1104 строки
27 KiB
C
1104 строки
27 KiB
C
/*
|
|
* arch/s390/kernel/smp.c
|
|
*
|
|
* Copyright IBM Corp. 1999,2007
|
|
* Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
|
|
* Martin Schwidefsky (schwidefsky@de.ibm.com)
|
|
* Heiko Carstens (heiko.carstens@de.ibm.com)
|
|
*
|
|
* based on other smp stuff by
|
|
* (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
|
|
* (c) 1998 Ingo Molnar
|
|
*
|
|
* We work with logical cpu numbering everywhere we can. The only
|
|
* functions using the real cpu address (got from STAP) are the sigp
|
|
* functions. For all other functions we use the identity mapping.
|
|
* That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
|
|
* used e.g. to find the idle task belonging to a logical cpu. Every array
|
|
* in the kernel is sorted by the logical cpu number and not by the physical
|
|
* one which is causing all the confusion with __cpu_logical_map and
|
|
* cpu_number_map in other architectures.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/bootmem.h>
|
|
#include <asm/ipl.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sigp.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/s390_ext.h>
|
|
#include <asm/cpcmd.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/timer.h>
|
|
#include <asm/lowcore.h>
|
|
#include <asm/sclp.h>
|
|
#include <asm/cpu.h>
|
|
|
|
/*
|
|
* An array with a pointer the lowcore of every CPU.
|
|
*/
|
|
struct _lowcore *lowcore_ptr[NR_CPUS];
|
|
EXPORT_SYMBOL(lowcore_ptr);
|
|
|
|
cpumask_t cpu_online_map = CPU_MASK_NONE;
|
|
EXPORT_SYMBOL(cpu_online_map);
|
|
|
|
cpumask_t cpu_possible_map = CPU_MASK_ALL;
|
|
EXPORT_SYMBOL(cpu_possible_map);
|
|
|
|
static struct task_struct *current_set[NR_CPUS];
|
|
|
|
static u8 smp_cpu_type;
|
|
static int smp_use_sigp_detection;
|
|
|
|
enum s390_cpu_state {
|
|
CPU_STATE_STANDBY,
|
|
CPU_STATE_CONFIGURED,
|
|
};
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static DEFINE_MUTEX(smp_cpu_state_mutex);
|
|
#endif
|
|
static int smp_cpu_state[NR_CPUS];
|
|
|
|
static DEFINE_PER_CPU(struct cpu, cpu_devices);
|
|
DEFINE_PER_CPU(struct s390_idle_data, s390_idle);
|
|
|
|
static void smp_ext_bitcall(int, ec_bit_sig);
|
|
|
|
/*
|
|
* Structure and data for __smp_call_function_map(). This is designed to
|
|
* minimise static memory requirements. It also looks cleaner.
|
|
*/
|
|
static DEFINE_SPINLOCK(call_lock);
|
|
|
|
struct call_data_struct {
|
|
void (*func) (void *info);
|
|
void *info;
|
|
cpumask_t started;
|
|
cpumask_t finished;
|
|
int wait;
|
|
};
|
|
|
|
static struct call_data_struct *call_data;
|
|
|
|
/*
|
|
* 'Call function' interrupt callback
|
|
*/
|
|
static void do_call_function(void)
|
|
{
|
|
void (*func) (void *info) = call_data->func;
|
|
void *info = call_data->info;
|
|
int wait = call_data->wait;
|
|
|
|
cpu_set(smp_processor_id(), call_data->started);
|
|
(*func)(info);
|
|
if (wait)
|
|
cpu_set(smp_processor_id(), call_data->finished);;
|
|
}
|
|
|
|
static void __smp_call_function_map(void (*func) (void *info), void *info,
|
|
int nonatomic, int wait, cpumask_t map)
|
|
{
|
|
struct call_data_struct data;
|
|
int cpu, local = 0;
|
|
|
|
/*
|
|
* Can deadlock when interrupts are disabled or if in wrong context.
|
|
*/
|
|
WARN_ON(irqs_disabled() || in_irq());
|
|
|
|
/*
|
|
* Check for local function call. We have to have the same call order
|
|
* as in on_each_cpu() because of machine_restart_smp().
|
|
*/
|
|
if (cpu_isset(smp_processor_id(), map)) {
|
|
local = 1;
|
|
cpu_clear(smp_processor_id(), map);
|
|
}
|
|
|
|
cpus_and(map, map, cpu_online_map);
|
|
if (cpus_empty(map))
|
|
goto out;
|
|
|
|
data.func = func;
|
|
data.info = info;
|
|
data.started = CPU_MASK_NONE;
|
|
data.wait = wait;
|
|
if (wait)
|
|
data.finished = CPU_MASK_NONE;
|
|
|
|
spin_lock(&call_lock);
|
|
call_data = &data;
|
|
|
|
for_each_cpu_mask(cpu, map)
|
|
smp_ext_bitcall(cpu, ec_call_function);
|
|
|
|
/* Wait for response */
|
|
while (!cpus_equal(map, data.started))
|
|
cpu_relax();
|
|
if (wait)
|
|
while (!cpus_equal(map, data.finished))
|
|
cpu_relax();
|
|
spin_unlock(&call_lock);
|
|
out:
|
|
if (local) {
|
|
local_irq_disable();
|
|
func(info);
|
|
local_irq_enable();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* smp_call_function:
|
|
* @func: the function to run; this must be fast and non-blocking
|
|
* @info: an arbitrary pointer to pass to the function
|
|
* @nonatomic: unused
|
|
* @wait: if true, wait (atomically) until function has completed on other CPUs
|
|
*
|
|
* Run a function on all other CPUs.
|
|
*
|
|
* You must not call this function with disabled interrupts, from a
|
|
* hardware interrupt handler or from a bottom half.
|
|
*/
|
|
int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
|
|
int wait)
|
|
{
|
|
cpumask_t map;
|
|
|
|
preempt_disable();
|
|
map = cpu_online_map;
|
|
cpu_clear(smp_processor_id(), map);
|
|
__smp_call_function_map(func, info, nonatomic, wait, map);
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(smp_call_function);
|
|
|
|
/*
|
|
* smp_call_function_single:
|
|
* @cpu: the CPU where func should run
|
|
* @func: the function to run; this must be fast and non-blocking
|
|
* @info: an arbitrary pointer to pass to the function
|
|
* @nonatomic: unused
|
|
* @wait: if true, wait (atomically) until function has completed on other CPUs
|
|
*
|
|
* Run a function on one processor.
|
|
*
|
|
* You must not call this function with disabled interrupts, from a
|
|
* hardware interrupt handler or from a bottom half.
|
|
*/
|
|
int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
|
|
int nonatomic, int wait)
|
|
{
|
|
preempt_disable();
|
|
__smp_call_function_map(func, info, nonatomic, wait,
|
|
cpumask_of_cpu(cpu));
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(smp_call_function_single);
|
|
|
|
/**
|
|
* smp_call_function_mask(): Run a function on a set of other CPUs.
|
|
* @mask: The set of cpus to run on. Must not include the current cpu.
|
|
* @func: The function to run. This must be fast and non-blocking.
|
|
* @info: An arbitrary pointer to pass to the function.
|
|
* @wait: If true, wait (atomically) until function has completed on other CPUs.
|
|
*
|
|
* Returns 0 on success, else a negative status code.
|
|
*
|
|
* If @wait is true, then returns once @func has returned; otherwise
|
|
* it returns just before the target cpu calls @func.
|
|
*
|
|
* You must not call this function with disabled interrupts or from a
|
|
* hardware interrupt handler or from a bottom half handler.
|
|
*/
|
|
int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
|
|
int wait)
|
|
{
|
|
preempt_disable();
|
|
cpu_clear(smp_processor_id(), mask);
|
|
__smp_call_function_map(func, info, 0, wait, mask);
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(smp_call_function_mask);
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
int cpu, rc;
|
|
|
|
/* Disable all interrupts/machine checks */
|
|
__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
|
|
|
|
/* write magic number to zero page (absolute 0) */
|
|
lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
|
|
|
|
/* stop all processors */
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu == smp_processor_id())
|
|
continue;
|
|
do {
|
|
rc = signal_processor(cpu, sigp_stop);
|
|
} while (rc == sigp_busy);
|
|
|
|
while (!smp_cpu_not_running(cpu))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the main routine where commands issued by other
|
|
* cpus are handled.
|
|
*/
|
|
|
|
static void do_ext_call_interrupt(__u16 code)
|
|
{
|
|
unsigned long bits;
|
|
|
|
/*
|
|
* handle bit signal external calls
|
|
*
|
|
* For the ec_schedule signal we have to do nothing. All the work
|
|
* is done automatically when we return from the interrupt.
|
|
*/
|
|
bits = xchg(&S390_lowcore.ext_call_fast, 0);
|
|
|
|
if (test_bit(ec_call_function, &bits))
|
|
do_call_function();
|
|
}
|
|
|
|
/*
|
|
* Send an external call sigp to another cpu and return without waiting
|
|
* for its completion.
|
|
*/
|
|
static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
|
|
{
|
|
/*
|
|
* Set signaling bit in lowcore of target cpu and kick it
|
|
*/
|
|
set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
|
|
while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
|
|
udelay(10);
|
|
}
|
|
|
|
#ifndef CONFIG_64BIT
|
|
/*
|
|
* this function sends a 'purge tlb' signal to another CPU.
|
|
*/
|
|
void smp_ptlb_callback(void *info)
|
|
{
|
|
__tlb_flush_local();
|
|
}
|
|
|
|
void smp_ptlb_all(void)
|
|
{
|
|
on_each_cpu(smp_ptlb_callback, NULL, 0, 1);
|
|
}
|
|
EXPORT_SYMBOL(smp_ptlb_all);
|
|
#endif /* ! CONFIG_64BIT */
|
|
|
|
/*
|
|
* this function sends a 'reschedule' IPI to another CPU.
|
|
* it goes straight through and wastes no time serializing
|
|
* anything. Worst case is that we lose a reschedule ...
|
|
*/
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
smp_ext_bitcall(cpu, ec_schedule);
|
|
}
|
|
|
|
/*
|
|
* parameter area for the set/clear control bit callbacks
|
|
*/
|
|
struct ec_creg_mask_parms {
|
|
unsigned long orvals[16];
|
|
unsigned long andvals[16];
|
|
};
|
|
|
|
/*
|
|
* callback for setting/clearing control bits
|
|
*/
|
|
static void smp_ctl_bit_callback(void *info)
|
|
{
|
|
struct ec_creg_mask_parms *pp = info;
|
|
unsigned long cregs[16];
|
|
int i;
|
|
|
|
__ctl_store(cregs, 0, 15);
|
|
for (i = 0; i <= 15; i++)
|
|
cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
|
|
__ctl_load(cregs, 0, 15);
|
|
}
|
|
|
|
/*
|
|
* Set a bit in a control register of all cpus
|
|
*/
|
|
void smp_ctl_set_bit(int cr, int bit)
|
|
{
|
|
struct ec_creg_mask_parms parms;
|
|
|
|
memset(&parms.orvals, 0, sizeof(parms.orvals));
|
|
memset(&parms.andvals, 0xff, sizeof(parms.andvals));
|
|
parms.orvals[cr] = 1 << bit;
|
|
on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
|
|
}
|
|
EXPORT_SYMBOL(smp_ctl_set_bit);
|
|
|
|
/*
|
|
* Clear a bit in a control register of all cpus
|
|
*/
|
|
void smp_ctl_clear_bit(int cr, int bit)
|
|
{
|
|
struct ec_creg_mask_parms parms;
|
|
|
|
memset(&parms.orvals, 0, sizeof(parms.orvals));
|
|
memset(&parms.andvals, 0xff, sizeof(parms.andvals));
|
|
parms.andvals[cr] = ~(1L << bit);
|
|
on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
|
|
}
|
|
EXPORT_SYMBOL(smp_ctl_clear_bit);
|
|
|
|
/*
|
|
* In early ipl state a temp. logically cpu number is needed, so the sigp
|
|
* functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
|
|
* CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
|
|
*/
|
|
#define CPU_INIT_NO 1
|
|
|
|
#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
|
|
|
|
/*
|
|
* zfcpdump_prefix_array holds prefix registers for the following scenario:
|
|
* 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
|
|
* save its prefix registers, since they get lost, when switching from 31 bit
|
|
* to 64 bit.
|
|
*/
|
|
unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
|
|
__attribute__((__section__(".data")));
|
|
|
|
static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
|
|
{
|
|
if (ipl_info.type != IPL_TYPE_FCP_DUMP)
|
|
return;
|
|
if (cpu >= NR_CPUS) {
|
|
printk(KERN_WARNING "Registers for cpu %i not saved since dump "
|
|
"kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
|
|
return;
|
|
}
|
|
zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
|
|
__cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
|
|
while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
|
|
sigp_busy)
|
|
cpu_relax();
|
|
memcpy(zfcpdump_save_areas[cpu],
|
|
(void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
|
|
SAVE_AREA_SIZE);
|
|
#ifdef CONFIG_64BIT
|
|
/* copy original prefix register */
|
|
zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
|
|
#endif
|
|
}
|
|
|
|
union save_area *zfcpdump_save_areas[NR_CPUS + 1];
|
|
EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
|
|
|
|
#else
|
|
|
|
static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
|
|
|
|
#endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
|
|
|
|
static int cpu_stopped(int cpu)
|
|
{
|
|
__u32 status;
|
|
|
|
/* Check for stopped state */
|
|
if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
|
|
sigp_status_stored) {
|
|
if (status & 0x40)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_known(int cpu_id)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
if (__cpu_logical_map[cpu] == cpu_id)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int smp_rescan_cpus_sigp(cpumask_t avail)
|
|
{
|
|
int cpu_id, logical_cpu;
|
|
|
|
logical_cpu = first_cpu(avail);
|
|
if (logical_cpu == NR_CPUS)
|
|
return 0;
|
|
for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
|
|
if (cpu_known(cpu_id))
|
|
continue;
|
|
__cpu_logical_map[logical_cpu] = cpu_id;
|
|
if (!cpu_stopped(logical_cpu))
|
|
continue;
|
|
cpu_set(logical_cpu, cpu_present_map);
|
|
smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
|
|
logical_cpu = next_cpu(logical_cpu, avail);
|
|
if (logical_cpu == NR_CPUS)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int smp_rescan_cpus_sclp(cpumask_t avail)
|
|
{
|
|
struct sclp_cpu_info *info;
|
|
int cpu_id, logical_cpu, cpu;
|
|
int rc;
|
|
|
|
logical_cpu = first_cpu(avail);
|
|
if (logical_cpu == NR_CPUS)
|
|
return 0;
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
rc = sclp_get_cpu_info(info);
|
|
if (rc)
|
|
goto out;
|
|
for (cpu = 0; cpu < info->combined; cpu++) {
|
|
if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
|
|
continue;
|
|
cpu_id = info->cpu[cpu].address;
|
|
if (cpu_known(cpu_id))
|
|
continue;
|
|
__cpu_logical_map[logical_cpu] = cpu_id;
|
|
cpu_set(logical_cpu, cpu_present_map);
|
|
if (cpu >= info->configured)
|
|
smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
|
|
else
|
|
smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
|
|
logical_cpu = next_cpu(logical_cpu, avail);
|
|
if (logical_cpu == NR_CPUS)
|
|
break;
|
|
}
|
|
out:
|
|
kfree(info);
|
|
return rc;
|
|
}
|
|
|
|
static int smp_rescan_cpus(void)
|
|
{
|
|
cpumask_t avail;
|
|
|
|
cpus_xor(avail, cpu_possible_map, cpu_present_map);
|
|
if (smp_use_sigp_detection)
|
|
return smp_rescan_cpus_sigp(avail);
|
|
else
|
|
return smp_rescan_cpus_sclp(avail);
|
|
}
|
|
|
|
static void __init smp_detect_cpus(void)
|
|
{
|
|
unsigned int cpu, c_cpus, s_cpus;
|
|
struct sclp_cpu_info *info;
|
|
u16 boot_cpu_addr, cpu_addr;
|
|
|
|
c_cpus = 1;
|
|
s_cpus = 0;
|
|
boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
panic("smp_detect_cpus failed to allocate memory\n");
|
|
/* Use sigp detection algorithm if sclp doesn't work. */
|
|
if (sclp_get_cpu_info(info)) {
|
|
smp_use_sigp_detection = 1;
|
|
for (cpu = 0; cpu <= 65535; cpu++) {
|
|
if (cpu == boot_cpu_addr)
|
|
continue;
|
|
__cpu_logical_map[CPU_INIT_NO] = cpu;
|
|
if (!cpu_stopped(CPU_INIT_NO))
|
|
continue;
|
|
smp_get_save_area(c_cpus, cpu);
|
|
c_cpus++;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (info->has_cpu_type) {
|
|
for (cpu = 0; cpu < info->combined; cpu++) {
|
|
if (info->cpu[cpu].address == boot_cpu_addr) {
|
|
smp_cpu_type = info->cpu[cpu].type;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (cpu = 0; cpu < info->combined; cpu++) {
|
|
if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
|
|
continue;
|
|
cpu_addr = info->cpu[cpu].address;
|
|
if (cpu_addr == boot_cpu_addr)
|
|
continue;
|
|
__cpu_logical_map[CPU_INIT_NO] = cpu_addr;
|
|
if (!cpu_stopped(CPU_INIT_NO)) {
|
|
s_cpus++;
|
|
continue;
|
|
}
|
|
smp_get_save_area(c_cpus, cpu_addr);
|
|
c_cpus++;
|
|
}
|
|
out:
|
|
kfree(info);
|
|
printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
|
|
get_online_cpus();
|
|
smp_rescan_cpus();
|
|
put_online_cpus();
|
|
}
|
|
|
|
/*
|
|
* Activate a secondary processor.
|
|
*/
|
|
int __cpuinit start_secondary(void *cpuvoid)
|
|
{
|
|
/* Setup the cpu */
|
|
cpu_init();
|
|
preempt_disable();
|
|
/* Enable TOD clock interrupts on the secondary cpu. */
|
|
init_cpu_timer();
|
|
#ifdef CONFIG_VIRT_TIMER
|
|
/* Enable cpu timer interrupts on the secondary cpu. */
|
|
init_cpu_vtimer();
|
|
#endif
|
|
/* Enable pfault pseudo page faults on this cpu. */
|
|
pfault_init();
|
|
|
|
/* Mark this cpu as online */
|
|
cpu_set(smp_processor_id(), cpu_online_map);
|
|
/* Switch on interrupts */
|
|
local_irq_enable();
|
|
/* Print info about this processor */
|
|
print_cpu_info(&S390_lowcore.cpu_data);
|
|
/* cpu_idle will call schedule for us */
|
|
cpu_idle();
|
|
return 0;
|
|
}
|
|
|
|
static void __init smp_create_idle(unsigned int cpu)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
/*
|
|
* don't care about the psw and regs settings since we'll never
|
|
* reschedule the forked task.
|
|
*/
|
|
p = fork_idle(cpu);
|
|
if (IS_ERR(p))
|
|
panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
|
|
current_set[cpu] = p;
|
|
spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
|
|
}
|
|
|
|
static int __cpuinit smp_alloc_lowcore(int cpu)
|
|
{
|
|
unsigned long async_stack, panic_stack;
|
|
struct _lowcore *lowcore;
|
|
int lc_order;
|
|
|
|
lc_order = sizeof(long) == 8 ? 1 : 0;
|
|
lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
|
|
if (!lowcore)
|
|
return -ENOMEM;
|
|
async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
|
|
panic_stack = __get_free_page(GFP_KERNEL);
|
|
if (!panic_stack || !async_stack)
|
|
goto out;
|
|
memcpy(lowcore, &S390_lowcore, 512);
|
|
memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
|
|
lowcore->async_stack = async_stack + ASYNC_SIZE;
|
|
lowcore->panic_stack = panic_stack + PAGE_SIZE;
|
|
|
|
#ifndef CONFIG_64BIT
|
|
if (MACHINE_HAS_IEEE) {
|
|
unsigned long save_area;
|
|
|
|
save_area = get_zeroed_page(GFP_KERNEL);
|
|
if (!save_area)
|
|
goto out_save_area;
|
|
lowcore->extended_save_area_addr = (u32) save_area;
|
|
}
|
|
#endif
|
|
lowcore_ptr[cpu] = lowcore;
|
|
return 0;
|
|
|
|
#ifndef CONFIG_64BIT
|
|
out_save_area:
|
|
free_page(panic_stack);
|
|
#endif
|
|
out:
|
|
free_pages(async_stack, ASYNC_ORDER);
|
|
free_pages((unsigned long) lowcore, lc_order);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void smp_free_lowcore(int cpu)
|
|
{
|
|
struct _lowcore *lowcore;
|
|
int lc_order;
|
|
|
|
lc_order = sizeof(long) == 8 ? 1 : 0;
|
|
lowcore = lowcore_ptr[cpu];
|
|
#ifndef CONFIG_64BIT
|
|
if (MACHINE_HAS_IEEE)
|
|
free_page((unsigned long) lowcore->extended_save_area_addr);
|
|
#endif
|
|
free_page(lowcore->panic_stack - PAGE_SIZE);
|
|
free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
|
|
free_pages((unsigned long) lowcore, lc_order);
|
|
lowcore_ptr[cpu] = NULL;
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
/* Upping and downing of CPUs */
|
|
int __cpuinit __cpu_up(unsigned int cpu)
|
|
{
|
|
struct task_struct *idle;
|
|
struct _lowcore *cpu_lowcore;
|
|
struct stack_frame *sf;
|
|
sigp_ccode ccode;
|
|
|
|
if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
|
|
return -EIO;
|
|
if (smp_alloc_lowcore(cpu))
|
|
return -ENOMEM;
|
|
|
|
ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
|
|
cpu, sigp_set_prefix);
|
|
if (ccode) {
|
|
printk("sigp_set_prefix failed for cpu %d "
|
|
"with condition code %d\n",
|
|
(int) cpu, (int) ccode);
|
|
return -EIO;
|
|
}
|
|
|
|
idle = current_set[cpu];
|
|
cpu_lowcore = lowcore_ptr[cpu];
|
|
cpu_lowcore->kernel_stack = (unsigned long)
|
|
task_stack_page(idle) + THREAD_SIZE;
|
|
cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
|
|
sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
|
|
- sizeof(struct pt_regs)
|
|
- sizeof(struct stack_frame));
|
|
memset(sf, 0, sizeof(struct stack_frame));
|
|
sf->gprs[9] = (unsigned long) sf;
|
|
cpu_lowcore->save_area[15] = (unsigned long) sf;
|
|
__ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15);
|
|
asm volatile(
|
|
" stam 0,15,0(%0)"
|
|
: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
|
|
cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
|
|
cpu_lowcore->current_task = (unsigned long) idle;
|
|
cpu_lowcore->cpu_data.cpu_nr = cpu;
|
|
cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
|
|
cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
|
|
eieio();
|
|
|
|
while (signal_processor(cpu, sigp_restart) == sigp_busy)
|
|
udelay(10);
|
|
|
|
while (!cpu_online(cpu))
|
|
cpu_relax();
|
|
return 0;
|
|
}
|
|
|
|
static int __init setup_possible_cpus(char *s)
|
|
{
|
|
int pcpus, cpu;
|
|
|
|
pcpus = simple_strtoul(s, NULL, 0);
|
|
cpu_possible_map = cpumask_of_cpu(0);
|
|
for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
|
|
cpu_set(cpu, cpu_possible_map);
|
|
return 0;
|
|
}
|
|
early_param("possible_cpus", setup_possible_cpus);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
int __cpu_disable(void)
|
|
{
|
|
struct ec_creg_mask_parms cr_parms;
|
|
int cpu = smp_processor_id();
|
|
|
|
cpu_clear(cpu, cpu_online_map);
|
|
|
|
/* Disable pfault pseudo page faults on this cpu. */
|
|
pfault_fini();
|
|
|
|
memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
|
|
memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
|
|
|
|
/* disable all external interrupts */
|
|
cr_parms.orvals[0] = 0;
|
|
cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
|
|
1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
|
|
/* disable all I/O interrupts */
|
|
cr_parms.orvals[6] = 0;
|
|
cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
|
|
1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
|
|
/* disable most machine checks */
|
|
cr_parms.orvals[14] = 0;
|
|
cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
|
|
1 << 25 | 1 << 24);
|
|
|
|
smp_ctl_bit_callback(&cr_parms);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
/* Wait until target cpu is down */
|
|
while (!smp_cpu_not_running(cpu))
|
|
cpu_relax();
|
|
smp_free_lowcore(cpu);
|
|
printk(KERN_INFO "Processor %d spun down\n", cpu);
|
|
}
|
|
|
|
void cpu_die(void)
|
|
{
|
|
idle_task_exit();
|
|
signal_processor(smp_processor_id(), sigp_stop);
|
|
BUG();
|
|
for (;;);
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
#ifndef CONFIG_64BIT
|
|
unsigned long save_area = 0;
|
|
#endif
|
|
unsigned long async_stack, panic_stack;
|
|
struct _lowcore *lowcore;
|
|
unsigned int cpu;
|
|
int lc_order;
|
|
|
|
smp_detect_cpus();
|
|
|
|
/* request the 0x1201 emergency signal external interrupt */
|
|
if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
|
|
panic("Couldn't request external interrupt 0x1201");
|
|
print_cpu_info(&S390_lowcore.cpu_data);
|
|
|
|
/* Reallocate current lowcore, but keep its contents. */
|
|
lc_order = sizeof(long) == 8 ? 1 : 0;
|
|
lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
|
|
panic_stack = __get_free_page(GFP_KERNEL);
|
|
async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
|
|
#ifndef CONFIG_64BIT
|
|
if (MACHINE_HAS_IEEE)
|
|
save_area = get_zeroed_page(GFP_KERNEL);
|
|
#endif
|
|
local_irq_disable();
|
|
local_mcck_disable();
|
|
lowcore_ptr[smp_processor_id()] = lowcore;
|
|
*lowcore = S390_lowcore;
|
|
lowcore->panic_stack = panic_stack + PAGE_SIZE;
|
|
lowcore->async_stack = async_stack + ASYNC_SIZE;
|
|
#ifndef CONFIG_64BIT
|
|
if (MACHINE_HAS_IEEE)
|
|
lowcore->extended_save_area_addr = (u32) save_area;
|
|
#endif
|
|
set_prefix((u32)(unsigned long) lowcore);
|
|
local_mcck_enable();
|
|
local_irq_enable();
|
|
for_each_possible_cpu(cpu)
|
|
if (cpu != smp_processor_id())
|
|
smp_create_idle(cpu);
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
BUG_ON(smp_processor_id() != 0);
|
|
|
|
current_thread_info()->cpu = 0;
|
|
cpu_set(0, cpu_present_map);
|
|
cpu_set(0, cpu_online_map);
|
|
S390_lowcore.percpu_offset = __per_cpu_offset[0];
|
|
current_set[0] = current;
|
|
smp_cpu_state[0] = CPU_STATE_CONFIGURED;
|
|
spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* the frequency of the profiling timer can be changed
|
|
* by writing a multiplier value into /proc/profile.
|
|
*
|
|
* usually you want to run this on all CPUs ;)
|
|
*/
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static ssize_t cpu_configure_show(struct sys_device *dev, char *buf)
|
|
{
|
|
ssize_t count;
|
|
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf,
|
|
size_t count)
|
|
{
|
|
int cpu = dev->id;
|
|
int val, rc;
|
|
char delim;
|
|
|
|
if (sscanf(buf, "%d %c", &val, &delim) != 1)
|
|
return -EINVAL;
|
|
if (val != 0 && val != 1)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
get_online_cpus();
|
|
rc = -EBUSY;
|
|
if (cpu_online(cpu))
|
|
goto out;
|
|
rc = 0;
|
|
switch (val) {
|
|
case 0:
|
|
if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
|
|
rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
|
|
if (!rc)
|
|
smp_cpu_state[cpu] = CPU_STATE_STANDBY;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
|
|
rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
|
|
if (!rc)
|
|
smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
out:
|
|
put_online_cpus();
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
return rc ? rc : count;
|
|
}
|
|
static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static ssize_t show_cpu_address(struct sys_device *dev, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
|
|
}
|
|
static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
|
|
|
|
|
|
static struct attribute *cpu_common_attrs[] = {
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
&attr_configure.attr,
|
|
#endif
|
|
&attr_address.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group cpu_common_attr_group = {
|
|
.attrs = cpu_common_attrs,
|
|
};
|
|
|
|
static ssize_t show_capability(struct sys_device *dev, char *buf)
|
|
{
|
|
unsigned int capability;
|
|
int rc;
|
|
|
|
rc = get_cpu_capability(&capability);
|
|
if (rc)
|
|
return rc;
|
|
return sprintf(buf, "%u\n", capability);
|
|
}
|
|
static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
|
|
|
|
static ssize_t show_idle_count(struct sys_device *dev, char *buf)
|
|
{
|
|
struct s390_idle_data *idle;
|
|
unsigned long long idle_count;
|
|
|
|
idle = &per_cpu(s390_idle, dev->id);
|
|
spin_lock_irq(&idle->lock);
|
|
idle_count = idle->idle_count;
|
|
spin_unlock_irq(&idle->lock);
|
|
return sprintf(buf, "%llu\n", idle_count);
|
|
}
|
|
static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
|
|
|
|
static ssize_t show_idle_time(struct sys_device *dev, char *buf)
|
|
{
|
|
struct s390_idle_data *idle;
|
|
unsigned long long new_time;
|
|
|
|
idle = &per_cpu(s390_idle, dev->id);
|
|
spin_lock_irq(&idle->lock);
|
|
if (idle->in_idle) {
|
|
new_time = get_clock();
|
|
idle->idle_time += new_time - idle->idle_enter;
|
|
idle->idle_enter = new_time;
|
|
}
|
|
new_time = idle->idle_time;
|
|
spin_unlock_irq(&idle->lock);
|
|
return sprintf(buf, "%llu\n", new_time >> 12);
|
|
}
|
|
static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
|
|
|
|
static struct attribute *cpu_online_attrs[] = {
|
|
&attr_capability.attr,
|
|
&attr_idle_count.attr,
|
|
&attr_idle_time_us.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group cpu_online_attr_group = {
|
|
.attrs = cpu_online_attrs,
|
|
};
|
|
|
|
static int __cpuinit smp_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned int)(long)hcpu;
|
|
struct cpu *c = &per_cpu(cpu_devices, cpu);
|
|
struct sys_device *s = &c->sysdev;
|
|
struct s390_idle_data *idle;
|
|
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
idle = &per_cpu(s390_idle, cpu);
|
|
spin_lock_irq(&idle->lock);
|
|
idle->idle_enter = 0;
|
|
idle->idle_time = 0;
|
|
idle->idle_count = 0;
|
|
spin_unlock_irq(&idle->lock);
|
|
if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
|
|
return NOTIFY_BAD;
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata smp_cpu_nb = {
|
|
.notifier_call = smp_cpu_notify,
|
|
};
|
|
|
|
static int __devinit smp_add_present_cpu(int cpu)
|
|
{
|
|
struct cpu *c = &per_cpu(cpu_devices, cpu);
|
|
struct sys_device *s = &c->sysdev;
|
|
int rc;
|
|
|
|
c->hotpluggable = 1;
|
|
rc = register_cpu(c, cpu);
|
|
if (rc)
|
|
goto out;
|
|
rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
|
|
if (rc)
|
|
goto out_cpu;
|
|
if (!cpu_online(cpu))
|
|
goto out;
|
|
rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
|
|
if (!rc)
|
|
return 0;
|
|
sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
|
|
out_cpu:
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
unregister_cpu(c);
|
|
#endif
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static ssize_t __ref rescan_store(struct sys_device *dev,
|
|
const char *buf, size_t count)
|
|
{
|
|
cpumask_t newcpus;
|
|
int cpu;
|
|
int rc;
|
|
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
get_online_cpus();
|
|
newcpus = cpu_present_map;
|
|
rc = smp_rescan_cpus();
|
|
if (rc)
|
|
goto out;
|
|
cpus_andnot(newcpus, cpu_present_map, newcpus);
|
|
for_each_cpu_mask(cpu, newcpus) {
|
|
rc = smp_add_present_cpu(cpu);
|
|
if (rc)
|
|
cpu_clear(cpu, cpu_present_map);
|
|
}
|
|
rc = 0;
|
|
out:
|
|
put_online_cpus();
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
return rc ? rc : count;
|
|
}
|
|
static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static int __init topology_init(void)
|
|
{
|
|
int cpu;
|
|
int rc;
|
|
|
|
register_cpu_notifier(&smp_cpu_nb);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
|
|
&attr_rescan.attr);
|
|
if (rc)
|
|
return rc;
|
|
#endif
|
|
for_each_present_cpu(cpu) {
|
|
rc = smp_add_present_cpu(cpu);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
subsys_initcall(topology_init);
|