WSL2-Linux-Kernel/sound/soc/codecs/tlv320aic32x4.c

1438 строки
44 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/sound/soc/codecs/tlv320aic32x4.c
*
* Copyright 2011 Vista Silicon S.L.
*
* Author: Javier Martin <javier.martin@vista-silicon.com>
*
* Based on sound/soc/codecs/wm8974 and TI driver for kernel 2.6.27.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/of_clk.h>
#include <linux/regulator/consumer.h>
#include <sound/tlv320aic32x4.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "tlv320aic32x4.h"
struct aic32x4_priv {
struct regmap *regmap;
u32 power_cfg;
u32 micpga_routing;
bool swapdacs;
int rstn_gpio;
const char *mclk_name;
struct regulator *supply_ldo;
struct regulator *supply_iov;
struct regulator *supply_dv;
struct regulator *supply_av;
struct aic32x4_setup_data *setup;
struct device *dev;
enum aic32x4_type type;
unsigned int fmt;
};
static int aic32x4_reset_adc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
u32 adc_reg;
/*
* Workaround: the datasheet does not mention a required programming
* sequence but experiments show the ADC needs to be reset after each
* capture to avoid audible artifacts.
*/
switch (event) {
case SND_SOC_DAPM_POST_PMD:
adc_reg = snd_soc_component_read(component, AIC32X4_ADCSETUP);
snd_soc_component_write(component, AIC32X4_ADCSETUP, adc_reg |
AIC32X4_LADC_EN | AIC32X4_RADC_EN);
snd_soc_component_write(component, AIC32X4_ADCSETUP, adc_reg);
break;
}
return 0;
};
static int mic_bias_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
/* Change Mic Bias Registor */
snd_soc_component_update_bits(component, AIC32X4_MICBIAS,
AIC32x4_MICBIAS_MASK,
AIC32X4_MICBIAS_LDOIN |
AIC32X4_MICBIAS_2075V);
printk(KERN_DEBUG "%s: Mic Bias will be turned ON\n", __func__);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_component_update_bits(component, AIC32X4_MICBIAS,
AIC32x4_MICBIAS_MASK, 0);
printk(KERN_DEBUG "%s: Mic Bias will be turned OFF\n",
__func__);
break;
}
return 0;
}
static int aic32x4_get_mfp1_gpio(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
u8 val;
val = snd_soc_component_read(component, AIC32X4_DINCTL);
ucontrol->value.integer.value[0] = (val & 0x01);
return 0;
};
static int aic32x4_set_mfp2_gpio(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
u8 val;
u8 gpio_check;
val = snd_soc_component_read(component, AIC32X4_DOUTCTL);
gpio_check = (val & AIC32X4_MFP_GPIO_ENABLED);
if (gpio_check != AIC32X4_MFP_GPIO_ENABLED) {
printk(KERN_ERR "%s: MFP2 is not configure as a GPIO output\n",
__func__);
return -EINVAL;
}
if (ucontrol->value.integer.value[0] == (val & AIC32X4_MFP2_GPIO_OUT_HIGH))
return 0;
if (ucontrol->value.integer.value[0])
val |= ucontrol->value.integer.value[0];
else
val &= ~AIC32X4_MFP2_GPIO_OUT_HIGH;
snd_soc_component_write(component, AIC32X4_DOUTCTL, val);
return 0;
};
static int aic32x4_get_mfp3_gpio(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
u8 val;
val = snd_soc_component_read(component, AIC32X4_SCLKCTL);
ucontrol->value.integer.value[0] = (val & 0x01);
return 0;
};
static int aic32x4_set_mfp4_gpio(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
u8 val;
u8 gpio_check;
val = snd_soc_component_read(component, AIC32X4_MISOCTL);
gpio_check = (val & AIC32X4_MFP_GPIO_ENABLED);
if (gpio_check != AIC32X4_MFP_GPIO_ENABLED) {
printk(KERN_ERR "%s: MFP4 is not configure as a GPIO output\n",
__func__);
return -EINVAL;
}
if (ucontrol->value.integer.value[0] == (val & AIC32X4_MFP5_GPIO_OUT_HIGH))
return 0;
if (ucontrol->value.integer.value[0])
val |= ucontrol->value.integer.value[0];
else
val &= ~AIC32X4_MFP5_GPIO_OUT_HIGH;
snd_soc_component_write(component, AIC32X4_MISOCTL, val);
return 0;
};
static int aic32x4_get_mfp5_gpio(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
u8 val;
val = snd_soc_component_read(component, AIC32X4_GPIOCTL);
ucontrol->value.integer.value[0] = ((val & 0x2) >> 1);
return 0;
};
static int aic32x4_set_mfp5_gpio(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
u8 val;
u8 gpio_check;
val = snd_soc_component_read(component, AIC32X4_GPIOCTL);
gpio_check = (val & AIC32X4_MFP5_GPIO_OUTPUT);
if (gpio_check != AIC32X4_MFP5_GPIO_OUTPUT) {
printk(KERN_ERR "%s: MFP5 is not configure as a GPIO output\n",
__func__);
return -EINVAL;
}
if (ucontrol->value.integer.value[0] == (val & 0x1))
return 0;
if (ucontrol->value.integer.value[0])
val |= ucontrol->value.integer.value[0];
else
val &= 0xfe;
snd_soc_component_write(component, AIC32X4_GPIOCTL, val);
return 0;
};
static const struct snd_kcontrol_new aic32x4_mfp1[] = {
SOC_SINGLE_BOOL_EXT("MFP1 GPIO", 0, aic32x4_get_mfp1_gpio, NULL),
};
static const struct snd_kcontrol_new aic32x4_mfp2[] = {
SOC_SINGLE_BOOL_EXT("MFP2 GPIO", 0, NULL, aic32x4_set_mfp2_gpio),
};
static const struct snd_kcontrol_new aic32x4_mfp3[] = {
SOC_SINGLE_BOOL_EXT("MFP3 GPIO", 0, aic32x4_get_mfp3_gpio, NULL),
};
static const struct snd_kcontrol_new aic32x4_mfp4[] = {
SOC_SINGLE_BOOL_EXT("MFP4 GPIO", 0, NULL, aic32x4_set_mfp4_gpio),
};
static const struct snd_kcontrol_new aic32x4_mfp5[] = {
SOC_SINGLE_BOOL_EXT("MFP5 GPIO", 0, aic32x4_get_mfp5_gpio,
aic32x4_set_mfp5_gpio),
};
/* 0dB min, 0.5dB steps */
static DECLARE_TLV_DB_SCALE(tlv_step_0_5, 0, 50, 0);
/* -63.5dB min, 0.5dB steps */
static DECLARE_TLV_DB_SCALE(tlv_pcm, -6350, 50, 0);
/* -6dB min, 1dB steps */
static DECLARE_TLV_DB_SCALE(tlv_driver_gain, -600, 100, 0);
/* -12dB min, 0.5dB steps */
static DECLARE_TLV_DB_SCALE(tlv_adc_vol, -1200, 50, 0);
/* -6dB min, 1dB steps */
static DECLARE_TLV_DB_SCALE(tlv_tas_driver_gain, -5850, 50, 0);
static DECLARE_TLV_DB_SCALE(tlv_amp_vol, 0, 600, 1);
static const char * const lo_cm_text[] = {
"Full Chip", "1.65V",
};
static SOC_ENUM_SINGLE_DECL(lo_cm_enum, AIC32X4_CMMODE, 3, lo_cm_text);
static const char * const ptm_text[] = {
"P3", "P2", "P1",
};
static SOC_ENUM_SINGLE_DECL(l_ptm_enum, AIC32X4_LPLAYBACK, 2, ptm_text);
static SOC_ENUM_SINGLE_DECL(r_ptm_enum, AIC32X4_RPLAYBACK, 2, ptm_text);
static const struct snd_kcontrol_new aic32x4_snd_controls[] = {
SOC_DOUBLE_R_S_TLV("PCM Playback Volume", AIC32X4_LDACVOL,
AIC32X4_RDACVOL, 0, -0x7f, 0x30, 7, 0, tlv_pcm),
SOC_ENUM("DAC Left Playback PowerTune Switch", l_ptm_enum),
SOC_ENUM("DAC Right Playback PowerTune Switch", r_ptm_enum),
SOC_DOUBLE_R_S_TLV("HP Driver Gain Volume", AIC32X4_HPLGAIN,
AIC32X4_HPRGAIN, 0, -0x6, 0x1d, 5, 0,
tlv_driver_gain),
SOC_DOUBLE_R_S_TLV("LO Driver Gain Volume", AIC32X4_LOLGAIN,
AIC32X4_LORGAIN, 0, -0x6, 0x1d, 5, 0,
tlv_driver_gain),
SOC_DOUBLE_R("HP DAC Playback Switch", AIC32X4_HPLGAIN,
AIC32X4_HPRGAIN, 6, 0x01, 1),
SOC_DOUBLE_R("LO DAC Playback Switch", AIC32X4_LOLGAIN,
AIC32X4_LORGAIN, 6, 0x01, 1),
SOC_ENUM("LO Playback Common Mode Switch", lo_cm_enum),
SOC_DOUBLE_R("Mic PGA Switch", AIC32X4_LMICPGAVOL,
AIC32X4_RMICPGAVOL, 7, 0x01, 1),
SOC_SINGLE("ADCFGA Left Mute Switch", AIC32X4_ADCFGA, 7, 1, 0),
SOC_SINGLE("ADCFGA Right Mute Switch", AIC32X4_ADCFGA, 3, 1, 0),
SOC_DOUBLE_R_S_TLV("ADC Level Volume", AIC32X4_LADCVOL,
AIC32X4_RADCVOL, 0, -0x18, 0x28, 6, 0, tlv_adc_vol),
SOC_DOUBLE_R_TLV("PGA Level Volume", AIC32X4_LMICPGAVOL,
AIC32X4_RMICPGAVOL, 0, 0x5f, 0, tlv_step_0_5),
SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0),
SOC_SINGLE("AGC Left Switch", AIC32X4_LAGC1, 7, 1, 0),
SOC_SINGLE("AGC Right Switch", AIC32X4_RAGC1, 7, 1, 0),
SOC_DOUBLE_R("AGC Target Level", AIC32X4_LAGC1, AIC32X4_RAGC1,
4, 0x07, 0),
SOC_DOUBLE_R("AGC Gain Hysteresis", AIC32X4_LAGC1, AIC32X4_RAGC1,
0, 0x03, 0),
SOC_DOUBLE_R("AGC Hysteresis", AIC32X4_LAGC2, AIC32X4_RAGC2,
6, 0x03, 0),
SOC_DOUBLE_R("AGC Noise Threshold", AIC32X4_LAGC2, AIC32X4_RAGC2,
1, 0x1F, 0),
SOC_DOUBLE_R("AGC Max PGA", AIC32X4_LAGC3, AIC32X4_RAGC3,
0, 0x7F, 0),
SOC_DOUBLE_R("AGC Attack Time", AIC32X4_LAGC4, AIC32X4_RAGC4,
3, 0x1F, 0),
SOC_DOUBLE_R("AGC Decay Time", AIC32X4_LAGC5, AIC32X4_RAGC5,
3, 0x1F, 0),
SOC_DOUBLE_R("AGC Noise Debounce", AIC32X4_LAGC6, AIC32X4_RAGC6,
0, 0x1F, 0),
SOC_DOUBLE_R("AGC Signal Debounce", AIC32X4_LAGC7, AIC32X4_RAGC7,
0, 0x0F, 0),
};
static const struct snd_kcontrol_new hpl_output_mixer_controls[] = {
SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0),
SOC_DAPM_SINGLE("IN1_L Switch", AIC32X4_HPLROUTE, 2, 1, 0),
};
static const struct snd_kcontrol_new hpr_output_mixer_controls[] = {
SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_HPRROUTE, 3, 1, 0),
SOC_DAPM_SINGLE("IN1_R Switch", AIC32X4_HPRROUTE, 2, 1, 0),
};
static const struct snd_kcontrol_new lol_output_mixer_controls[] = {
SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_LOLROUTE, 3, 1, 0),
};
static const struct snd_kcontrol_new lor_output_mixer_controls[] = {
SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_LORROUTE, 3, 1, 0),
};
static const char * const resistor_text[] = {
"Off", "10 kOhm", "20 kOhm", "40 kOhm",
};
/* Left mixer pins */
static SOC_ENUM_SINGLE_DECL(in1l_lpga_p_enum, AIC32X4_LMICPGAPIN, 6, resistor_text);
static SOC_ENUM_SINGLE_DECL(in2l_lpga_p_enum, AIC32X4_LMICPGAPIN, 4, resistor_text);
static SOC_ENUM_SINGLE_DECL(in3l_lpga_p_enum, AIC32X4_LMICPGAPIN, 2, resistor_text);
static SOC_ENUM_SINGLE_DECL(in1r_lpga_p_enum, AIC32X4_LMICPGAPIN, 0, resistor_text);
static SOC_ENUM_SINGLE_DECL(cml_lpga_n_enum, AIC32X4_LMICPGANIN, 6, resistor_text);
static SOC_ENUM_SINGLE_DECL(in2r_lpga_n_enum, AIC32X4_LMICPGANIN, 4, resistor_text);
static SOC_ENUM_SINGLE_DECL(in3r_lpga_n_enum, AIC32X4_LMICPGANIN, 2, resistor_text);
static const struct snd_kcontrol_new in1l_to_lmixer_controls[] = {
SOC_DAPM_ENUM("IN1_L L+ Switch", in1l_lpga_p_enum),
};
static const struct snd_kcontrol_new in2l_to_lmixer_controls[] = {
SOC_DAPM_ENUM("IN2_L L+ Switch", in2l_lpga_p_enum),
};
static const struct snd_kcontrol_new in3l_to_lmixer_controls[] = {
SOC_DAPM_ENUM("IN3_L L+ Switch", in3l_lpga_p_enum),
};
static const struct snd_kcontrol_new in1r_to_lmixer_controls[] = {
SOC_DAPM_ENUM("IN1_R L+ Switch", in1r_lpga_p_enum),
};
static const struct snd_kcontrol_new cml_to_lmixer_controls[] = {
SOC_DAPM_ENUM("CM_L L- Switch", cml_lpga_n_enum),
};
static const struct snd_kcontrol_new in2r_to_lmixer_controls[] = {
SOC_DAPM_ENUM("IN2_R L- Switch", in2r_lpga_n_enum),
};
static const struct snd_kcontrol_new in3r_to_lmixer_controls[] = {
SOC_DAPM_ENUM("IN3_R L- Switch", in3r_lpga_n_enum),
};
/* Right mixer pins */
static SOC_ENUM_SINGLE_DECL(in1r_rpga_p_enum, AIC32X4_RMICPGAPIN, 6, resistor_text);
static SOC_ENUM_SINGLE_DECL(in2r_rpga_p_enum, AIC32X4_RMICPGAPIN, 4, resistor_text);
static SOC_ENUM_SINGLE_DECL(in3r_rpga_p_enum, AIC32X4_RMICPGAPIN, 2, resistor_text);
static SOC_ENUM_SINGLE_DECL(in2l_rpga_p_enum, AIC32X4_RMICPGAPIN, 0, resistor_text);
static SOC_ENUM_SINGLE_DECL(cmr_rpga_n_enum, AIC32X4_RMICPGANIN, 6, resistor_text);
static SOC_ENUM_SINGLE_DECL(in1l_rpga_n_enum, AIC32X4_RMICPGANIN, 4, resistor_text);
static SOC_ENUM_SINGLE_DECL(in3l_rpga_n_enum, AIC32X4_RMICPGANIN, 2, resistor_text);
static const struct snd_kcontrol_new in1r_to_rmixer_controls[] = {
SOC_DAPM_ENUM("IN1_R R+ Switch", in1r_rpga_p_enum),
};
static const struct snd_kcontrol_new in2r_to_rmixer_controls[] = {
SOC_DAPM_ENUM("IN2_R R+ Switch", in2r_rpga_p_enum),
};
static const struct snd_kcontrol_new in3r_to_rmixer_controls[] = {
SOC_DAPM_ENUM("IN3_R R+ Switch", in3r_rpga_p_enum),
};
static const struct snd_kcontrol_new in2l_to_rmixer_controls[] = {
SOC_DAPM_ENUM("IN2_L R+ Switch", in2l_rpga_p_enum),
};
static const struct snd_kcontrol_new cmr_to_rmixer_controls[] = {
SOC_DAPM_ENUM("CM_R R- Switch", cmr_rpga_n_enum),
};
static const struct snd_kcontrol_new in1l_to_rmixer_controls[] = {
SOC_DAPM_ENUM("IN1_L R- Switch", in1l_rpga_n_enum),
};
static const struct snd_kcontrol_new in3l_to_rmixer_controls[] = {
SOC_DAPM_ENUM("IN3_L R- Switch", in3l_rpga_n_enum),
};
static const struct snd_soc_dapm_widget aic32x4_dapm_widgets[] = {
SND_SOC_DAPM_DAC("Left DAC", "Left Playback", AIC32X4_DACSETUP, 7, 0),
SND_SOC_DAPM_MIXER("HPL Output Mixer", SND_SOC_NOPM, 0, 0,
&hpl_output_mixer_controls[0],
ARRAY_SIZE(hpl_output_mixer_controls)),
SND_SOC_DAPM_PGA("HPL Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0),
SND_SOC_DAPM_MIXER("LOL Output Mixer", SND_SOC_NOPM, 0, 0,
&lol_output_mixer_controls[0],
ARRAY_SIZE(lol_output_mixer_controls)),
SND_SOC_DAPM_PGA("LOL Power", AIC32X4_OUTPWRCTL, 3, 0, NULL, 0),
SND_SOC_DAPM_DAC("Right DAC", "Right Playback", AIC32X4_DACSETUP, 6, 0),
SND_SOC_DAPM_MIXER("HPR Output Mixer", SND_SOC_NOPM, 0, 0,
&hpr_output_mixer_controls[0],
ARRAY_SIZE(hpr_output_mixer_controls)),
SND_SOC_DAPM_PGA("HPR Power", AIC32X4_OUTPWRCTL, 4, 0, NULL, 0),
SND_SOC_DAPM_MIXER("LOR Output Mixer", SND_SOC_NOPM, 0, 0,
&lor_output_mixer_controls[0],
ARRAY_SIZE(lor_output_mixer_controls)),
SND_SOC_DAPM_PGA("LOR Power", AIC32X4_OUTPWRCTL, 2, 0, NULL, 0),
SND_SOC_DAPM_ADC("Right ADC", "Right Capture", AIC32X4_ADCSETUP, 6, 0),
SND_SOC_DAPM_MUX("IN1_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
in1r_to_rmixer_controls),
SND_SOC_DAPM_MUX("IN2_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
in2r_to_rmixer_controls),
SND_SOC_DAPM_MUX("IN3_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
in3r_to_rmixer_controls),
SND_SOC_DAPM_MUX("IN2_L to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
in2l_to_rmixer_controls),
SND_SOC_DAPM_MUX("CM_R to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
cmr_to_rmixer_controls),
SND_SOC_DAPM_MUX("IN1_L to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
in1l_to_rmixer_controls),
SND_SOC_DAPM_MUX("IN3_L to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
in3l_to_rmixer_controls),
SND_SOC_DAPM_ADC("Left ADC", "Left Capture", AIC32X4_ADCSETUP, 7, 0),
SND_SOC_DAPM_MUX("IN1_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
in1l_to_lmixer_controls),
SND_SOC_DAPM_MUX("IN2_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
in2l_to_lmixer_controls),
SND_SOC_DAPM_MUX("IN3_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
in3l_to_lmixer_controls),
SND_SOC_DAPM_MUX("IN1_R to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
in1r_to_lmixer_controls),
SND_SOC_DAPM_MUX("CM_L to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
cml_to_lmixer_controls),
SND_SOC_DAPM_MUX("IN2_R to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
in2r_to_lmixer_controls),
SND_SOC_DAPM_MUX("IN3_R to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
in3r_to_lmixer_controls),
SND_SOC_DAPM_SUPPLY("Mic Bias", AIC32X4_MICBIAS, 6, 0, mic_bias_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_POST("ADC Reset", aic32x4_reset_adc),
SND_SOC_DAPM_OUTPUT("HPL"),
SND_SOC_DAPM_OUTPUT("HPR"),
SND_SOC_DAPM_OUTPUT("LOL"),
SND_SOC_DAPM_OUTPUT("LOR"),
SND_SOC_DAPM_INPUT("IN1_L"),
SND_SOC_DAPM_INPUT("IN1_R"),
SND_SOC_DAPM_INPUT("IN2_L"),
SND_SOC_DAPM_INPUT("IN2_R"),
SND_SOC_DAPM_INPUT("IN3_L"),
SND_SOC_DAPM_INPUT("IN3_R"),
SND_SOC_DAPM_INPUT("CM_L"),
SND_SOC_DAPM_INPUT("CM_R"),
};
static const struct snd_soc_dapm_route aic32x4_dapm_routes[] = {
/* Left Output */
{"HPL Output Mixer", "L_DAC Switch", "Left DAC"},
{"HPL Output Mixer", "IN1_L Switch", "IN1_L"},
{"HPL Power", NULL, "HPL Output Mixer"},
{"HPL", NULL, "HPL Power"},
{"LOL Output Mixer", "L_DAC Switch", "Left DAC"},
{"LOL Power", NULL, "LOL Output Mixer"},
{"LOL", NULL, "LOL Power"},
/* Right Output */
{"HPR Output Mixer", "R_DAC Switch", "Right DAC"},
{"HPR Output Mixer", "IN1_R Switch", "IN1_R"},
{"HPR Power", NULL, "HPR Output Mixer"},
{"HPR", NULL, "HPR Power"},
{"LOR Output Mixer", "R_DAC Switch", "Right DAC"},
{"LOR Power", NULL, "LOR Output Mixer"},
{"LOR", NULL, "LOR Power"},
/* Right Input */
{"Right ADC", NULL, "IN1_R to Right Mixer Positive Resistor"},
{"IN1_R to Right Mixer Positive Resistor", "10 kOhm", "IN1_R"},
{"IN1_R to Right Mixer Positive Resistor", "20 kOhm", "IN1_R"},
{"IN1_R to Right Mixer Positive Resistor", "40 kOhm", "IN1_R"},
{"Right ADC", NULL, "IN2_R to Right Mixer Positive Resistor"},
{"IN2_R to Right Mixer Positive Resistor", "10 kOhm", "IN2_R"},
{"IN2_R to Right Mixer Positive Resistor", "20 kOhm", "IN2_R"},
{"IN2_R to Right Mixer Positive Resistor", "40 kOhm", "IN2_R"},
{"Right ADC", NULL, "IN3_R to Right Mixer Positive Resistor"},
{"IN3_R to Right Mixer Positive Resistor", "10 kOhm", "IN3_R"},
{"IN3_R to Right Mixer Positive Resistor", "20 kOhm", "IN3_R"},
{"IN3_R to Right Mixer Positive Resistor", "40 kOhm", "IN3_R"},
{"Right ADC", NULL, "IN2_L to Right Mixer Positive Resistor"},
{"IN2_L to Right Mixer Positive Resistor", "10 kOhm", "IN2_L"},
{"IN2_L to Right Mixer Positive Resistor", "20 kOhm", "IN2_L"},
{"IN2_L to Right Mixer Positive Resistor", "40 kOhm", "IN2_L"},
{"Right ADC", NULL, "CM_R to Right Mixer Negative Resistor"},
{"CM_R to Right Mixer Negative Resistor", "10 kOhm", "CM_R"},
{"CM_R to Right Mixer Negative Resistor", "20 kOhm", "CM_R"},
{"CM_R to Right Mixer Negative Resistor", "40 kOhm", "CM_R"},
{"Right ADC", NULL, "IN1_L to Right Mixer Negative Resistor"},
{"IN1_L to Right Mixer Negative Resistor", "10 kOhm", "IN1_L"},
{"IN1_L to Right Mixer Negative Resistor", "20 kOhm", "IN1_L"},
{"IN1_L to Right Mixer Negative Resistor", "40 kOhm", "IN1_L"},
{"Right ADC", NULL, "IN3_L to Right Mixer Negative Resistor"},
{"IN3_L to Right Mixer Negative Resistor", "10 kOhm", "IN3_L"},
{"IN3_L to Right Mixer Negative Resistor", "20 kOhm", "IN3_L"},
{"IN3_L to Right Mixer Negative Resistor", "40 kOhm", "IN3_L"},
/* Left Input */
{"Left ADC", NULL, "IN1_L to Left Mixer Positive Resistor"},
{"IN1_L to Left Mixer Positive Resistor", "10 kOhm", "IN1_L"},
{"IN1_L to Left Mixer Positive Resistor", "20 kOhm", "IN1_L"},
{"IN1_L to Left Mixer Positive Resistor", "40 kOhm", "IN1_L"},
{"Left ADC", NULL, "IN2_L to Left Mixer Positive Resistor"},
{"IN2_L to Left Mixer Positive Resistor", "10 kOhm", "IN2_L"},
{"IN2_L to Left Mixer Positive Resistor", "20 kOhm", "IN2_L"},
{"IN2_L to Left Mixer Positive Resistor", "40 kOhm", "IN2_L"},
{"Left ADC", NULL, "IN3_L to Left Mixer Positive Resistor"},
{"IN3_L to Left Mixer Positive Resistor", "10 kOhm", "IN3_L"},
{"IN3_L to Left Mixer Positive Resistor", "20 kOhm", "IN3_L"},
{"IN3_L to Left Mixer Positive Resistor", "40 kOhm", "IN3_L"},
{"Left ADC", NULL, "IN1_R to Left Mixer Positive Resistor"},
{"IN1_R to Left Mixer Positive Resistor", "10 kOhm", "IN1_R"},
{"IN1_R to Left Mixer Positive Resistor", "20 kOhm", "IN1_R"},
{"IN1_R to Left Mixer Positive Resistor", "40 kOhm", "IN1_R"},
{"Left ADC", NULL, "CM_L to Left Mixer Negative Resistor"},
{"CM_L to Left Mixer Negative Resistor", "10 kOhm", "CM_L"},
{"CM_L to Left Mixer Negative Resistor", "20 kOhm", "CM_L"},
{"CM_L to Left Mixer Negative Resistor", "40 kOhm", "CM_L"},
{"Left ADC", NULL, "IN2_R to Left Mixer Negative Resistor"},
{"IN2_R to Left Mixer Negative Resistor", "10 kOhm", "IN2_R"},
{"IN2_R to Left Mixer Negative Resistor", "20 kOhm", "IN2_R"},
{"IN2_R to Left Mixer Negative Resistor", "40 kOhm", "IN2_R"},
{"Left ADC", NULL, "IN3_R to Left Mixer Negative Resistor"},
{"IN3_R to Left Mixer Negative Resistor", "10 kOhm", "IN3_R"},
{"IN3_R to Left Mixer Negative Resistor", "20 kOhm", "IN3_R"},
{"IN3_R to Left Mixer Negative Resistor", "40 kOhm", "IN3_R"},
};
static const struct regmap_range_cfg aic32x4_regmap_pages[] = {
{
.selector_reg = 0,
.selector_mask = 0xff,
.window_start = 0,
.window_len = 128,
.range_min = 0,
.range_max = AIC32X4_REFPOWERUP,
},
};
const struct regmap_config aic32x4_regmap_config = {
.max_register = AIC32X4_REFPOWERUP,
.ranges = aic32x4_regmap_pages,
.num_ranges = ARRAY_SIZE(aic32x4_regmap_pages),
};
EXPORT_SYMBOL(aic32x4_regmap_config);
static int aic32x4_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = codec_dai->component;
struct clk *mclk;
struct clk *pll;
pll = devm_clk_get(component->dev, "pll");
if (IS_ERR(pll))
return PTR_ERR(pll);
mclk = clk_get_parent(pll);
return clk_set_rate(mclk, freq);
}
static int aic32x4_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
u8 iface_reg_1 = 0;
u8 iface_reg_2 = 0;
u8 iface_reg_3 = 0;
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:
iface_reg_1 |= AIC32X4_BCLKMASTER | AIC32X4_WCLKMASTER;
break;
case SND_SOC_DAIFMT_CBC_CFC:
break;
default:
printk(KERN_ERR "aic32x4: invalid clock provider\n");
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
break;
case SND_SOC_DAIFMT_DSP_A:
iface_reg_1 |= (AIC32X4_DSP_MODE <<
AIC32X4_IFACE1_DATATYPE_SHIFT);
iface_reg_3 |= AIC32X4_BCLKINV_MASK; /* invert bit clock */
iface_reg_2 = 0x01; /* add offset 1 */
break;
case SND_SOC_DAIFMT_DSP_B:
iface_reg_1 |= (AIC32X4_DSP_MODE <<
AIC32X4_IFACE1_DATATYPE_SHIFT);
iface_reg_3 |= AIC32X4_BCLKINV_MASK; /* invert bit clock */
break;
case SND_SOC_DAIFMT_RIGHT_J:
iface_reg_1 |= (AIC32X4_RIGHT_JUSTIFIED_MODE <<
AIC32X4_IFACE1_DATATYPE_SHIFT);
break;
case SND_SOC_DAIFMT_LEFT_J:
iface_reg_1 |= (AIC32X4_LEFT_JUSTIFIED_MODE <<
AIC32X4_IFACE1_DATATYPE_SHIFT);
break;
default:
printk(KERN_ERR "aic32x4: invalid DAI interface format\n");
return -EINVAL;
}
aic32x4->fmt = fmt;
snd_soc_component_update_bits(component, AIC32X4_IFACE1,
AIC32X4_IFACE1_DATATYPE_MASK |
AIC32X4_IFACE1_MASTER_MASK, iface_reg_1);
snd_soc_component_update_bits(component, AIC32X4_IFACE2,
AIC32X4_DATA_OFFSET_MASK, iface_reg_2);
snd_soc_component_update_bits(component, AIC32X4_IFACE3,
AIC32X4_BCLKINV_MASK, iface_reg_3);
return 0;
}
static int aic32x4_set_aosr(struct snd_soc_component *component, u8 aosr)
{
return snd_soc_component_write(component, AIC32X4_AOSR, aosr);
}
static int aic32x4_set_dosr(struct snd_soc_component *component, u16 dosr)
{
snd_soc_component_write(component, AIC32X4_DOSRMSB, dosr >> 8);
snd_soc_component_write(component, AIC32X4_DOSRLSB,
(dosr & 0xff));
return 0;
}
static int aic32x4_set_processing_blocks(struct snd_soc_component *component,
u8 r_block, u8 p_block)
{
struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
if (aic32x4->type == AIC32X4_TYPE_TAS2505) {
if (r_block || p_block > 3)
return -EINVAL;
snd_soc_component_write(component, AIC32X4_DACSPB, p_block);
} else { /* AIC32x4 */
if (r_block > 18 || p_block > 25)
return -EINVAL;
snd_soc_component_write(component, AIC32X4_ADCSPB, r_block);
snd_soc_component_write(component, AIC32X4_DACSPB, p_block);
}
return 0;
}
static int aic32x4_setup_clocks(struct snd_soc_component *component,
unsigned int sample_rate, unsigned int channels,
unsigned int bit_depth)
{
struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
u8 aosr;
u16 dosr;
u8 adc_resource_class, dac_resource_class;
u8 madc, nadc, mdac, ndac, max_nadc, min_mdac, max_ndac;
u8 dosr_increment;
u16 max_dosr, min_dosr;
unsigned long adc_clock_rate, dac_clock_rate;
int ret;
static struct clk_bulk_data clocks[] = {
{ .id = "pll" },
{ .id = "nadc" },
{ .id = "madc" },
{ .id = "ndac" },
{ .id = "mdac" },
{ .id = "bdiv" },
};
ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
if (ret)
return ret;
if (sample_rate <= 48000) {
aosr = 128;
adc_resource_class = 6;
dac_resource_class = 8;
dosr_increment = 8;
if (aic32x4->type == AIC32X4_TYPE_TAS2505)
aic32x4_set_processing_blocks(component, 0, 1);
else
aic32x4_set_processing_blocks(component, 1, 1);
} else if (sample_rate <= 96000) {
aosr = 64;
adc_resource_class = 6;
dac_resource_class = 8;
dosr_increment = 4;
if (aic32x4->type == AIC32X4_TYPE_TAS2505)
aic32x4_set_processing_blocks(component, 0, 1);
else
aic32x4_set_processing_blocks(component, 1, 9);
} else if (sample_rate == 192000) {
aosr = 32;
adc_resource_class = 3;
dac_resource_class = 4;
dosr_increment = 2;
if (aic32x4->type == AIC32X4_TYPE_TAS2505)
aic32x4_set_processing_blocks(component, 0, 1);
else
aic32x4_set_processing_blocks(component, 13, 19);
} else {
dev_err(component->dev, "Sampling rate not supported\n");
return -EINVAL;
}
/* PCM over I2S is always 2-channel */
if ((aic32x4->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S)
channels = 2;
madc = DIV_ROUND_UP((32 * adc_resource_class), aosr);
max_dosr = (AIC32X4_MAX_DOSR_FREQ / sample_rate / dosr_increment) *
dosr_increment;
min_dosr = (AIC32X4_MIN_DOSR_FREQ / sample_rate / dosr_increment) *
dosr_increment;
max_nadc = AIC32X4_MAX_CODEC_CLKIN_FREQ / (madc * aosr * sample_rate);
for (nadc = max_nadc; nadc > 0; --nadc) {
adc_clock_rate = nadc * madc * aosr * sample_rate;
for (dosr = max_dosr; dosr >= min_dosr;
dosr -= dosr_increment) {
min_mdac = DIV_ROUND_UP((32 * dac_resource_class), dosr);
max_ndac = AIC32X4_MAX_CODEC_CLKIN_FREQ /
(min_mdac * dosr * sample_rate);
for (mdac = min_mdac; mdac <= 128; ++mdac) {
for (ndac = max_ndac; ndac > 0; --ndac) {
dac_clock_rate = ndac * mdac * dosr *
sample_rate;
if (dac_clock_rate == adc_clock_rate) {
if (clk_round_rate(clocks[0].clk, dac_clock_rate) == 0)
continue;
clk_set_rate(clocks[0].clk,
dac_clock_rate);
clk_set_rate(clocks[1].clk,
sample_rate * aosr *
madc);
clk_set_rate(clocks[2].clk,
sample_rate * aosr);
aic32x4_set_aosr(component,
aosr);
clk_set_rate(clocks[3].clk,
sample_rate * dosr *
mdac);
clk_set_rate(clocks[4].clk,
sample_rate * dosr);
aic32x4_set_dosr(component,
dosr);
clk_set_rate(clocks[5].clk,
sample_rate * channels *
bit_depth);
return 0;
}
}
}
}
}
dev_err(component->dev,
"Could not set clocks to support sample rate.\n");
return -EINVAL;
}
static int aic32x4_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
u8 iface1_reg = 0;
u8 dacsetup_reg = 0;
aic32x4_setup_clocks(component, params_rate(params),
params_channels(params),
params_physical_width(params));
switch (params_physical_width(params)) {
case 16:
iface1_reg |= (AIC32X4_WORD_LEN_16BITS <<
AIC32X4_IFACE1_DATALEN_SHIFT);
break;
case 20:
iface1_reg |= (AIC32X4_WORD_LEN_20BITS <<
AIC32X4_IFACE1_DATALEN_SHIFT);
break;
case 24:
iface1_reg |= (AIC32X4_WORD_LEN_24BITS <<
AIC32X4_IFACE1_DATALEN_SHIFT);
break;
case 32:
iface1_reg |= (AIC32X4_WORD_LEN_32BITS <<
AIC32X4_IFACE1_DATALEN_SHIFT);
break;
}
snd_soc_component_update_bits(component, AIC32X4_IFACE1,
AIC32X4_IFACE1_DATALEN_MASK, iface1_reg);
if (params_channels(params) == 1) {
dacsetup_reg = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2LCHN;
} else {
if (aic32x4->swapdacs)
dacsetup_reg = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2RCHN;
else
dacsetup_reg = AIC32X4_LDAC2LCHN | AIC32X4_RDAC2RCHN;
}
snd_soc_component_update_bits(component, AIC32X4_DACSETUP,
AIC32X4_DAC_CHAN_MASK, dacsetup_reg);
return 0;
}
static int aic32x4_mute(struct snd_soc_dai *dai, int mute, int direction)
{
struct snd_soc_component *component = dai->component;
snd_soc_component_update_bits(component, AIC32X4_DACMUTE,
AIC32X4_MUTEON, mute ? AIC32X4_MUTEON : 0);
return 0;
}
static int aic32x4_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
int ret;
static struct clk_bulk_data clocks[] = {
{ .id = "madc" },
{ .id = "mdac" },
{ .id = "bdiv" },
};
ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
if (ret)
return ret;
switch (level) {
case SND_SOC_BIAS_ON:
ret = clk_bulk_prepare_enable(ARRAY_SIZE(clocks), clocks);
if (ret) {
dev_err(component->dev, "Failed to enable clocks\n");
return ret;
}
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
/* Initial cold start */
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
break;
clk_bulk_disable_unprepare(ARRAY_SIZE(clocks), clocks);
break;
case SND_SOC_BIAS_OFF:
break;
}
return 0;
}
#define AIC32X4_RATES SNDRV_PCM_RATE_8000_192000
#define AIC32X4_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_3LE \
| SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops aic32x4_ops = {
.hw_params = aic32x4_hw_params,
.mute_stream = aic32x4_mute,
.set_fmt = aic32x4_set_dai_fmt,
.set_sysclk = aic32x4_set_dai_sysclk,
.no_capture_mute = 1,
};
static struct snd_soc_dai_driver aic32x4_dai = {
.name = "tlv320aic32x4-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = AIC32X4_RATES,
.formats = AIC32X4_FORMATS,},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 8,
.rates = AIC32X4_RATES,
.formats = AIC32X4_FORMATS,},
.ops = &aic32x4_ops,
.symmetric_rate = 1,
};
static void aic32x4_setup_gpios(struct snd_soc_component *component)
{
struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
/* setup GPIO functions */
/* MFP1 */
if (aic32x4->setup->gpio_func[0] != AIC32X4_MFPX_DEFAULT_VALUE) {
snd_soc_component_write(component, AIC32X4_DINCTL,
aic32x4->setup->gpio_func[0]);
snd_soc_add_component_controls(component, aic32x4_mfp1,
ARRAY_SIZE(aic32x4_mfp1));
}
/* MFP2 */
if (aic32x4->setup->gpio_func[1] != AIC32X4_MFPX_DEFAULT_VALUE) {
snd_soc_component_write(component, AIC32X4_DOUTCTL,
aic32x4->setup->gpio_func[1]);
snd_soc_add_component_controls(component, aic32x4_mfp2,
ARRAY_SIZE(aic32x4_mfp2));
}
/* MFP3 */
if (aic32x4->setup->gpio_func[2] != AIC32X4_MFPX_DEFAULT_VALUE) {
snd_soc_component_write(component, AIC32X4_SCLKCTL,
aic32x4->setup->gpio_func[2]);
snd_soc_add_component_controls(component, aic32x4_mfp3,
ARRAY_SIZE(aic32x4_mfp3));
}
/* MFP4 */
if (aic32x4->setup->gpio_func[3] != AIC32X4_MFPX_DEFAULT_VALUE) {
snd_soc_component_write(component, AIC32X4_MISOCTL,
aic32x4->setup->gpio_func[3]);
snd_soc_add_component_controls(component, aic32x4_mfp4,
ARRAY_SIZE(aic32x4_mfp4));
}
/* MFP5 */
if (aic32x4->setup->gpio_func[4] != AIC32X4_MFPX_DEFAULT_VALUE) {
snd_soc_component_write(component, AIC32X4_GPIOCTL,
aic32x4->setup->gpio_func[4]);
snd_soc_add_component_controls(component, aic32x4_mfp5,
ARRAY_SIZE(aic32x4_mfp5));
}
}
static int aic32x4_component_probe(struct snd_soc_component *component)
{
struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
u32 tmp_reg;
int ret;
static struct clk_bulk_data clocks[] = {
{ .id = "codec_clkin" },
{ .id = "pll" },
{ .id = "bdiv" },
{ .id = "mdac" },
};
ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
if (ret)
return ret;
if (aic32x4->setup)
aic32x4_setup_gpios(component);
clk_set_parent(clocks[0].clk, clocks[1].clk);
clk_set_parent(clocks[2].clk, clocks[3].clk);
/* Power platform configuration */
if (aic32x4->power_cfg & AIC32X4_PWR_MICBIAS_2075_LDOIN) {
snd_soc_component_write(component, AIC32X4_MICBIAS,
AIC32X4_MICBIAS_LDOIN | AIC32X4_MICBIAS_2075V);
}
if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE)
snd_soc_component_write(component, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE);
tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ?
AIC32X4_LDOCTLEN : 0;
snd_soc_component_write(component, AIC32X4_LDOCTL, tmp_reg);
tmp_reg = snd_soc_component_read(component, AIC32X4_CMMODE);
if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36)
tmp_reg |= AIC32X4_LDOIN_18_36;
if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED)
tmp_reg |= AIC32X4_LDOIN2HP;
snd_soc_component_write(component, AIC32X4_CMMODE, tmp_reg);
/* Mic PGA routing */
if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_LMIC_IN2R_10K)
snd_soc_component_write(component, AIC32X4_LMICPGANIN,
AIC32X4_LMICPGANIN_IN2R_10K);
else
snd_soc_component_write(component, AIC32X4_LMICPGANIN,
AIC32X4_LMICPGANIN_CM1L_10K);
if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_RMIC_IN1L_10K)
snd_soc_component_write(component, AIC32X4_RMICPGANIN,
AIC32X4_RMICPGANIN_IN1L_10K);
else
snd_soc_component_write(component, AIC32X4_RMICPGANIN,
AIC32X4_RMICPGANIN_CM1R_10K);
/*
* Workaround: for an unknown reason, the ADC needs to be powered up
* and down for the first capture to work properly. It seems related to
* a HW BUG or some kind of behavior not documented in the datasheet.
*/
tmp_reg = snd_soc_component_read(component, AIC32X4_ADCSETUP);
snd_soc_component_write(component, AIC32X4_ADCSETUP, tmp_reg |
AIC32X4_LADC_EN | AIC32X4_RADC_EN);
snd_soc_component_write(component, AIC32X4_ADCSETUP, tmp_reg);
/*
* Enable the fast charging feature and ensure the needed 40ms ellapsed
* before using the analog circuits.
*/
snd_soc_component_write(component, AIC32X4_REFPOWERUP,
AIC32X4_REFPOWERUP_40MS);
msleep(40);
return 0;
}
static const struct snd_soc_component_driver soc_component_dev_aic32x4 = {
.probe = aic32x4_component_probe,
.set_bias_level = aic32x4_set_bias_level,
.controls = aic32x4_snd_controls,
.num_controls = ARRAY_SIZE(aic32x4_snd_controls),
.dapm_widgets = aic32x4_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(aic32x4_dapm_widgets),
.dapm_routes = aic32x4_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(aic32x4_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
};
static const struct snd_kcontrol_new aic32x4_tas2505_snd_controls[] = {
SOC_SINGLE_S8_TLV("PCM Playback Volume",
AIC32X4_LDACVOL, -0x7f, 0x30, tlv_pcm),
SOC_ENUM("DAC Playback PowerTune Switch", l_ptm_enum),
SOC_SINGLE_TLV("HP Driver Gain Volume",
AIC32X4_HPLGAIN, 0, 0x74, 1, tlv_tas_driver_gain),
SOC_SINGLE("HP DAC Playback Switch", AIC32X4_HPLGAIN, 6, 1, 1),
SOC_SINGLE_TLV("Speaker Driver Playback Volume",
TAS2505_SPKVOL1, 0, 0x74, 1, tlv_tas_driver_gain),
SOC_SINGLE_TLV("Speaker Amplifier Playback Volume",
TAS2505_SPKVOL2, 4, 5, 0, tlv_amp_vol),
SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0),
};
static const struct snd_kcontrol_new hp_output_mixer_controls[] = {
SOC_DAPM_SINGLE("DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0),
};
static const struct snd_soc_dapm_widget aic32x4_tas2505_dapm_widgets[] = {
SND_SOC_DAPM_DAC("DAC", "Playback", AIC32X4_DACSETUP, 7, 0),
SND_SOC_DAPM_MIXER("HP Output Mixer", SND_SOC_NOPM, 0, 0,
&hp_output_mixer_controls[0],
ARRAY_SIZE(hp_output_mixer_controls)),
SND_SOC_DAPM_PGA("HP Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0),
SND_SOC_DAPM_PGA("Speaker Driver", TAS2505_SPK, 1, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("HP"),
SND_SOC_DAPM_OUTPUT("Speaker"),
};
static const struct snd_soc_dapm_route aic32x4_tas2505_dapm_routes[] = {
/* Left Output */
{"HP Output Mixer", "DAC Switch", "DAC"},
{"HP Power", NULL, "HP Output Mixer"},
{"HP", NULL, "HP Power"},
{"Speaker Driver", NULL, "DAC"},
{"Speaker", NULL, "Speaker Driver"},
};
static struct snd_soc_dai_driver aic32x4_tas2505_dai = {
.name = "tas2505-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_96000,
.formats = AIC32X4_FORMATS,},
.ops = &aic32x4_ops,
.symmetric_rate = 1,
};
static int aic32x4_tas2505_component_probe(struct snd_soc_component *component)
{
struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
u32 tmp_reg;
int ret;
static struct clk_bulk_data clocks[] = {
{ .id = "codec_clkin" },
{ .id = "pll" },
{ .id = "bdiv" },
{ .id = "mdac" },
};
ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
if (ret)
return ret;
if (aic32x4->setup)
aic32x4_setup_gpios(component);
clk_set_parent(clocks[0].clk, clocks[1].clk);
clk_set_parent(clocks[2].clk, clocks[3].clk);
/* Power platform configuration */
if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE)
snd_soc_component_write(component, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE);
tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ?
AIC32X4_LDOCTLEN : 0;
snd_soc_component_write(component, AIC32X4_LDOCTL, tmp_reg);
tmp_reg = snd_soc_component_read(component, AIC32X4_CMMODE);
if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36)
tmp_reg |= AIC32X4_LDOIN_18_36;
if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED)
tmp_reg |= AIC32X4_LDOIN2HP;
snd_soc_component_write(component, AIC32X4_CMMODE, tmp_reg);
/*
* Enable the fast charging feature and ensure the needed 40ms ellapsed
* before using the analog circuits.
*/
snd_soc_component_write(component, TAS2505_REFPOWERUP,
AIC32X4_REFPOWERUP_40MS);
msleep(40);
return 0;
}
static const struct snd_soc_component_driver soc_component_dev_aic32x4_tas2505 = {
.probe = aic32x4_tas2505_component_probe,
.set_bias_level = aic32x4_set_bias_level,
.controls = aic32x4_tas2505_snd_controls,
.num_controls = ARRAY_SIZE(aic32x4_tas2505_snd_controls),
.dapm_widgets = aic32x4_tas2505_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(aic32x4_tas2505_dapm_widgets),
.dapm_routes = aic32x4_tas2505_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(aic32x4_tas2505_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
};
static int aic32x4_parse_dt(struct aic32x4_priv *aic32x4,
struct device_node *np)
{
struct aic32x4_setup_data *aic32x4_setup;
int ret;
aic32x4_setup = devm_kzalloc(aic32x4->dev, sizeof(*aic32x4_setup),
GFP_KERNEL);
if (!aic32x4_setup)
return -ENOMEM;
ret = of_property_match_string(np, "clock-names", "mclk");
if (ret < 0)
return -EINVAL;
aic32x4->mclk_name = of_clk_get_parent_name(np, ret);
aic32x4->swapdacs = false;
aic32x4->micpga_routing = 0;
aic32x4->rstn_gpio = of_get_named_gpio(np, "reset-gpios", 0);
if (of_property_read_u32_array(np, "aic32x4-gpio-func",
aic32x4_setup->gpio_func, 5) >= 0)
aic32x4->setup = aic32x4_setup;
return 0;
}
static void aic32x4_disable_regulators(struct aic32x4_priv *aic32x4)
{
regulator_disable(aic32x4->supply_iov);
if (!IS_ERR(aic32x4->supply_ldo))
regulator_disable(aic32x4->supply_ldo);
if (!IS_ERR(aic32x4->supply_dv))
regulator_disable(aic32x4->supply_dv);
if (!IS_ERR(aic32x4->supply_av))
regulator_disable(aic32x4->supply_av);
}
static int aic32x4_setup_regulators(struct device *dev,
struct aic32x4_priv *aic32x4)
{
int ret = 0;
aic32x4->supply_ldo = devm_regulator_get_optional(dev, "ldoin");
aic32x4->supply_iov = devm_regulator_get(dev, "iov");
aic32x4->supply_dv = devm_regulator_get_optional(dev, "dv");
aic32x4->supply_av = devm_regulator_get_optional(dev, "av");
/* Check if the regulator requirements are fulfilled */
if (IS_ERR(aic32x4->supply_iov)) {
dev_err(dev, "Missing supply 'iov'\n");
return PTR_ERR(aic32x4->supply_iov);
}
if (IS_ERR(aic32x4->supply_ldo)) {
if (PTR_ERR(aic32x4->supply_ldo) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (IS_ERR(aic32x4->supply_dv)) {
dev_err(dev, "Missing supply 'dv' or 'ldoin'\n");
return PTR_ERR(aic32x4->supply_dv);
}
if (IS_ERR(aic32x4->supply_av)) {
dev_err(dev, "Missing supply 'av' or 'ldoin'\n");
return PTR_ERR(aic32x4->supply_av);
}
} else {
if (PTR_ERR(aic32x4->supply_dv) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (PTR_ERR(aic32x4->supply_av) == -EPROBE_DEFER)
return -EPROBE_DEFER;
}
ret = regulator_enable(aic32x4->supply_iov);
if (ret) {
dev_err(dev, "Failed to enable regulator iov\n");
return ret;
}
if (!IS_ERR(aic32x4->supply_ldo)) {
ret = regulator_enable(aic32x4->supply_ldo);
if (ret) {
dev_err(dev, "Failed to enable regulator ldo\n");
goto error_ldo;
}
}
if (!IS_ERR(aic32x4->supply_dv)) {
ret = regulator_enable(aic32x4->supply_dv);
if (ret) {
dev_err(dev, "Failed to enable regulator dv\n");
goto error_dv;
}
}
if (!IS_ERR(aic32x4->supply_av)) {
ret = regulator_enable(aic32x4->supply_av);
if (ret) {
dev_err(dev, "Failed to enable regulator av\n");
goto error_av;
}
}
if (!IS_ERR(aic32x4->supply_ldo) && IS_ERR(aic32x4->supply_av))
aic32x4->power_cfg |= AIC32X4_PWR_AIC32X4_LDO_ENABLE;
return 0;
error_av:
if (!IS_ERR(aic32x4->supply_dv))
regulator_disable(aic32x4->supply_dv);
error_dv:
if (!IS_ERR(aic32x4->supply_ldo))
regulator_disable(aic32x4->supply_ldo);
error_ldo:
regulator_disable(aic32x4->supply_iov);
return ret;
}
int aic32x4_probe(struct device *dev, struct regmap *regmap)
{
struct aic32x4_priv *aic32x4;
struct aic32x4_pdata *pdata = dev->platform_data;
struct device_node *np = dev->of_node;
int ret;
if (IS_ERR(regmap))
return PTR_ERR(regmap);
aic32x4 = devm_kzalloc(dev, sizeof(struct aic32x4_priv),
GFP_KERNEL);
if (aic32x4 == NULL)
return -ENOMEM;
aic32x4->dev = dev;
aic32x4->type = (enum aic32x4_type)dev_get_drvdata(dev);
dev_set_drvdata(dev, aic32x4);
if (pdata) {
aic32x4->power_cfg = pdata->power_cfg;
aic32x4->swapdacs = pdata->swapdacs;
aic32x4->micpga_routing = pdata->micpga_routing;
aic32x4->rstn_gpio = pdata->rstn_gpio;
aic32x4->mclk_name = "mclk";
} else if (np) {
ret = aic32x4_parse_dt(aic32x4, np);
if (ret) {
dev_err(dev, "Failed to parse DT node\n");
return ret;
}
} else {
aic32x4->power_cfg = 0;
aic32x4->swapdacs = false;
aic32x4->micpga_routing = 0;
aic32x4->rstn_gpio = -1;
aic32x4->mclk_name = "mclk";
}
if (gpio_is_valid(aic32x4->rstn_gpio)) {
ret = devm_gpio_request_one(dev, aic32x4->rstn_gpio,
GPIOF_OUT_INIT_LOW, "tlv320aic32x4 rstn");
if (ret != 0)
return ret;
}
ret = aic32x4_setup_regulators(dev, aic32x4);
if (ret) {
dev_err(dev, "Failed to setup regulators\n");
return ret;
}
if (gpio_is_valid(aic32x4->rstn_gpio)) {
ndelay(10);
gpio_set_value_cansleep(aic32x4->rstn_gpio, 1);
mdelay(1);
}
ret = regmap_write(regmap, AIC32X4_RESET, 0x01);
if (ret)
goto err_disable_regulators;
ret = aic32x4_register_clocks(dev, aic32x4->mclk_name);
if (ret)
goto err_disable_regulators;
switch (aic32x4->type) {
case AIC32X4_TYPE_TAS2505:
ret = devm_snd_soc_register_component(dev,
&soc_component_dev_aic32x4_tas2505, &aic32x4_tas2505_dai, 1);
break;
default:
ret = devm_snd_soc_register_component(dev,
&soc_component_dev_aic32x4, &aic32x4_dai, 1);
}
if (ret) {
dev_err(dev, "Failed to register component\n");
goto err_disable_regulators;
}
return 0;
err_disable_regulators:
aic32x4_disable_regulators(aic32x4);
return ret;
}
EXPORT_SYMBOL(aic32x4_probe);
void aic32x4_remove(struct device *dev)
{
struct aic32x4_priv *aic32x4 = dev_get_drvdata(dev);
aic32x4_disable_regulators(aic32x4);
}
EXPORT_SYMBOL(aic32x4_remove);
MODULE_DESCRIPTION("ASoC tlv320aic32x4 codec driver");
MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>");
MODULE_LICENSE("GPL");