WSL2-Linux-Kernel/drivers/iommu/amd_iommu.c

4212 строки
96 KiB
C

/*
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <jroedel@suse.de>
* Leo Duran <leo.duran@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/ratelimit.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/amba/bus.h>
#include <linux/pci-ats.h>
#include <linux/bitmap.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/iommu-helper.h>
#include <linux/iommu.h>
#include <linux/delay.h>
#include <linux/amd-iommu.h>
#include <linux/notifier.h>
#include <linux/export.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/dma-contiguous.h>
#include <linux/irqdomain.h>
#include <linux/percpu.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
#include <asm/msidef.h>
#include <asm/proto.h>
#include <asm/iommu.h>
#include <asm/gart.h>
#include <asm/dma.h>
#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
#include "irq_remapping.h"
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
#define LOOP_TIMEOUT 100000
/*
* This bitmap is used to advertise the page sizes our hardware support
* to the IOMMU core, which will then use this information to split
* physically contiguous memory regions it is mapping into page sizes
* that we support.
*
* 512GB Pages are not supported due to a hardware bug
*/
#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
LIST_HEAD(acpihid_map);
/*
* Domain for untranslated devices - only allocated
* if iommu=pt passed on kernel cmd line.
*/
static const struct iommu_ops amd_iommu_ops;
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
int amd_iommu_max_glx_val = -1;
static struct dma_map_ops amd_iommu_dma_ops;
/*
* This struct contains device specific data for the IOMMU
*/
struct iommu_dev_data {
struct list_head list; /* For domain->dev_list */
struct list_head dev_data_list; /* For global dev_data_list */
struct protection_domain *domain; /* Domain the device is bound to */
u16 devid; /* PCI Device ID */
u16 alias; /* Alias Device ID */
bool iommu_v2; /* Device can make use of IOMMUv2 */
bool passthrough; /* Device is identity mapped */
struct {
bool enabled;
int qdep;
} ats; /* ATS state */
bool pri_tlp; /* PASID TLB required for
PPR completions */
u32 errata; /* Bitmap for errata to apply */
};
/*
* general struct to manage commands send to an IOMMU
*/
struct iommu_cmd {
u32 data[4];
};
struct kmem_cache *amd_iommu_irq_cache;
static void update_domain(struct protection_domain *domain);
static int protection_domain_init(struct protection_domain *domain);
static void detach_device(struct device *dev);
/*
* For dynamic growth the aperture size is split into ranges of 128MB of
* DMA address space each. This struct represents one such range.
*/
struct aperture_range {
spinlock_t bitmap_lock;
/* address allocation bitmap */
unsigned long *bitmap;
unsigned long offset;
unsigned long next_bit;
/*
* Array of PTE pages for the aperture. In this array we save all the
* leaf pages of the domain page table used for the aperture. This way
* we don't need to walk the page table to find a specific PTE. We can
* just calculate its address in constant time.
*/
u64 *pte_pages[64];
};
/*
* Data container for a dma_ops specific protection domain
*/
struct dma_ops_domain {
/* generic protection domain information */
struct protection_domain domain;
/* size of the aperture for the mappings */
unsigned long aperture_size;
/* aperture index we start searching for free addresses */
u32 __percpu *next_index;
/* address space relevant data */
struct aperture_range *aperture[APERTURE_MAX_RANGES];
};
/****************************************************************************
*
* Helper functions
*
****************************************************************************/
static inline int match_hid_uid(struct device *dev,
struct acpihid_map_entry *entry)
{
const char *hid, *uid;
hid = acpi_device_hid(ACPI_COMPANION(dev));
uid = acpi_device_uid(ACPI_COMPANION(dev));
if (!hid || !(*hid))
return -ENODEV;
if (!uid || !(*uid))
return strcmp(hid, entry->hid);
if (!(*entry->uid))
return strcmp(hid, entry->hid);
return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
}
static inline u16 get_pci_device_id(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
return PCI_DEVID(pdev->bus->number, pdev->devfn);
}
static inline int get_acpihid_device_id(struct device *dev,
struct acpihid_map_entry **entry)
{
struct acpihid_map_entry *p;
list_for_each_entry(p, &acpihid_map, list) {
if (!match_hid_uid(dev, p)) {
if (entry)
*entry = p;
return p->devid;
}
}
return -EINVAL;
}
static inline int get_device_id(struct device *dev)
{
int devid;
if (dev_is_pci(dev))
devid = get_pci_device_id(dev);
else
devid = get_acpihid_device_id(dev, NULL);
return devid;
}
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
return container_of(dom, struct protection_domain, domain);
}
static struct iommu_dev_data *alloc_dev_data(u16 devid)
{
struct iommu_dev_data *dev_data;
unsigned long flags;
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
if (!dev_data)
return NULL;
dev_data->devid = devid;
spin_lock_irqsave(&dev_data_list_lock, flags);
list_add_tail(&dev_data->dev_data_list, &dev_data_list);
spin_unlock_irqrestore(&dev_data_list_lock, flags);
return dev_data;
}
static struct iommu_dev_data *search_dev_data(u16 devid)
{
struct iommu_dev_data *dev_data;
unsigned long flags;
spin_lock_irqsave(&dev_data_list_lock, flags);
list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
if (dev_data->devid == devid)
goto out_unlock;
}
dev_data = NULL;
out_unlock:
spin_unlock_irqrestore(&dev_data_list_lock, flags);
return dev_data;
}
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
*(u16 *)data = alias;
return 0;
}
static u16 get_alias(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
u16 devid, ivrs_alias, pci_alias;
/* The callers make sure that get_device_id() does not fail here */
devid = get_device_id(dev);
ivrs_alias = amd_iommu_alias_table[devid];
pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
if (ivrs_alias == pci_alias)
return ivrs_alias;
/*
* DMA alias showdown
*
* The IVRS is fairly reliable in telling us about aliases, but it
* can't know about every screwy device. If we don't have an IVRS
* reported alias, use the PCI reported alias. In that case we may
* still need to initialize the rlookup and dev_table entries if the
* alias is to a non-existent device.
*/
if (ivrs_alias == devid) {
if (!amd_iommu_rlookup_table[pci_alias]) {
amd_iommu_rlookup_table[pci_alias] =
amd_iommu_rlookup_table[devid];
memcpy(amd_iommu_dev_table[pci_alias].data,
amd_iommu_dev_table[devid].data,
sizeof(amd_iommu_dev_table[pci_alias].data));
}
return pci_alias;
}
pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
"for device %s[%04x:%04x], kernel reported alias "
"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
PCI_FUNC(pci_alias));
/*
* If we don't have a PCI DMA alias and the IVRS alias is on the same
* bus, then the IVRS table may know about a quirk that we don't.
*/
if (pci_alias == devid &&
PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
pci_add_dma_alias(pdev, ivrs_alias & 0xff);
pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
dev_name(dev));
}
return ivrs_alias;
}
static struct iommu_dev_data *find_dev_data(u16 devid)
{
struct iommu_dev_data *dev_data;
dev_data = search_dev_data(devid);
if (dev_data == NULL)
dev_data = alloc_dev_data(devid);
return dev_data;
}
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
return dev->archdata.iommu;
}
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
{
struct acpihid_map_entry *p, *entry = NULL;
int devid;
devid = get_acpihid_device_id(dev, &entry);
if (devid < 0)
return ERR_PTR(devid);
list_for_each_entry(p, &acpihid_map, list) {
if ((devid == p->devid) && p->group)
entry->group = p->group;
}
if (!entry->group)
entry->group = generic_device_group(dev);
return entry->group;
}
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
static const int caps[] = {
PCI_EXT_CAP_ID_ATS,
PCI_EXT_CAP_ID_PRI,
PCI_EXT_CAP_ID_PASID,
};
int i, pos;
for (i = 0; i < 3; ++i) {
pos = pci_find_ext_capability(pdev, caps[i]);
if (pos == 0)
return false;
}
return true;
}
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
struct iommu_dev_data *dev_data;
dev_data = get_dev_data(&pdev->dev);
return dev_data->errata & (1 << erratum) ? true : false;
}
/*
* This function actually applies the mapping to the page table of the
* dma_ops domain.
*/
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e)
{
u64 addr;
for (addr = e->address_start; addr < e->address_end;
addr += PAGE_SIZE) {
if (addr < dma_dom->aperture_size)
__set_bit(addr >> PAGE_SHIFT,
dma_dom->aperture[0]->bitmap);
}
}
/*
* Inits the unity mappings required for a specific device
*/
static void init_unity_mappings_for_device(struct device *dev,
struct dma_ops_domain *dma_dom)
{
struct unity_map_entry *e;
int devid;
devid = get_device_id(dev);
if (devid < 0)
return;
list_for_each_entry(e, &amd_iommu_unity_map, list) {
if (!(devid >= e->devid_start && devid <= e->devid_end))
continue;
alloc_unity_mapping(dma_dom, e);
}
}
/*
* This function checks if the driver got a valid device from the caller to
* avoid dereferencing invalid pointers.
*/
static bool check_device(struct device *dev)
{
int devid;
if (!dev || !dev->dma_mask)
return false;
devid = get_device_id(dev);
if (devid < 0)
return false;
/* Out of our scope? */
if (devid > amd_iommu_last_bdf)
return false;
if (amd_iommu_rlookup_table[devid] == NULL)
return false;
return true;
}
static void init_iommu_group(struct device *dev)
{
struct dma_ops_domain *dma_domain;
struct iommu_domain *domain;
struct iommu_group *group;
group = iommu_group_get_for_dev(dev);
if (IS_ERR(group))
return;
domain = iommu_group_default_domain(group);
if (!domain)
goto out;
dma_domain = to_pdomain(domain)->priv;
init_unity_mappings_for_device(dev, dma_domain);
out:
iommu_group_put(group);
}
static int iommu_init_device(struct device *dev)
{
struct iommu_dev_data *dev_data;
int devid;
if (dev->archdata.iommu)
return 0;
devid = get_device_id(dev);
if (devid < 0)
return devid;
dev_data = find_dev_data(devid);
if (!dev_data)
return -ENOMEM;
dev_data->alias = get_alias(dev);
if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
struct amd_iommu *iommu;
iommu = amd_iommu_rlookup_table[dev_data->devid];
dev_data->iommu_v2 = iommu->is_iommu_v2;
}
dev->archdata.iommu = dev_data;
iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
dev);
return 0;
}
static void iommu_ignore_device(struct device *dev)
{
u16 alias;
int devid;
devid = get_device_id(dev);
if (devid < 0)
return;
alias = get_alias(dev);
memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
amd_iommu_rlookup_table[devid] = NULL;
amd_iommu_rlookup_table[alias] = NULL;
}
static void iommu_uninit_device(struct device *dev)
{
int devid;
struct iommu_dev_data *dev_data;
devid = get_device_id(dev);
if (devid < 0)
return;
dev_data = search_dev_data(devid);
if (!dev_data)
return;
if (dev_data->domain)
detach_device(dev);
iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
dev);
iommu_group_remove_device(dev);
/* Remove dma-ops */
dev->archdata.dma_ops = NULL;
/*
* We keep dev_data around for unplugged devices and reuse it when the
* device is re-plugged - not doing so would introduce a ton of races.
*/
}
/****************************************************************************
*
* Interrupt handling functions
*
****************************************************************************/
static void dump_dte_entry(u16 devid)
{
int i;
for (i = 0; i < 4; ++i)
pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
amd_iommu_dev_table[devid].data[i]);
}
static void dump_command(unsigned long phys_addr)
{
struct iommu_cmd *cmd = phys_to_virt(phys_addr);
int i;
for (i = 0; i < 4; ++i)
pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
{
int type, devid, domid, flags;
volatile u32 *event = __evt;
int count = 0;
u64 address;
retry:
type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
address = (u64)(((u64)event[3]) << 32) | event[2];
if (type == 0) {
/* Did we hit the erratum? */
if (++count == LOOP_TIMEOUT) {
pr_err("AMD-Vi: No event written to event log\n");
return;
}
udelay(1);
goto retry;
}
printk(KERN_ERR "AMD-Vi: Event logged [");
switch (type) {
case EVENT_TYPE_ILL_DEV:
printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
dump_dte_entry(devid);
break;
case EVENT_TYPE_IO_FAULT:
printk("IO_PAGE_FAULT device=%02x:%02x.%x "
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
domid, address, flags);
break;
case EVENT_TYPE_DEV_TAB_ERR:
printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
case EVENT_TYPE_PAGE_TAB_ERR:
printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
domid, address, flags);
break;
case EVENT_TYPE_ILL_CMD:
printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
dump_command(address);
break;
case EVENT_TYPE_CMD_HARD_ERR:
printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
"flags=0x%04x]\n", address, flags);
break;
case EVENT_TYPE_IOTLB_INV_TO:
printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
"address=0x%016llx]\n",
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address);
break;
case EVENT_TYPE_INV_DEV_REQ:
printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
default:
printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
}
memset(__evt, 0, 4 * sizeof(u32));
}
static void iommu_poll_events(struct amd_iommu *iommu)
{
u32 head, tail;
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
while (head != tail) {
iommu_print_event(iommu, iommu->evt_buf + head);
head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
}
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
{
struct amd_iommu_fault fault;
if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
return;
}
fault.address = raw[1];
fault.pasid = PPR_PASID(raw[0]);
fault.device_id = PPR_DEVID(raw[0]);
fault.tag = PPR_TAG(raw[0]);
fault.flags = PPR_FLAGS(raw[0]);
atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}
static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
u32 head, tail;
if (iommu->ppr_log == NULL)
return;
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
while (head != tail) {
volatile u64 *raw;
u64 entry[2];
int i;
raw = (u64 *)(iommu->ppr_log + head);
/*
* Hardware bug: Interrupt may arrive before the entry is
* written to memory. If this happens we need to wait for the
* entry to arrive.
*/
for (i = 0; i < LOOP_TIMEOUT; ++i) {
if (PPR_REQ_TYPE(raw[0]) != 0)
break;
udelay(1);
}
/* Avoid memcpy function-call overhead */
entry[0] = raw[0];
entry[1] = raw[1];
/*
* To detect the hardware bug we need to clear the entry
* back to zero.
*/
raw[0] = raw[1] = 0UL;
/* Update head pointer of hardware ring-buffer */
head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
/* Handle PPR entry */
iommu_handle_ppr_entry(iommu, entry);
/* Refresh ring-buffer information */
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
}
}
irqreturn_t amd_iommu_int_thread(int irq, void *data)
{
struct amd_iommu *iommu = (struct amd_iommu *) data;
u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
/* Enable EVT and PPR interrupts again */
writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
iommu->mmio_base + MMIO_STATUS_OFFSET);
if (status & MMIO_STATUS_EVT_INT_MASK) {
pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
iommu_poll_events(iommu);
}
if (status & MMIO_STATUS_PPR_INT_MASK) {
pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
iommu_poll_ppr_log(iommu);
}
/*
* Hardware bug: ERBT1312
* When re-enabling interrupt (by writing 1
* to clear the bit), the hardware might also try to set
* the interrupt bit in the event status register.
* In this scenario, the bit will be set, and disable
* subsequent interrupts.
*
* Workaround: The IOMMU driver should read back the
* status register and check if the interrupt bits are cleared.
* If not, driver will need to go through the interrupt handler
* again and re-clear the bits
*/
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
}
return IRQ_HANDLED;
}
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
return IRQ_WAKE_THREAD;
}
/****************************************************************************
*
* IOMMU command queuing functions
*
****************************************************************************/
static int wait_on_sem(volatile u64 *sem)
{
int i = 0;
while (*sem == 0 && i < LOOP_TIMEOUT) {
udelay(1);
i += 1;
}
if (i == LOOP_TIMEOUT) {
pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
return -EIO;
}
return 0;
}
static void copy_cmd_to_buffer(struct amd_iommu *iommu,
struct iommu_cmd *cmd,
u32 tail)
{
u8 *target;
target = iommu->cmd_buf + tail;
tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
/* Copy command to buffer */
memcpy(target, cmd, sizeof(*cmd));
/* Tell the IOMMU about it */
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
}
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
{
WARN_ON(address & 0x7ULL);
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
cmd->data[1] = upper_32_bits(__pa(address));
cmd->data[2] = 1;
CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
size_t size, u16 domid, int pde)
{
u64 pages;
bool s;
pages = iommu_num_pages(address, size, PAGE_SIZE);
s = false;
if (pages > 1) {
/*
* If we have to flush more than one page, flush all
* TLB entries for this domain
*/
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
s = true;
}
address &= PAGE_MASK;
memset(cmd, 0, sizeof(*cmd));
cmd->data[1] |= domid;
cmd->data[2] = lower_32_bits(address);
cmd->data[3] = upper_32_bits(address);
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
if (s) /* size bit - we flush more than one 4kb page */
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
u64 address, size_t size)
{
u64 pages;
bool s;
pages = iommu_num_pages(address, size, PAGE_SIZE);
s = false;
if (pages > 1) {
/*
* If we have to flush more than one page, flush all
* TLB entries for this domain
*/
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
s = true;
}
address &= PAGE_MASK;
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
cmd->data[0] |= (qdep & 0xff) << 24;
cmd->data[1] = devid;
cmd->data[2] = lower_32_bits(address);
cmd->data[3] = upper_32_bits(address);
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
if (s)
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
u64 address, bool size)
{
memset(cmd, 0, sizeof(*cmd));
address &= ~(0xfffULL);
cmd->data[0] = pasid;
cmd->data[1] = domid;
cmd->data[2] = lower_32_bits(address);
cmd->data[3] = upper_32_bits(address);
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
if (size)
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}
static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
int qdep, u64 address, bool size)
{
memset(cmd, 0, sizeof(*cmd));
address &= ~(0xfffULL);
cmd->data[0] = devid;
cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
cmd->data[0] |= (qdep & 0xff) << 24;
cmd->data[1] = devid;
cmd->data[1] |= (pasid & 0xff) << 16;
cmd->data[2] = lower_32_bits(address);
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
cmd->data[3] = upper_32_bits(address);
if (size)
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
int status, int tag, bool gn)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
if (gn) {
cmd->data[1] = pasid;
cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
}
cmd->data[3] = tag & 0x1ff;
cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}
static void build_inv_all(struct iommu_cmd *cmd)
{
memset(cmd, 0, sizeof(*cmd));
CMD_SET_TYPE(cmd, CMD_INV_ALL);
}
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
CMD_SET_TYPE(cmd, CMD_INV_IRT);
}
/*
* Writes the command to the IOMMUs command buffer and informs the
* hardware about the new command.
*/
static int iommu_queue_command_sync(struct amd_iommu *iommu,
struct iommu_cmd *cmd,
bool sync)
{
u32 left, tail, head, next_tail;
unsigned long flags;
again:
spin_lock_irqsave(&iommu->lock, flags);
head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
left = (head - next_tail) % CMD_BUFFER_SIZE;
if (left <= 2) {
struct iommu_cmd sync_cmd;
volatile u64 sem = 0;
int ret;
build_completion_wait(&sync_cmd, (u64)&sem);
copy_cmd_to_buffer(iommu, &sync_cmd, tail);
spin_unlock_irqrestore(&iommu->lock, flags);
if ((ret = wait_on_sem(&sem)) != 0)
return ret;
goto again;
}
copy_cmd_to_buffer(iommu, cmd, tail);
/* We need to sync now to make sure all commands are processed */
iommu->need_sync = sync;
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
return iommu_queue_command_sync(iommu, cmd, true);
}
/*
* This function queues a completion wait command into the command
* buffer of an IOMMU
*/
static int iommu_completion_wait(struct amd_iommu *iommu)
{
struct iommu_cmd cmd;
volatile u64 sem = 0;
int ret;
if (!iommu->need_sync)
return 0;
build_completion_wait(&cmd, (u64)&sem);
ret = iommu_queue_command_sync(iommu, &cmd, false);
if (ret)
return ret;
return wait_on_sem(&sem);
}
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
build_inv_dte(&cmd, devid);
return iommu_queue_command(iommu, &cmd);
}
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
u32 devid;
for (devid = 0; devid <= 0xffff; ++devid)
iommu_flush_dte(iommu, devid);
iommu_completion_wait(iommu);
}
/*
* This function uses heavy locking and may disable irqs for some time. But
* this is no issue because it is only called during resume.
*/
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
u32 dom_id;
for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
struct iommu_cmd cmd;
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
dom_id, 1);
iommu_queue_command(iommu, &cmd);
}
iommu_completion_wait(iommu);
}
static void iommu_flush_all(struct amd_iommu *iommu)
{
struct iommu_cmd cmd;
build_inv_all(&cmd);
iommu_queue_command(iommu, &cmd);
iommu_completion_wait(iommu);
}
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
build_inv_irt(&cmd, devid);
iommu_queue_command(iommu, &cmd);
}
static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
u32 devid;
for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
}
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
if (iommu_feature(iommu, FEATURE_IA)) {
iommu_flush_all(iommu);
} else {
iommu_flush_dte_all(iommu);
iommu_flush_irt_all(iommu);
iommu_flush_tlb_all(iommu);
}
}
/*
* Command send function for flushing on-device TLB
*/
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
u64 address, size_t size)
{
struct amd_iommu *iommu;
struct iommu_cmd cmd;
int qdep;
qdep = dev_data->ats.qdep;
iommu = amd_iommu_rlookup_table[dev_data->devid];
build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
return iommu_queue_command(iommu, &cmd);
}
/*
* Command send function for invalidating a device table entry
*/
static int device_flush_dte(struct iommu_dev_data *dev_data)
{
struct amd_iommu *iommu;
u16 alias;
int ret;
iommu = amd_iommu_rlookup_table[dev_data->devid];
alias = dev_data->alias;
ret = iommu_flush_dte(iommu, dev_data->devid);
if (!ret && alias != dev_data->devid)
ret = iommu_flush_dte(iommu, alias);
if (ret)
return ret;
if (dev_data->ats.enabled)
ret = device_flush_iotlb(dev_data, 0, ~0UL);
return ret;
}
/*
* TLB invalidation function which is called from the mapping functions.
* It invalidates a single PTE if the range to flush is within a single
* page. Otherwise it flushes the whole TLB of the IOMMU.
*/
static void __domain_flush_pages(struct protection_domain *domain,
u64 address, size_t size, int pde)
{
struct iommu_dev_data *dev_data;
struct iommu_cmd cmd;
int ret = 0, i;
build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
for (i = 0; i < amd_iommus_present; ++i) {
if (!domain->dev_iommu[i])
continue;
/*
* Devices of this domain are behind this IOMMU
* We need a TLB flush
*/
ret |= iommu_queue_command(amd_iommus[i], &cmd);
}
list_for_each_entry(dev_data, &domain->dev_list, list) {
if (!dev_data->ats.enabled)
continue;
ret |= device_flush_iotlb(dev_data, address, size);
}
WARN_ON(ret);
}
static void domain_flush_pages(struct protection_domain *domain,
u64 address, size_t size)
{
__domain_flush_pages(domain, address, size, 0);
}
/* Flush the whole IO/TLB for a given protection domain */
static void domain_flush_tlb(struct protection_domain *domain)
{
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
}
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void domain_flush_tlb_pde(struct protection_domain *domain)
{
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
}
static void domain_flush_complete(struct protection_domain *domain)
{
int i;
for (i = 0; i < amd_iommus_present; ++i) {
if (!domain->dev_iommu[i])
continue;
/*
* Devices of this domain are behind this IOMMU
* We need to wait for completion of all commands.
*/
iommu_completion_wait(amd_iommus[i]);
}
}
/*
* This function flushes the DTEs for all devices in domain
*/
static void domain_flush_devices(struct protection_domain *domain)
{
struct iommu_dev_data *dev_data;
list_for_each_entry(dev_data, &domain->dev_list, list)
device_flush_dte(dev_data);
}
/****************************************************************************
*
* The functions below are used the create the page table mappings for
* unity mapped regions.
*
****************************************************************************/
/*
* This function is used to add another level to an IO page table. Adding
* another level increases the size of the address space by 9 bits to a size up
* to 64 bits.
*/
static bool increase_address_space(struct protection_domain *domain,
gfp_t gfp)
{
u64 *pte;
if (domain->mode == PAGE_MODE_6_LEVEL)
/* address space already 64 bit large */
return false;
pte = (void *)get_zeroed_page(gfp);
if (!pte)
return false;
*pte = PM_LEVEL_PDE(domain->mode,
virt_to_phys(domain->pt_root));
domain->pt_root = pte;
domain->mode += 1;
domain->updated = true;
return true;
}
static u64 *alloc_pte(struct protection_domain *domain,
unsigned long address,
unsigned long page_size,
u64 **pte_page,
gfp_t gfp)
{
int level, end_lvl;
u64 *pte, *page;
BUG_ON(!is_power_of_2(page_size));
while (address > PM_LEVEL_SIZE(domain->mode))
increase_address_space(domain, gfp);
level = domain->mode - 1;
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
address = PAGE_SIZE_ALIGN(address, page_size);
end_lvl = PAGE_SIZE_LEVEL(page_size);
while (level > end_lvl) {
u64 __pte, __npte;
__pte = *pte;
if (!IOMMU_PTE_PRESENT(__pte)) {
page = (u64 *)get_zeroed_page(gfp);
if (!page)
return NULL;
__npte = PM_LEVEL_PDE(level, virt_to_phys(page));
if (cmpxchg64(pte, __pte, __npte)) {
free_page((unsigned long)page);
continue;
}
}
/* No level skipping support yet */
if (PM_PTE_LEVEL(*pte) != level)
return NULL;
level -= 1;
pte = IOMMU_PTE_PAGE(*pte);
if (pte_page && level == end_lvl)
*pte_page = pte;
pte = &pte[PM_LEVEL_INDEX(level, address)];
}
return pte;
}
/*
* This function checks if there is a PTE for a given dma address. If
* there is one, it returns the pointer to it.
*/
static u64 *fetch_pte(struct protection_domain *domain,
unsigned long address,
unsigned long *page_size)
{
int level;
u64 *pte;
if (address > PM_LEVEL_SIZE(domain->mode))
return NULL;
level = domain->mode - 1;
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
*page_size = PTE_LEVEL_PAGE_SIZE(level);
while (level > 0) {
/* Not Present */
if (!IOMMU_PTE_PRESENT(*pte))
return NULL;
/* Large PTE */
if (PM_PTE_LEVEL(*pte) == 7 ||
PM_PTE_LEVEL(*pte) == 0)
break;
/* No level skipping support yet */
if (PM_PTE_LEVEL(*pte) != level)
return NULL;
level -= 1;
/* Walk to the next level */
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[PM_LEVEL_INDEX(level, address)];
*page_size = PTE_LEVEL_PAGE_SIZE(level);
}
if (PM_PTE_LEVEL(*pte) == 0x07) {
unsigned long pte_mask;
/*
* If we have a series of large PTEs, make
* sure to return a pointer to the first one.
*/
*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
pte = (u64 *)(((unsigned long)pte) & pte_mask);
}
return pte;
}
/*
* Generic mapping functions. It maps a physical address into a DMA
* address space. It allocates the page table pages if necessary.
* In the future it can be extended to a generic mapping function
* supporting all features of AMD IOMMU page tables like level skipping
* and full 64 bit address spaces.
*/
static int iommu_map_page(struct protection_domain *dom,
unsigned long bus_addr,
unsigned long phys_addr,
int prot,
unsigned long page_size)
{
u64 __pte, *pte;
int i, count;
BUG_ON(!IS_ALIGNED(bus_addr, page_size));
BUG_ON(!IS_ALIGNED(phys_addr, page_size));
if (!(prot & IOMMU_PROT_MASK))
return -EINVAL;
count = PAGE_SIZE_PTE_COUNT(page_size);
pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
if (!pte)
return -ENOMEM;
for (i = 0; i < count; ++i)
if (IOMMU_PTE_PRESENT(pte[i]))
return -EBUSY;
if (count > 1) {
__pte = PAGE_SIZE_PTE(phys_addr, page_size);
__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
} else
__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
if (prot & IOMMU_PROT_IR)
__pte |= IOMMU_PTE_IR;
if (prot & IOMMU_PROT_IW)
__pte |= IOMMU_PTE_IW;
for (i = 0; i < count; ++i)
pte[i] = __pte;
update_domain(dom);
return 0;
}
static unsigned long iommu_unmap_page(struct protection_domain *dom,
unsigned long bus_addr,
unsigned long page_size)
{
unsigned long long unmapped;
unsigned long unmap_size;
u64 *pte;
BUG_ON(!is_power_of_2(page_size));
unmapped = 0;
while (unmapped < page_size) {
pte = fetch_pte(dom, bus_addr, &unmap_size);
if (pte) {
int i, count;
count = PAGE_SIZE_PTE_COUNT(unmap_size);
for (i = 0; i < count; i++)
pte[i] = 0ULL;
}
bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
unmapped += unmap_size;
}
BUG_ON(unmapped && !is_power_of_2(unmapped));
return unmapped;
}
/****************************************************************************
*
* The next functions belong to the address allocator for the dma_ops
* interface functions. They work like the allocators in the other IOMMU
* drivers. Its basically a bitmap which marks the allocated pages in
* the aperture. Maybe it could be enhanced in the future to a more
* efficient allocator.
*
****************************************************************************/
/*
* The address allocator core functions.
*
* called with domain->lock held
*/
/*
* Used to reserve address ranges in the aperture (e.g. for exclusion
* ranges.
*/
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
unsigned long start_page,
unsigned int pages)
{
unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
if (start_page + pages > last_page)
pages = last_page - start_page;
for (i = start_page; i < start_page + pages; ++i) {
int index = i / APERTURE_RANGE_PAGES;
int page = i % APERTURE_RANGE_PAGES;
__set_bit(page, dom->aperture[index]->bitmap);
}
}
/*
* This function is used to add a new aperture range to an existing
* aperture in case of dma_ops domain allocation or address allocation
* failure.
*/
static int alloc_new_range(struct dma_ops_domain *dma_dom,
bool populate, gfp_t gfp)
{
int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
unsigned long i, old_size, pte_pgsize;
struct aperture_range *range;
struct amd_iommu *iommu;
unsigned long flags;
#ifdef CONFIG_IOMMU_STRESS
populate = false;
#endif
if (index >= APERTURE_MAX_RANGES)
return -ENOMEM;
range = kzalloc(sizeof(struct aperture_range), gfp);
if (!range)
return -ENOMEM;
range->bitmap = (void *)get_zeroed_page(gfp);
if (!range->bitmap)
goto out_free;
range->offset = dma_dom->aperture_size;
spin_lock_init(&range->bitmap_lock);
if (populate) {
unsigned long address = dma_dom->aperture_size;
int i, num_ptes = APERTURE_RANGE_PAGES / 512;
u64 *pte, *pte_page;
for (i = 0; i < num_ptes; ++i) {
pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
&pte_page, gfp);
if (!pte)
goto out_free;
range->pte_pages[i] = pte_page;
address += APERTURE_RANGE_SIZE / 64;
}
}
spin_lock_irqsave(&dma_dom->domain.lock, flags);
/* First take the bitmap_lock and then publish the range */
spin_lock(&range->bitmap_lock);
old_size = dma_dom->aperture_size;
dma_dom->aperture[index] = range;
dma_dom->aperture_size += APERTURE_RANGE_SIZE;
/* Reserve address range used for MSI messages */
if (old_size < MSI_ADDR_BASE_LO &&
dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
unsigned long spage;
int pages;
pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
dma_ops_reserve_addresses(dma_dom, spage, pages);
}
/* Initialize the exclusion range if necessary */
for_each_iommu(iommu) {
if (iommu->exclusion_start &&
iommu->exclusion_start >= dma_dom->aperture[index]->offset
&& iommu->exclusion_start < dma_dom->aperture_size) {
unsigned long startpage;
int pages = iommu_num_pages(iommu->exclusion_start,
iommu->exclusion_length,
PAGE_SIZE);
startpage = iommu->exclusion_start >> PAGE_SHIFT;
dma_ops_reserve_addresses(dma_dom, startpage, pages);
}
}
/*
* Check for areas already mapped as present in the new aperture
* range and mark those pages as reserved in the allocator. Such
* mappings may already exist as a result of requested unity
* mappings for devices.
*/
for (i = dma_dom->aperture[index]->offset;
i < dma_dom->aperture_size;
i += pte_pgsize) {
u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
if (!pte || !IOMMU_PTE_PRESENT(*pte))
continue;
dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
pte_pgsize >> 12);
}
update_domain(&dma_dom->domain);
spin_unlock(&range->bitmap_lock);
spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
return 0;
out_free:
update_domain(&dma_dom->domain);
free_page((unsigned long)range->bitmap);
kfree(range);
return -ENOMEM;
}
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
struct aperture_range *range,
unsigned long pages,
unsigned long dma_mask,
unsigned long boundary_size,
unsigned long align_mask,
bool trylock)
{
unsigned long offset, limit, flags;
dma_addr_t address;
bool flush = false;
offset = range->offset >> PAGE_SHIFT;
limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
dma_mask >> PAGE_SHIFT);
if (trylock) {
if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
return -1;
} else {
spin_lock_irqsave(&range->bitmap_lock, flags);
}
address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
pages, offset, boundary_size, align_mask);
if (address == -1) {
/* Nothing found, retry one time */
address = iommu_area_alloc(range->bitmap, limit,
0, pages, offset, boundary_size,
align_mask);
flush = true;
}
if (address != -1)
range->next_bit = address + pages;
spin_unlock_irqrestore(&range->bitmap_lock, flags);
if (flush) {
domain_flush_tlb(&dom->domain);
domain_flush_complete(&dom->domain);
}
return address;
}
static unsigned long dma_ops_area_alloc(struct device *dev,
struct dma_ops_domain *dom,
unsigned int pages,
unsigned long align_mask,
u64 dma_mask)
{
unsigned long boundary_size, mask;
unsigned long address = -1;
bool first = true;
u32 start, i;
preempt_disable();
mask = dma_get_seg_boundary(dev);
again:
start = this_cpu_read(*dom->next_index);
/* Sanity check - is it really necessary? */
if (unlikely(start > APERTURE_MAX_RANGES)) {
start = 0;
this_cpu_write(*dom->next_index, 0);
}
boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1UL << (BITS_PER_LONG - PAGE_SHIFT);
for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
struct aperture_range *range;
int index;
index = (start + i) % APERTURE_MAX_RANGES;
range = dom->aperture[index];
if (!range || range->offset >= dma_mask)
continue;
address = dma_ops_aperture_alloc(dom, range, pages,
dma_mask, boundary_size,
align_mask, first);
if (address != -1) {
address = range->offset + (address << PAGE_SHIFT);
this_cpu_write(*dom->next_index, index);
break;
}
}
if (address == -1 && first) {
first = false;
goto again;
}
preempt_enable();
return address;
}
static unsigned long dma_ops_alloc_addresses(struct device *dev,
struct dma_ops_domain *dom,
unsigned int pages,
unsigned long align_mask,
u64 dma_mask)
{
unsigned long address = -1;
while (address == -1) {
address = dma_ops_area_alloc(dev, dom, pages,
align_mask, dma_mask);
if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
break;
}
if (unlikely(address == -1))
address = DMA_ERROR_CODE;
WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
return address;
}
/*
* The address free function.
*
* called with domain->lock held
*/
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
unsigned long address,
unsigned int pages)
{
unsigned i = address >> APERTURE_RANGE_SHIFT;
struct aperture_range *range = dom->aperture[i];
unsigned long flags;
BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
#ifdef CONFIG_IOMMU_STRESS
if (i < 4)
return;
#endif
if (amd_iommu_unmap_flush) {
domain_flush_tlb(&dom->domain);
domain_flush_complete(&dom->domain);
}
address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
spin_lock_irqsave(&range->bitmap_lock, flags);
if (address + pages > range->next_bit)
range->next_bit = address + pages;
bitmap_clear(range->bitmap, address, pages);
spin_unlock_irqrestore(&range->bitmap_lock, flags);
}
/****************************************************************************
*
* The next functions belong to the domain allocation. A domain is
* allocated for every IOMMU as the default domain. If device isolation
* is enabled, every device get its own domain. The most important thing
* about domains is the page table mapping the DMA address space they
* contain.
*
****************************************************************************/
/*
* This function adds a protection domain to the global protection domain list
*/
static void add_domain_to_list(struct protection_domain *domain)
{
unsigned long flags;
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
list_add(&domain->list, &amd_iommu_pd_list);
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}
/*
* This function removes a protection domain to the global
* protection domain list
*/
static void del_domain_from_list(struct protection_domain *domain)
{
unsigned long flags;
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
list_del(&domain->list);
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}
static u16 domain_id_alloc(void)
{
unsigned long flags;
int id;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
BUG_ON(id == 0);
if (id > 0 && id < MAX_DOMAIN_ID)
__set_bit(id, amd_iommu_pd_alloc_bitmap);
else
id = 0;
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
return id;
}
static void domain_id_free(int id)
{
unsigned long flags;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
if (id > 0 && id < MAX_DOMAIN_ID)
__clear_bit(id, amd_iommu_pd_alloc_bitmap);
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
#define DEFINE_FREE_PT_FN(LVL, FN) \
static void free_pt_##LVL (unsigned long __pt) \
{ \
unsigned long p; \
u64 *pt; \
int i; \
\
pt = (u64 *)__pt; \
\
for (i = 0; i < 512; ++i) { \
/* PTE present? */ \
if (!IOMMU_PTE_PRESENT(pt[i])) \
continue; \
\
/* Large PTE? */ \
if (PM_PTE_LEVEL(pt[i]) == 0 || \
PM_PTE_LEVEL(pt[i]) == 7) \
continue; \
\
p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
FN(p); \
} \
free_page((unsigned long)pt); \
}
DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)
static void free_pagetable(struct protection_domain *domain)
{
unsigned long root = (unsigned long)domain->pt_root;
switch (domain->mode) {
case PAGE_MODE_NONE:
break;
case PAGE_MODE_1_LEVEL:
free_page(root);
break;
case PAGE_MODE_2_LEVEL:
free_pt_l2(root);
break;
case PAGE_MODE_3_LEVEL:
free_pt_l3(root);
break;
case PAGE_MODE_4_LEVEL:
free_pt_l4(root);
break;
case PAGE_MODE_5_LEVEL:
free_pt_l5(root);
break;
case PAGE_MODE_6_LEVEL:
free_pt_l6(root);
break;
default:
BUG();
}
}
static void free_gcr3_tbl_level1(u64 *tbl)
{
u64 *ptr;
int i;
for (i = 0; i < 512; ++i) {
if (!(tbl[i] & GCR3_VALID))
continue;
ptr = __va(tbl[i] & PAGE_MASK);
free_page((unsigned long)ptr);
}
}
static void free_gcr3_tbl_level2(u64 *tbl)
{
u64 *ptr;
int i;
for (i = 0; i < 512; ++i) {
if (!(tbl[i] & GCR3_VALID))
continue;
ptr = __va(tbl[i] & PAGE_MASK);
free_gcr3_tbl_level1(ptr);
}
}
static void free_gcr3_table(struct protection_domain *domain)
{
if (domain->glx == 2)
free_gcr3_tbl_level2(domain->gcr3_tbl);
else if (domain->glx == 1)
free_gcr3_tbl_level1(domain->gcr3_tbl);
else
BUG_ON(domain->glx != 0);
free_page((unsigned long)domain->gcr3_tbl);
}
/*
* Free a domain, only used if something went wrong in the
* allocation path and we need to free an already allocated page table
*/
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
int i;
if (!dom)
return;
free_percpu(dom->next_index);
del_domain_from_list(&dom->domain);
free_pagetable(&dom->domain);
for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
if (!dom->aperture[i])
continue;
free_page((unsigned long)dom->aperture[i]->bitmap);
kfree(dom->aperture[i]);
}
kfree(dom);
}
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
int max_apertures)
{
int ret, i, apertures;
apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
ret = 0;
for (i = apertures; i < max_apertures; ++i) {
ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
if (ret)
break;
}
return ret;
}
/*
* Allocates a new protection domain usable for the dma_ops functions.
* It also initializes the page table and the address allocator data
* structures required for the dma_ops interface
*/
static struct dma_ops_domain *dma_ops_domain_alloc(void)
{
struct dma_ops_domain *dma_dom;
int cpu;
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
if (!dma_dom)
return NULL;
if (protection_domain_init(&dma_dom->domain))
goto free_dma_dom;
dma_dom->next_index = alloc_percpu(u32);
if (!dma_dom->next_index)
goto free_dma_dom;
dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
dma_dom->domain.flags = PD_DMA_OPS_MASK;
dma_dom->domain.priv = dma_dom;
if (!dma_dom->domain.pt_root)
goto free_dma_dom;
add_domain_to_list(&dma_dom->domain);
if (alloc_new_range(dma_dom, true, GFP_KERNEL))
goto free_dma_dom;
/*
* mark the first page as allocated so we never return 0 as
* a valid dma-address. So we can use 0 as error value
*/
dma_dom->aperture[0]->bitmap[0] = 1;
for_each_possible_cpu(cpu)
*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
return dma_dom;
free_dma_dom:
dma_ops_domain_free(dma_dom);
return NULL;
}
/*
* little helper function to check whether a given protection domain is a
* dma_ops domain
*/
static bool dma_ops_domain(struct protection_domain *domain)
{
return domain->flags & PD_DMA_OPS_MASK;
}
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
{
u64 pte_root = 0;
u64 flags = 0;
if (domain->mode != PAGE_MODE_NONE)
pte_root = virt_to_phys(domain->pt_root);
pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
<< DEV_ENTRY_MODE_SHIFT;
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
flags = amd_iommu_dev_table[devid].data[1];
if (ats)
flags |= DTE_FLAG_IOTLB;
if (domain->flags & PD_IOMMUV2_MASK) {
u64 gcr3 = __pa(domain->gcr3_tbl);
u64 glx = domain->glx;
u64 tmp;
pte_root |= DTE_FLAG_GV;
pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
/* First mask out possible old values for GCR3 table */
tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
flags &= ~tmp;
tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
flags &= ~tmp;
/* Encode GCR3 table into DTE */
tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
pte_root |= tmp;
tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
flags |= tmp;
tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
flags |= tmp;
}
flags &= ~(0xffffUL);
flags |= domain->id;
amd_iommu_dev_table[devid].data[1] = flags;
amd_iommu_dev_table[devid].data[0] = pte_root;
}
static void clear_dte_entry(u16 devid)
{
/* remove entry from the device table seen by the hardware */
amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
amd_iommu_apply_erratum_63(devid);
}
static void do_attach(struct iommu_dev_data *dev_data,
struct protection_domain *domain)
{
struct amd_iommu *iommu;
u16 alias;
bool ats;
iommu = amd_iommu_rlookup_table[dev_data->devid];
alias = dev_data->alias;
ats = dev_data->ats.enabled;
/* Update data structures */
dev_data->domain = domain;
list_add(&dev_data->list, &domain->dev_list);
/* Do reference counting */
domain->dev_iommu[iommu->index] += 1;
domain->dev_cnt += 1;
/* Update device table */
set_dte_entry(dev_data->devid, domain, ats);
if (alias != dev_data->devid)
set_dte_entry(alias, domain, ats);
device_flush_dte(dev_data);
}
static void do_detach(struct iommu_dev_data *dev_data)
{
struct amd_iommu *iommu;
u16 alias;
/*
* First check if the device is still attached. It might already
* be detached from its domain because the generic
* iommu_detach_group code detached it and we try again here in
* our alias handling.
*/
if (!dev_data->domain)
return;
iommu = amd_iommu_rlookup_table[dev_data->devid];
alias = dev_data->alias;
/* decrease reference counters */
dev_data->domain->dev_iommu[iommu->index] -= 1;
dev_data->domain->dev_cnt -= 1;
/* Update data structures */
dev_data->domain = NULL;
list_del(&dev_data->list);
clear_dte_entry(dev_data->devid);
if (alias != dev_data->devid)
clear_dte_entry(alias);
/* Flush the DTE entry */
device_flush_dte(dev_data);
}
/*
* If a device is not yet associated with a domain, this function does
* assigns it visible for the hardware
*/
static int __attach_device(struct iommu_dev_data *dev_data,
struct protection_domain *domain)
{
int ret;
/*
* Must be called with IRQs disabled. Warn here to detect early
* when its not.
*/
WARN_ON(!irqs_disabled());
/* lock domain */
spin_lock(&domain->lock);
ret = -EBUSY;
if (dev_data->domain != NULL)
goto out_unlock;
/* Attach alias group root */
do_attach(dev_data, domain);
ret = 0;
out_unlock:
/* ready */
spin_unlock(&domain->lock);
return ret;
}
static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
pci_disable_ats(pdev);
pci_disable_pri(pdev);
pci_disable_pasid(pdev);
}
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
u16 control;
int pos;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
if (!pos)
return -EINVAL;
pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
control |= PCI_PRI_CTRL_RESET;
pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
return 0;
}
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
bool reset_enable;
int reqs, ret;
/* FIXME: Hardcode number of outstanding requests for now */
reqs = 32;
if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
reqs = 1;
reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
/* Only allow access to user-accessible pages */
ret = pci_enable_pasid(pdev, 0);
if (ret)
goto out_err;
/* First reset the PRI state of the device */
ret = pci_reset_pri(pdev);
if (ret)
goto out_err;
/* Enable PRI */
ret = pci_enable_pri(pdev, reqs);
if (ret)
goto out_err;
if (reset_enable) {
ret = pri_reset_while_enabled(pdev);
if (ret)
goto out_err;
}
ret = pci_enable_ats(pdev, PAGE_SHIFT);
if (ret)
goto out_err;
return 0;
out_err:
pci_disable_pri(pdev);
pci_disable_pasid(pdev);
return ret;
}
/* FIXME: Move this to PCI code */
#define PCI_PRI_TLP_OFF (1 << 15)
static bool pci_pri_tlp_required(struct pci_dev *pdev)
{
u16 status;
int pos;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
if (!pos)
return false;
pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
return (status & PCI_PRI_TLP_OFF) ? true : false;
}
/*
* If a device is not yet associated with a domain, this function
* assigns it visible for the hardware
*/
static int attach_device(struct device *dev,
struct protection_domain *domain)
{
struct pci_dev *pdev;
struct iommu_dev_data *dev_data;
unsigned long flags;
int ret;
dev_data = get_dev_data(dev);
if (!dev_is_pci(dev))
goto skip_ats_check;
pdev = to_pci_dev(dev);
if (domain->flags & PD_IOMMUV2_MASK) {
if (!dev_data->passthrough)
return -EINVAL;
if (dev_data->iommu_v2) {
if (pdev_iommuv2_enable(pdev) != 0)
return -EINVAL;
dev_data->ats.enabled = true;
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
dev_data->pri_tlp = pci_pri_tlp_required(pdev);
}
} else if (amd_iommu_iotlb_sup &&
pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
dev_data->ats.enabled = true;
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
}
skip_ats_check:
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ret = __attach_device(dev_data, domain);
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
/*
* We might boot into a crash-kernel here. The crashed kernel
* left the caches in the IOMMU dirty. So we have to flush
* here to evict all dirty stuff.
*/
domain_flush_tlb_pde(domain);
return ret;
}
/*
* Removes a device from a protection domain (unlocked)
*/
static void __detach_device(struct iommu_dev_data *dev_data)
{
struct protection_domain *domain;
/*
* Must be called with IRQs disabled. Warn here to detect early
* when its not.
*/
WARN_ON(!irqs_disabled());
if (WARN_ON(!dev_data->domain))
return;
domain = dev_data->domain;
spin_lock(&domain->lock);
do_detach(dev_data);
spin_unlock(&domain->lock);
}
/*
* Removes a device from a protection domain (with devtable_lock held)
*/
static void detach_device(struct device *dev)
{
struct protection_domain *domain;
struct iommu_dev_data *dev_data;
unsigned long flags;
dev_data = get_dev_data(dev);
domain = dev_data->domain;
/* lock device table */
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
__detach_device(dev_data);
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
if (!dev_is_pci(dev))
return;
if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
pdev_iommuv2_disable(to_pci_dev(dev));
else if (dev_data->ats.enabled)
pci_disable_ats(to_pci_dev(dev));
dev_data->ats.enabled = false;
}
static int amd_iommu_add_device(struct device *dev)
{
struct iommu_dev_data *dev_data;
struct iommu_domain *domain;
struct amd_iommu *iommu;
int ret, devid;
if (!check_device(dev) || get_dev_data(dev))
return 0;
devid = get_device_id(dev);
if (devid < 0)
return devid;
iommu = amd_iommu_rlookup_table[devid];
ret = iommu_init_device(dev);
if (ret) {
if (ret != -ENOTSUPP)
pr_err("Failed to initialize device %s - trying to proceed anyway\n",
dev_name(dev));
iommu_ignore_device(dev);
dev->archdata.dma_ops = &nommu_dma_ops;
goto out;
}
init_iommu_group(dev);
dev_data = get_dev_data(dev);
BUG_ON(!dev_data);
if (iommu_pass_through || dev_data->iommu_v2)
iommu_request_dm_for_dev(dev);
/* Domains are initialized for this device - have a look what we ended up with */
domain = iommu_get_domain_for_dev(dev);
if (domain->type == IOMMU_DOMAIN_IDENTITY)
dev_data->passthrough = true;
else
dev->archdata.dma_ops = &amd_iommu_dma_ops;
out:
iommu_completion_wait(iommu);
return 0;
}
static void amd_iommu_remove_device(struct device *dev)
{
struct amd_iommu *iommu;
int devid;
if (!check_device(dev))
return;
devid = get_device_id(dev);
if (devid < 0)
return;
iommu = amd_iommu_rlookup_table[devid];
iommu_uninit_device(dev);
iommu_completion_wait(iommu);
}
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
if (dev_is_pci(dev))
return pci_device_group(dev);
return acpihid_device_group(dev);
}
/*****************************************************************************
*
* The next functions belong to the dma_ops mapping/unmapping code.
*
*****************************************************************************/
/*
* In the dma_ops path we only have the struct device. This function
* finds the corresponding IOMMU, the protection domain and the
* requestor id for a given device.
* If the device is not yet associated with a domain this is also done
* in this function.
*/
static struct protection_domain *get_domain(struct device *dev)
{
struct protection_domain *domain;
struct iommu_domain *io_domain;
if (!check_device(dev))
return ERR_PTR(-EINVAL);
io_domain = iommu_get_domain_for_dev(dev);
if (!io_domain)
return NULL;
domain = to_pdomain(io_domain);
if (!dma_ops_domain(domain))
return ERR_PTR(-EBUSY);
return domain;
}
static void update_device_table(struct protection_domain *domain)
{
struct iommu_dev_data *dev_data;
list_for_each_entry(dev_data, &domain->dev_list, list)
set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
}
static void update_domain(struct protection_domain *domain)
{
if (!domain->updated)
return;
update_device_table(domain);
domain_flush_devices(domain);
domain_flush_tlb_pde(domain);
domain->updated = false;
}
/*
* This function fetches the PTE for a given address in the aperture
*/
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
unsigned long address)
{
struct aperture_range *aperture;
u64 *pte, *pte_page;
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
if (!aperture)
return NULL;
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
if (!pte) {
pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
GFP_ATOMIC);
aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
} else
pte += PM_LEVEL_INDEX(0, address);
update_domain(&dom->domain);
return pte;
}
/*
* This is the generic map function. It maps one 4kb page at paddr to
* the given address in the DMA address space for the domain.
*/
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
unsigned long address,
phys_addr_t paddr,
int direction)
{
u64 *pte, __pte;
WARN_ON(address > dom->aperture_size);
paddr &= PAGE_MASK;
pte = dma_ops_get_pte(dom, address);
if (!pte)
return DMA_ERROR_CODE;
__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
if (direction == DMA_TO_DEVICE)
__pte |= IOMMU_PTE_IR;
else if (direction == DMA_FROM_DEVICE)
__pte |= IOMMU_PTE_IW;
else if (direction == DMA_BIDIRECTIONAL)
__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
WARN_ON_ONCE(*pte);
*pte = __pte;
return (dma_addr_t)address;
}
/*
* The generic unmapping function for on page in the DMA address space.
*/
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
unsigned long address)
{
struct aperture_range *aperture;
u64 *pte;
if (address >= dom->aperture_size)
return;
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
if (!aperture)
return;
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
if (!pte)
return;
pte += PM_LEVEL_INDEX(0, address);
WARN_ON_ONCE(!*pte);
*pte = 0ULL;
}
/*
* This function contains common code for mapping of a physically
* contiguous memory region into DMA address space. It is used by all
* mapping functions provided with this IOMMU driver.
* Must be called with the domain lock held.
*/
static dma_addr_t __map_single(struct device *dev,
struct dma_ops_domain *dma_dom,
phys_addr_t paddr,
size_t size,
int dir,
bool align,
u64 dma_mask)
{
dma_addr_t offset = paddr & ~PAGE_MASK;
dma_addr_t address, start, ret;
unsigned int pages;
unsigned long align_mask = 0;
int i;
pages = iommu_num_pages(paddr, size, PAGE_SIZE);
paddr &= PAGE_MASK;
if (align)
align_mask = (1UL << get_order(size)) - 1;
address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
dma_mask);
if (address == DMA_ERROR_CODE)
goto out;
start = address;
for (i = 0; i < pages; ++i) {
ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
if (ret == DMA_ERROR_CODE)
goto out_unmap;
paddr += PAGE_SIZE;
start += PAGE_SIZE;
}
address += offset;
if (unlikely(amd_iommu_np_cache)) {
domain_flush_pages(&dma_dom->domain, address, size);
domain_flush_complete(&dma_dom->domain);
}
out:
return address;
out_unmap:
for (--i; i >= 0; --i) {
start -= PAGE_SIZE;
dma_ops_domain_unmap(dma_dom, start);
}
dma_ops_free_addresses(dma_dom, address, pages);
return DMA_ERROR_CODE;
}
/*
* Does the reverse of the __map_single function. Must be called with
* the domain lock held too
*/
static void __unmap_single(struct dma_ops_domain *dma_dom,
dma_addr_t dma_addr,
size_t size,
int dir)
{
dma_addr_t flush_addr;
dma_addr_t i, start;
unsigned int pages;
if ((dma_addr == DMA_ERROR_CODE) ||
(dma_addr + size > dma_dom->aperture_size))
return;
flush_addr = dma_addr;
pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
dma_addr &= PAGE_MASK;
start = dma_addr;
for (i = 0; i < pages; ++i) {
dma_ops_domain_unmap(dma_dom, start);
start += PAGE_SIZE;
}
dma_ops_free_addresses(dma_dom, dma_addr, pages);
}
/*
* The exported map_single function for dma_ops.
*/
static dma_addr_t map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
phys_addr_t paddr = page_to_phys(page) + offset;
struct protection_domain *domain;
u64 dma_mask;
domain = get_domain(dev);
if (PTR_ERR(domain) == -EINVAL)
return (dma_addr_t)paddr;
else if (IS_ERR(domain))
return DMA_ERROR_CODE;
dma_mask = *dev->dma_mask;
return __map_single(dev, domain->priv, paddr, size, dir, false,
dma_mask);
}
/*
* The exported unmap_single function for dma_ops.
*/
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct protection_domain *domain;
domain = get_domain(dev);
if (IS_ERR(domain))
return;
__unmap_single(domain->priv, dma_addr, size, dir);
}
/*
* The exported map_sg function for dma_ops (handles scatter-gather
* lists).
*/
static int map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct protection_domain *domain;
int i;
struct scatterlist *s;
phys_addr_t paddr;
int mapped_elems = 0;
u64 dma_mask;
domain = get_domain(dev);
if (IS_ERR(domain))
return 0;
dma_mask = *dev->dma_mask;
for_each_sg(sglist, s, nelems, i) {
paddr = sg_phys(s);
s->dma_address = __map_single(dev, domain->priv,
paddr, s->length, dir, false,
dma_mask);
if (s->dma_address) {
s->dma_length = s->length;
mapped_elems++;
} else
goto unmap;
}
return mapped_elems;
unmap:
for_each_sg(sglist, s, mapped_elems, i) {
if (s->dma_address)
__unmap_single(domain->priv, s->dma_address,
s->dma_length, dir);
s->dma_address = s->dma_length = 0;
}
return 0;
}
/*
* The exported map_sg function for dma_ops (handles scatter-gather
* lists).
*/
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct protection_domain *domain;
struct scatterlist *s;
int i;
domain = get_domain(dev);
if (IS_ERR(domain))
return;
for_each_sg(sglist, s, nelems, i) {
__unmap_single(domain->priv, s->dma_address,
s->dma_length, dir);
s->dma_address = s->dma_length = 0;
}
}
/*
* The exported alloc_coherent function for dma_ops.
*/
static void *alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addr, gfp_t flag,
struct dma_attrs *attrs)
{
u64 dma_mask = dev->coherent_dma_mask;
struct protection_domain *domain;
struct page *page;
domain = get_domain(dev);
if (PTR_ERR(domain) == -EINVAL) {
page = alloc_pages(flag, get_order(size));
*dma_addr = page_to_phys(page);
return page_address(page);
} else if (IS_ERR(domain))
return NULL;
size = PAGE_ALIGN(size);
dma_mask = dev->coherent_dma_mask;
flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
flag |= __GFP_ZERO;
page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
if (!page) {
if (!gfpflags_allow_blocking(flag))
return NULL;
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
get_order(size));
if (!page)
return NULL;
}
if (!dma_mask)
dma_mask = *dev->dma_mask;
*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
size, DMA_BIDIRECTIONAL, true, dma_mask);
if (*dma_addr == DMA_ERROR_CODE)
goto out_free;
return page_address(page);
out_free:
if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
__free_pages(page, get_order(size));
return NULL;
}
/*
* The exported free_coherent function for dma_ops.
*/
static void free_coherent(struct device *dev, size_t size,
void *virt_addr, dma_addr_t dma_addr,
struct dma_attrs *attrs)
{
struct protection_domain *domain;
struct page *page;
page = virt_to_page(virt_addr);
size = PAGE_ALIGN(size);
domain = get_domain(dev);
if (IS_ERR(domain))
goto free_mem;
__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
free_mem:
if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
__free_pages(page, get_order(size));
}
/*
* This function is called by the DMA layer to find out if we can handle a
* particular device. It is part of the dma_ops.
*/
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
return check_device(dev);
}
static int set_dma_mask(struct device *dev, u64 mask)
{
struct protection_domain *domain;
int max_apertures = 1;
domain = get_domain(dev);
if (IS_ERR(domain))
return PTR_ERR(domain);
if (mask == DMA_BIT_MASK(64))
max_apertures = 8;
else if (mask > DMA_BIT_MASK(32))
max_apertures = 4;
/*
* To prevent lock contention it doesn't make sense to allocate more
* apertures than online cpus
*/
if (max_apertures > num_online_cpus())
max_apertures = num_online_cpus();
if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
dev_err(dev, "Can't allocate %d iommu apertures\n",
max_apertures);
return 0;
}
static struct dma_map_ops amd_iommu_dma_ops = {
.alloc = alloc_coherent,
.free = free_coherent,
.map_page = map_page,
.unmap_page = unmap_page,
.map_sg = map_sg,
.unmap_sg = unmap_sg,
.dma_supported = amd_iommu_dma_supported,
.set_dma_mask = set_dma_mask,
};
int __init amd_iommu_init_api(void)
{
int err = 0;
err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
if (err)
return err;
#ifdef CONFIG_ARM_AMBA
err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
if (err)
return err;
#endif
return 0;
}
int __init amd_iommu_init_dma_ops(void)
{
swiotlb = iommu_pass_through ? 1 : 0;
iommu_detected = 1;
/*
* In case we don't initialize SWIOTLB (actually the common case
* when AMD IOMMU is enabled), make sure there are global
* dma_ops set as a fall-back for devices not handled by this
* driver (for example non-PCI devices).
*/
if (!swiotlb)
dma_ops = &nommu_dma_ops;
if (amd_iommu_unmap_flush)
pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
else
pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
return 0;
}
/*****************************************************************************
*
* The following functions belong to the exported interface of AMD IOMMU
*
* This interface allows access to lower level functions of the IOMMU
* like protection domain handling and assignement of devices to domains
* which is not possible with the dma_ops interface.
*
*****************************************************************************/
static void cleanup_domain(struct protection_domain *domain)
{
struct iommu_dev_data *entry;
unsigned long flags;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
while (!list_empty(&domain->dev_list)) {
entry = list_first_entry(&domain->dev_list,
struct iommu_dev_data, list);
__detach_device(entry);
}
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
static void protection_domain_free(struct protection_domain *domain)
{
if (!domain)
return;
del_domain_from_list(domain);
if (domain->id)
domain_id_free(domain->id);
kfree(domain);
}
static int protection_domain_init(struct protection_domain *domain)
{
spin_lock_init(&domain->lock);
mutex_init(&domain->api_lock);
domain->id = domain_id_alloc();
if (!domain->id)
return -ENOMEM;
INIT_LIST_HEAD(&domain->dev_list);
return 0;
}
static struct protection_domain *protection_domain_alloc(void)
{
struct protection_domain *domain;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return NULL;
if (protection_domain_init(domain))
goto out_err;
add_domain_to_list(domain);
return domain;
out_err:
kfree(domain);
return NULL;
}
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
{
struct protection_domain *pdomain;
struct dma_ops_domain *dma_domain;
switch (type) {
case IOMMU_DOMAIN_UNMANAGED:
pdomain = protection_domain_alloc();
if (!pdomain)
return NULL;
pdomain->mode = PAGE_MODE_3_LEVEL;
pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
if (!pdomain->pt_root) {
protection_domain_free(pdomain);
return NULL;
}
pdomain->domain.geometry.aperture_start = 0;
pdomain->domain.geometry.aperture_end = ~0ULL;
pdomain->domain.geometry.force_aperture = true;
break;
case IOMMU_DOMAIN_DMA:
dma_domain = dma_ops_domain_alloc();
if (!dma_domain) {
pr_err("AMD-Vi: Failed to allocate\n");
return NULL;
}
pdomain = &dma_domain->domain;
break;
case IOMMU_DOMAIN_IDENTITY:
pdomain = protection_domain_alloc();
if (!pdomain)
return NULL;
pdomain->mode = PAGE_MODE_NONE;
break;
default:
return NULL;
}
return &pdomain->domain;
}
static void amd_iommu_domain_free(struct iommu_domain *dom)
{
struct protection_domain *domain;
if (!dom)
return;
domain = to_pdomain(dom);
if (domain->dev_cnt > 0)
cleanup_domain(domain);
BUG_ON(domain->dev_cnt != 0);
if (domain->mode != PAGE_MODE_NONE)
free_pagetable(domain);
if (domain->flags & PD_IOMMUV2_MASK)
free_gcr3_table(domain);
protection_domain_free(domain);
}
static void amd_iommu_detach_device(struct iommu_domain *dom,
struct device *dev)
{
struct iommu_dev_data *dev_data = dev->archdata.iommu;
struct amd_iommu *iommu;
int devid;
if (!check_device(dev))
return;
devid = get_device_id(dev);
if (devid < 0)
return;
if (dev_data->domain != NULL)
detach_device(dev);
iommu = amd_iommu_rlookup_table[devid];
if (!iommu)
return;
iommu_completion_wait(iommu);
}
static int amd_iommu_attach_device(struct iommu_domain *dom,
struct device *dev)
{
struct protection_domain *domain = to_pdomain(dom);
struct iommu_dev_data *dev_data;
struct amd_iommu *iommu;
int ret;
if (!check_device(dev))
return -EINVAL;
dev_data = dev->archdata.iommu;
iommu = amd_iommu_rlookup_table[dev_data->devid];
if (!iommu)
return -EINVAL;
if (dev_data->domain)
detach_device(dev);
ret = attach_device(dev, domain);
iommu_completion_wait(iommu);
return ret;
}
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
phys_addr_t paddr, size_t page_size, int iommu_prot)
{
struct protection_domain *domain = to_pdomain(dom);
int prot = 0;
int ret;
if (domain->mode == PAGE_MODE_NONE)
return -EINVAL;
if (iommu_prot & IOMMU_READ)
prot |= IOMMU_PROT_IR;
if (iommu_prot & IOMMU_WRITE)
prot |= IOMMU_PROT_IW;
mutex_lock(&domain->api_lock);
ret = iommu_map_page(domain, iova, paddr, prot, page_size);
mutex_unlock(&domain->api_lock);
return ret;
}
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
size_t page_size)
{
struct protection_domain *domain = to_pdomain(dom);
size_t unmap_size;
if (domain->mode == PAGE_MODE_NONE)
return -EINVAL;
mutex_lock(&domain->api_lock);
unmap_size = iommu_unmap_page(domain, iova, page_size);
mutex_unlock(&domain->api_lock);
domain_flush_tlb_pde(domain);
return unmap_size;
}
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
dma_addr_t iova)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long offset_mask, pte_pgsize;
u64 *pte, __pte;
if (domain->mode == PAGE_MODE_NONE)
return iova;
pte = fetch_pte(domain, iova, &pte_pgsize);
if (!pte || !IOMMU_PTE_PRESENT(*pte))
return 0;
offset_mask = pte_pgsize - 1;
__pte = *pte & PM_ADDR_MASK;
return (__pte & ~offset_mask) | (iova & offset_mask);
}
static bool amd_iommu_capable(enum iommu_cap cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
return true;
case IOMMU_CAP_INTR_REMAP:
return (irq_remapping_enabled == 1);
case IOMMU_CAP_NOEXEC:
return false;
}
return false;
}
static void amd_iommu_get_dm_regions(struct device *dev,
struct list_head *head)
{
struct unity_map_entry *entry;
int devid;
devid = get_device_id(dev);
if (devid < 0)
return;
list_for_each_entry(entry, &amd_iommu_unity_map, list) {
struct iommu_dm_region *region;
if (devid < entry->devid_start || devid > entry->devid_end)
continue;
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region) {
pr_err("Out of memory allocating dm-regions for %s\n",
dev_name(dev));
return;
}
region->start = entry->address_start;
region->length = entry->address_end - entry->address_start;
if (entry->prot & IOMMU_PROT_IR)
region->prot |= IOMMU_READ;
if (entry->prot & IOMMU_PROT_IW)
region->prot |= IOMMU_WRITE;
list_add_tail(&region->list, head);
}
}
static void amd_iommu_put_dm_regions(struct device *dev,
struct list_head *head)
{
struct iommu_dm_region *entry, *next;
list_for_each_entry_safe(entry, next, head, list)
kfree(entry);
}
static const struct iommu_ops amd_iommu_ops = {
.capable = amd_iommu_capable,
.domain_alloc = amd_iommu_domain_alloc,
.domain_free = amd_iommu_domain_free,
.attach_dev = amd_iommu_attach_device,
.detach_dev = amd_iommu_detach_device,
.map = amd_iommu_map,
.unmap = amd_iommu_unmap,
.map_sg = default_iommu_map_sg,
.iova_to_phys = amd_iommu_iova_to_phys,
.add_device = amd_iommu_add_device,
.remove_device = amd_iommu_remove_device,
.device_group = amd_iommu_device_group,
.get_dm_regions = amd_iommu_get_dm_regions,
.put_dm_regions = amd_iommu_put_dm_regions,
.pgsize_bitmap = AMD_IOMMU_PGSIZES,
};
/*****************************************************************************
*
* The next functions do a basic initialization of IOMMU for pass through
* mode
*
* In passthrough mode the IOMMU is initialized and enabled but not used for
* DMA-API translation.
*
*****************************************************************************/
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
spin_lock_irqsave(&domain->lock, flags);
/* Update data structure */
domain->mode = PAGE_MODE_NONE;
domain->updated = true;
/* Make changes visible to IOMMUs */
update_domain(domain);
/* Page-table is not visible to IOMMU anymore, so free it */
free_pagetable(domain);
spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int levels, ret;
if (pasids <= 0 || pasids > (PASID_MASK + 1))
return -EINVAL;
/* Number of GCR3 table levels required */
for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
levels += 1;
if (levels > amd_iommu_max_glx_val)
return -EINVAL;
spin_lock_irqsave(&domain->lock, flags);
/*
* Save us all sanity checks whether devices already in the
* domain support IOMMUv2. Just force that the domain has no
* devices attached when it is switched into IOMMUv2 mode.
*/
ret = -EBUSY;
if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
goto out;
ret = -ENOMEM;
domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
if (domain->gcr3_tbl == NULL)
goto out;
domain->glx = levels;
domain->flags |= PD_IOMMUV2_MASK;
domain->updated = true;
update_domain(domain);
ret = 0;
out:
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
static int __flush_pasid(struct protection_domain *domain, int pasid,
u64 address, bool size)
{
struct iommu_dev_data *dev_data;
struct iommu_cmd cmd;
int i, ret;
if (!(domain->flags & PD_IOMMUV2_MASK))
return -EINVAL;
build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
/*
* IOMMU TLB needs to be flushed before Device TLB to
* prevent device TLB refill from IOMMU TLB
*/
for (i = 0; i < amd_iommus_present; ++i) {
if (domain->dev_iommu[i] == 0)
continue;
ret = iommu_queue_command(amd_iommus[i], &cmd);
if (ret != 0)
goto out;
}
/* Wait until IOMMU TLB flushes are complete */
domain_flush_complete(domain);
/* Now flush device TLBs */
list_for_each_entry(dev_data, &domain->dev_list, list) {
struct amd_iommu *iommu;
int qdep;
/*
There might be non-IOMMUv2 capable devices in an IOMMUv2
* domain.
*/
if (!dev_data->ats.enabled)
continue;
qdep = dev_data->ats.qdep;
iommu = amd_iommu_rlookup_table[dev_data->devid];
build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
qdep, address, size);
ret = iommu_queue_command(iommu, &cmd);
if (ret != 0)
goto out;
}
/* Wait until all device TLBs are flushed */
domain_flush_complete(domain);
ret = 0;
out:
return ret;
}
static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
u64 address)
{
return __flush_pasid(domain, pasid, address, false);
}
int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
u64 address)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __amd_iommu_flush_page(domain, pasid, address);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);
static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
true);
}
int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __amd_iommu_flush_tlb(domain, pasid);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
int index;
u64 *pte;
while (true) {
index = (pasid >> (9 * level)) & 0x1ff;
pte = &root[index];
if (level == 0)
break;
if (!(*pte & GCR3_VALID)) {
if (!alloc)
return NULL;
root = (void *)get_zeroed_page(GFP_ATOMIC);
if (root == NULL)
return NULL;
*pte = __pa(root) | GCR3_VALID;
}
root = __va(*pte & PAGE_MASK);
level -= 1;
}
return pte;
}
static int __set_gcr3(struct protection_domain *domain, int pasid,
unsigned long cr3)
{
u64 *pte;
if (domain->mode != PAGE_MODE_NONE)
return -EINVAL;
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
if (pte == NULL)
return -ENOMEM;
*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
return __amd_iommu_flush_tlb(domain, pasid);
}
static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
u64 *pte;
if (domain->mode != PAGE_MODE_NONE)
return -EINVAL;
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
if (pte == NULL)
return 0;
*pte = 0;
return __amd_iommu_flush_tlb(domain, pasid);
}
int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
unsigned long cr3)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __set_gcr3(domain, pasid, cr3);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __clear_gcr3(domain, pasid);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
int status, int tag)
{
struct iommu_dev_data *dev_data;
struct amd_iommu *iommu;
struct iommu_cmd cmd;
dev_data = get_dev_data(&pdev->dev);
iommu = amd_iommu_rlookup_table[dev_data->devid];
build_complete_ppr(&cmd, dev_data->devid, pasid, status,
tag, dev_data->pri_tlp);
return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
struct protection_domain *pdomain;
pdomain = get_domain(&pdev->dev);
if (IS_ERR(pdomain))
return NULL;
/* Only return IOMMUv2 domains */
if (!(pdomain->flags & PD_IOMMUV2_MASK))
return NULL;
return &pdomain->domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
struct iommu_dev_data *dev_data;
if (!amd_iommu_v2_supported())
return;
dev_data = get_dev_data(&pdev->dev);
dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
int amd_iommu_device_info(struct pci_dev *pdev,
struct amd_iommu_device_info *info)
{
int max_pasids;
int pos;
if (pdev == NULL || info == NULL)
return -EINVAL;
if (!amd_iommu_v2_supported())
return -EINVAL;
memset(info, 0, sizeof(*info));
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
if (pos)
info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
if (pos)
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
if (pos) {
int features;
max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
max_pasids = min(max_pasids, (1 << 20));
info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
features = pci_pasid_features(pdev);
if (features & PCI_PASID_CAP_EXEC)
info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
if (features & PCI_PASID_CAP_PRIV)
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
}
return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
#ifdef CONFIG_IRQ_REMAP
/*****************************************************************************
*
* Interrupt Remapping Implementation
*
*****************************************************************************/
union irte {
u32 val;
struct {
u32 valid : 1,
no_fault : 1,
int_type : 3,
rq_eoi : 1,
dm : 1,
rsvd_1 : 1,
destination : 8,
vector : 8,
rsvd_2 : 8;
} fields;
};
struct irq_2_irte {
u16 devid; /* Device ID for IRTE table */
u16 index; /* Index into IRTE table*/
};
struct amd_ir_data {
struct irq_2_irte irq_2_irte;
union irte irte_entry;
union {
struct msi_msg msi_entry;
};
};
static struct irq_chip amd_ir_chip;
#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
#define DTE_IRQ_TABLE_LEN (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE 1ULL
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
u64 dte;
dte = amd_iommu_dev_table[devid].data[2];
dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
dte |= virt_to_phys(table->table);
dte |= DTE_IRQ_REMAP_INTCTL;
dte |= DTE_IRQ_TABLE_LEN;
dte |= DTE_IRQ_REMAP_ENABLE;
amd_iommu_dev_table[devid].data[2] = dte;
}
#define IRTE_ALLOCATED (~1U)
static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
struct irq_remap_table *table = NULL;
struct amd_iommu *iommu;
unsigned long flags;
u16 alias;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
iommu = amd_iommu_rlookup_table[devid];
if (!iommu)
goto out_unlock;
table = irq_lookup_table[devid];
if (table)
goto out;
alias = amd_iommu_alias_table[devid];
table = irq_lookup_table[alias];
if (table) {
irq_lookup_table[devid] = table;
set_dte_irq_entry(devid, table);
iommu_flush_dte(iommu, devid);
goto out;
}
/* Nothing there yet, allocate new irq remapping table */
table = kzalloc(sizeof(*table), GFP_ATOMIC);
if (!table)
goto out;
/* Initialize table spin-lock */
spin_lock_init(&table->lock);
if (ioapic)
/* Keep the first 32 indexes free for IOAPIC interrupts */
table->min_index = 32;
table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
if (!table->table) {
kfree(table);
table = NULL;
goto out;
}
memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
if (ioapic) {
int i;
for (i = 0; i < 32; ++i)
table->table[i] = IRTE_ALLOCATED;
}
irq_lookup_table[devid] = table;
set_dte_irq_entry(devid, table);
iommu_flush_dte(iommu, devid);
if (devid != alias) {
irq_lookup_table[alias] = table;
set_dte_irq_entry(alias, table);
iommu_flush_dte(iommu, alias);
}
out:
iommu_completion_wait(iommu);
out_unlock:
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
return table;
}
static int alloc_irq_index(u16 devid, int count)
{
struct irq_remap_table *table;
unsigned long flags;
int index, c;
table = get_irq_table(devid, false);
if (!table)
return -ENODEV;
spin_lock_irqsave(&table->lock, flags);
/* Scan table for free entries */
for (c = 0, index = table->min_index;
index < MAX_IRQS_PER_TABLE;
++index) {
if (table->table[index] == 0)
c += 1;
else
c = 0;
if (c == count) {
for (; c != 0; --c)
table->table[index - c + 1] = IRTE_ALLOCATED;
index -= count - 1;
goto out;
}
}
index = -ENOSPC;
out:
spin_unlock_irqrestore(&table->lock, flags);
return index;
}
static int modify_irte(u16 devid, int index, union irte irte)
{
struct irq_remap_table *table;
struct amd_iommu *iommu;
unsigned long flags;
iommu = amd_iommu_rlookup_table[devid];
if (iommu == NULL)
return -EINVAL;
table = get_irq_table(devid, false);
if (!table)
return -ENOMEM;
spin_lock_irqsave(&table->lock, flags);
table->table[index] = irte.val;
spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
return 0;
}
static void free_irte(u16 devid, int index)
{
struct irq_remap_table *table;
struct amd_iommu *iommu;
unsigned long flags;
iommu = amd_iommu_rlookup_table[devid];
if (iommu == NULL)
return;
table = get_irq_table(devid, false);
if (!table)
return;
spin_lock_irqsave(&table->lock, flags);
table->table[index] = 0;
spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
}
static int get_devid(struct irq_alloc_info *info)
{
int devid = -1;
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_IOAPIC:
devid = get_ioapic_devid(info->ioapic_id);
break;
case X86_IRQ_ALLOC_TYPE_HPET:
devid = get_hpet_devid(info->hpet_id);
break;
case X86_IRQ_ALLOC_TYPE_MSI:
case X86_IRQ_ALLOC_TYPE_MSIX:
devid = get_device_id(&info->msi_dev->dev);
break;
default:
BUG_ON(1);
break;
}
return devid;
}
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
struct amd_iommu *iommu;
int devid;
if (!info)
return NULL;
devid = get_devid(info);
if (devid >= 0) {
iommu = amd_iommu_rlookup_table[devid];
if (iommu)
return iommu->ir_domain;
}
return NULL;
}
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
{
struct amd_iommu *iommu;
int devid;
if (!info)
return NULL;
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_MSI:
case X86_IRQ_ALLOC_TYPE_MSIX:
devid = get_device_id(&info->msi_dev->dev);
if (devid < 0)
return NULL;
iommu = amd_iommu_rlookup_table[devid];
if (iommu)
return iommu->msi_domain;
break;
default:
break;
}
return NULL;
}
struct irq_remap_ops amd_iommu_irq_ops = {
.prepare = amd_iommu_prepare,
.enable = amd_iommu_enable,
.disable = amd_iommu_disable,
.reenable = amd_iommu_reenable,
.enable_faulting = amd_iommu_enable_faulting,
.get_ir_irq_domain = get_ir_irq_domain,
.get_irq_domain = get_irq_domain,
};
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
struct irq_cfg *irq_cfg,
struct irq_alloc_info *info,
int devid, int index, int sub_handle)
{
struct irq_2_irte *irte_info = &data->irq_2_irte;
struct msi_msg *msg = &data->msi_entry;
union irte *irte = &data->irte_entry;
struct IO_APIC_route_entry *entry;
data->irq_2_irte.devid = devid;
data->irq_2_irte.index = index + sub_handle;
/* Setup IRTE for IOMMU */
irte->val = 0;
irte->fields.vector = irq_cfg->vector;
irte->fields.int_type = apic->irq_delivery_mode;
irte->fields.destination = irq_cfg->dest_apicid;
irte->fields.dm = apic->irq_dest_mode;
irte->fields.valid = 1;
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_IOAPIC:
/* Setup IOAPIC entry */
entry = info->ioapic_entry;
info->ioapic_entry = NULL;
memset(entry, 0, sizeof(*entry));
entry->vector = index;
entry->mask = 0;
entry->trigger = info->ioapic_trigger;
entry->polarity = info->ioapic_polarity;
/* Mask level triggered irqs. */
if (info->ioapic_trigger)
entry->mask = 1;
break;
case X86_IRQ_ALLOC_TYPE_HPET:
case X86_IRQ_ALLOC_TYPE_MSI:
case X86_IRQ_ALLOC_TYPE_MSIX:
msg->address_hi = MSI_ADDR_BASE_HI;
msg->address_lo = MSI_ADDR_BASE_LO;
msg->data = irte_info->index;
break;
default:
BUG_ON(1);
break;
}
}
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct irq_alloc_info *info = arg;
struct irq_data *irq_data;
struct amd_ir_data *data;
struct irq_cfg *cfg;
int i, ret, devid;
int index = -1;
if (!info)
return -EINVAL;
if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
info->type != X86_IRQ_ALLOC_TYPE_MSIX)
return -EINVAL;
/*
* With IRQ remapping enabled, don't need contiguous CPU vectors
* to support multiple MSI interrupts.
*/
if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
devid = get_devid(info);
if (devid < 0)
return -EINVAL;
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
if (ret < 0)
return ret;
if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
if (get_irq_table(devid, true))
index = info->ioapic_pin;
else
ret = -ENOMEM;
} else {
index = alloc_irq_index(devid, nr_irqs);
}
if (index < 0) {
pr_warn("Failed to allocate IRTE\n");
goto out_free_parent;
}
for (i = 0; i < nr_irqs; i++) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
cfg = irqd_cfg(irq_data);
if (!irq_data || !cfg) {
ret = -EINVAL;
goto out_free_data;
}
ret = -ENOMEM;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
goto out_free_data;
irq_data->hwirq = (devid << 16) + i;
irq_data->chip_data = data;
irq_data->chip = &amd_ir_chip;
irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
}
return 0;
out_free_data:
for (i--; i >= 0; i--) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
if (irq_data)
kfree(irq_data->chip_data);
}
for (i = 0; i < nr_irqs; i++)
free_irte(devid, index + i);
out_free_parent:
irq_domain_free_irqs_common(domain, virq, nr_irqs);
return ret;
}
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_2_irte *irte_info;
struct irq_data *irq_data;
struct amd_ir_data *data;
int i;
for (i = 0; i < nr_irqs; i++) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
if (irq_data && irq_data->chip_data) {
data = irq_data->chip_data;
irte_info = &data->irq_2_irte;
free_irte(irte_info->devid, irte_info->index);
kfree(data);
}
}
irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
static void irq_remapping_activate(struct irq_domain *domain,
struct irq_data *irq_data)
{
struct amd_ir_data *data = irq_data->chip_data;
struct irq_2_irte *irte_info = &data->irq_2_irte;
modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
static void irq_remapping_deactivate(struct irq_domain *domain,
struct irq_data *irq_data)
{
struct amd_ir_data *data = irq_data->chip_data;
struct irq_2_irte *irte_info = &data->irq_2_irte;
union irte entry;
entry.val = 0;
modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
static struct irq_domain_ops amd_ir_domain_ops = {
.alloc = irq_remapping_alloc,
.free = irq_remapping_free,
.activate = irq_remapping_activate,
.deactivate = irq_remapping_deactivate,
};
static int amd_ir_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
struct amd_ir_data *ir_data = data->chip_data;
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
struct irq_cfg *cfg = irqd_cfg(data);
struct irq_data *parent = data->parent_data;
int ret;
ret = parent->chip->irq_set_affinity(parent, mask, force);
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
return ret;
/*
* Atomically updates the IRTE with the new destination, vector
* and flushes the interrupt entry cache.
*/
ir_data->irte_entry.fields.vector = cfg->vector;
ir_data->irte_entry.fields.destination = cfg->dest_apicid;
modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
/*
* After this point, all the interrupts will start arriving
* at the new destination. So, time to cleanup the previous
* vector allocation.
*/
send_cleanup_vector(cfg);
return IRQ_SET_MASK_OK_DONE;
}
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
{
struct amd_ir_data *ir_data = irq_data->chip_data;
*msg = ir_data->msi_entry;
}
static struct irq_chip amd_ir_chip = {
.irq_ack = ir_ack_apic_edge,
.irq_set_affinity = amd_ir_set_affinity,
.irq_compose_msi_msg = ir_compose_msi_msg,
};
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
if (!iommu->ir_domain)
return -ENOMEM;
iommu->ir_domain->parent = arch_get_ir_parent_domain();
iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
return 0;
}
#endif