void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
void bpf_cgroup_atype_put(int cgroup_atype);
#else
static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
#endif /* CONFIG_BPF_LSM */
struct key;
#ifdef CONFIG_KEYS
struct bpf_key {
struct key *key;
bool has_ref;
};
#endif /* CONFIG_KEYS */
static inline bool type_is_alloc(u32 type)
{
return type & MEM_ALLOC;
}
static inline gfp_t bpf_memcg_flags(gfp_t flags)
{
if (memcg_bpf_enabled())
return flags | __GFP_ACCOUNT;
return flags;
}
#endif /* _LINUX_BPF_H */