WSL2-Linux-Kernel/drivers/scsi/aacraid/commsup.c

940 строки
26 KiB
C

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* commsup.c
*
* Abstract: Contain all routines that are required for FSA host/adapter
* commuication.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <asm/semaphore.h>
#include "aacraid.h"
/**
* fib_map_alloc - allocate the fib objects
* @dev: Adapter to allocate for
*
* Allocate and map the shared PCI space for the FIB blocks used to
* talk to the Adaptec firmware.
*/
static int fib_map_alloc(struct aac_dev *dev)
{
if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, &dev->hw_fib_pa))==NULL)
return -ENOMEM;
return 0;
}
/**
* fib_map_free - free the fib objects
* @dev: Adapter to free
*
* Free the PCI mappings and the memory allocated for FIB blocks
* on this adapter.
*/
void fib_map_free(struct aac_dev *dev)
{
pci_free_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, dev->hw_fib_va, dev->hw_fib_pa);
}
/**
* fib_setup - setup the fibs
* @dev: Adapter to set up
*
* Allocate the PCI space for the fibs, map it and then intialise the
* fib area, the unmapped fib data and also the free list
*/
int fib_setup(struct aac_dev * dev)
{
struct fib *fibptr;
struct hw_fib *hw_fib_va;
dma_addr_t hw_fib_pa;
int i;
if(fib_map_alloc(dev)<0)
return -ENOMEM;
hw_fib_va = dev->hw_fib_va;
hw_fib_pa = dev->hw_fib_pa;
memset(hw_fib_va, 0, sizeof(struct hw_fib) * AAC_NUM_FIB);
/*
* Initialise the fibs
*/
for (i = 0, fibptr = &dev->fibs[i]; i < AAC_NUM_FIB; i++, fibptr++)
{
fibptr->dev = dev;
fibptr->hw_fib = hw_fib_va;
fibptr->data = (void *) fibptr->hw_fib->data;
fibptr->next = fibptr+1; /* Forward chain the fibs */
init_MUTEX_LOCKED(&fibptr->event_wait);
spin_lock_init(&fibptr->event_lock);
hw_fib_va->header.XferState = 0xffffffff;
hw_fib_va->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
fibptr->hw_fib_pa = hw_fib_pa;
hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + sizeof(struct hw_fib));
hw_fib_pa = hw_fib_pa + sizeof(struct hw_fib);
}
/*
* Add the fib chain to the free list
*/
dev->fibs[AAC_NUM_FIB-1].next = NULL;
/*
* Enable this to debug out of queue space
*/
dev->free_fib = &dev->fibs[0];
return 0;
}
/**
* fib_alloc - allocate a fib
* @dev: Adapter to allocate the fib for
*
* Allocate a fib from the adapter fib pool. If the pool is empty we
* wait for fibs to become free.
*/
struct fib * fib_alloc(struct aac_dev *dev)
{
struct fib * fibptr;
unsigned long flags;
spin_lock_irqsave(&dev->fib_lock, flags);
fibptr = dev->free_fib;
/* Cannot sleep here or you get hangs. Instead we did the
maths at compile time. */
if(!fibptr)
BUG();
dev->free_fib = fibptr->next;
spin_unlock_irqrestore(&dev->fib_lock, flags);
/*
* Set the proper node type code and node byte size
*/
fibptr->type = FSAFS_NTC_FIB_CONTEXT;
fibptr->size = sizeof(struct fib);
/*
* Null out fields that depend on being zero at the start of
* each I/O
*/
fibptr->hw_fib->header.XferState = 0;
fibptr->callback = NULL;
fibptr->callback_data = NULL;
return fibptr;
}
/**
* fib_free - free a fib
* @fibptr: fib to free up
*
* Frees up a fib and places it on the appropriate queue
* (either free or timed out)
*/
void fib_free(struct fib * fibptr)
{
unsigned long flags;
spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
aac_config.fib_timeouts++;
fibptr->next = fibptr->dev->timeout_fib;
fibptr->dev->timeout_fib = fibptr;
} else {
if (fibptr->hw_fib->header.XferState != 0) {
printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
(void*)fibptr,
le32_to_cpu(fibptr->hw_fib->header.XferState));
}
fibptr->next = fibptr->dev->free_fib;
fibptr->dev->free_fib = fibptr;
}
spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
}
/**
* fib_init - initialise a fib
* @fibptr: The fib to initialize
*
* Set up the generic fib fields ready for use
*/
void fib_init(struct fib *fibptr)
{
struct hw_fib *hw_fib = fibptr->hw_fib;
hw_fib->header.StructType = FIB_MAGIC;
hw_fib->header.Size = cpu_to_le16(sizeof(struct hw_fib));
hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
hw_fib->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
}
/**
* fib_deallocate - deallocate a fib
* @fibptr: fib to deallocate
*
* Will deallocate and return to the free pool the FIB pointed to by the
* caller.
*/
void fib_dealloc(struct fib * fibptr)
{
struct hw_fib *hw_fib = fibptr->hw_fib;
if(hw_fib->header.StructType != FIB_MAGIC)
BUG();
hw_fib->header.XferState = 0;
}
/*
* Commuication primitives define and support the queuing method we use to
* support host to adapter commuication. All queue accesses happen through
* these routines and are the only routines which have a knowledge of the
* how these queues are implemented.
*/
/**
* aac_get_entry - get a queue entry
* @dev: Adapter
* @qid: Queue Number
* @entry: Entry return
* @index: Index return
* @nonotify: notification control
*
* With a priority the routine returns a queue entry if the queue has free entries. If the queue
* is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
* returned.
*/
static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
{
struct aac_queue * q;
/*
* All of the queues wrap when they reach the end, so we check
* to see if they have reached the end and if they have we just
* set the index back to zero. This is a wrap. You could or off
* the high bits in all updates but this is a bit faster I think.
*/
q = &dev->queues->queue[qid];
*index = le32_to_cpu(*(q->headers.producer));
if ((*index - 2) == le32_to_cpu(*(q->headers.consumer)))
*nonotify = 1;
if (qid == AdapHighCmdQueue) {
if (*index >= ADAP_HIGH_CMD_ENTRIES)
*index = 0;
} else if (qid == AdapNormCmdQueue) {
if (*index >= ADAP_NORM_CMD_ENTRIES)
*index = 0; /* Wrap to front of the Producer Queue. */
}
else if (qid == AdapHighRespQueue)
{
if (*index >= ADAP_HIGH_RESP_ENTRIES)
*index = 0;
}
else if (qid == AdapNormRespQueue)
{
if (*index >= ADAP_NORM_RESP_ENTRIES)
*index = 0; /* Wrap to front of the Producer Queue. */
}
else {
printk("aacraid: invalid qid\n");
BUG();
}
if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
printk(KERN_WARNING "Queue %d full, %d outstanding.\n",
qid, q->numpending);
return 0;
} else {
*entry = q->base + *index;
return 1;
}
}
/**
* aac_queue_get - get the next free QE
* @dev: Adapter
* @index: Returned index
* @priority: Priority of fib
* @fib: Fib to associate with the queue entry
* @wait: Wait if queue full
* @fibptr: Driver fib object to go with fib
* @nonotify: Don't notify the adapter
*
* Gets the next free QE off the requested priorty adapter command
* queue and associates the Fib with the QE. The QE represented by
* index is ready to insert on the queue when this routine returns
* success.
*/
static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
{
struct aac_entry * entry = NULL;
int map = 0;
struct aac_queue * q = &dev->queues->queue[qid];
spin_lock_irqsave(q->lock, q->SavedIrql);
if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue)
{
/* if no entries wait for some if caller wants to */
while (!aac_get_entry(dev, qid, &entry, index, nonotify))
{
printk(KERN_ERR "GetEntries failed\n");
}
/*
* Setup queue entry with a command, status and fib mapped
*/
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
map = 1;
}
else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
{
while(!aac_get_entry(dev, qid, &entry, index, nonotify))
{
/* if no entries wait for some if caller wants to */
}
/*
* Setup queue entry with command, status and fib mapped
*/
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
entry->addr = hw_fib->header.SenderFibAddress;
/* Restore adapters pointer to the FIB */
hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
map = 0;
}
/*
* If MapFib is true than we need to map the Fib and put pointers
* in the queue entry.
*/
if (map)
entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
return 0;
}
/**
* aac_insert_entry - insert a queue entry
* @dev: Adapter
* @index: Index of entry to insert
* @qid: Queue number
* @nonotify: Suppress adapter notification
*
* Gets the next free QE off the requested priorty adapter command
* queue and associates the Fib with the QE. The QE represented by
* index is ready to insert on the queue when this routine returns
* success.
*/
static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
{
struct aac_queue * q = &dev->queues->queue[qid];
if(q == NULL)
BUG();
*(q->headers.producer) = cpu_to_le32(index + 1);
spin_unlock_irqrestore(q->lock, q->SavedIrql);
if (qid == AdapHighCmdQueue ||
qid == AdapNormCmdQueue ||
qid == AdapHighRespQueue ||
qid == AdapNormRespQueue)
{
if (!nonotify)
aac_adapter_notify(dev, qid);
}
else
printk("Suprise insert!\n");
return 0;
}
/*
* Define the highest level of host to adapter communication routines.
* These routines will support host to adapter FS commuication. These
* routines have no knowledge of the commuication method used. This level
* sends and receives FIBs. This level has no knowledge of how these FIBs
* get passed back and forth.
*/
/**
* fib_send - send a fib to the adapter
* @command: Command to send
* @fibptr: The fib
* @size: Size of fib data area
* @priority: Priority of Fib
* @wait: Async/sync select
* @reply: True if a reply is wanted
* @callback: Called with reply
* @callback_data: Passed to callback
*
* Sends the requested FIB to the adapter and optionally will wait for a
* response FIB. If the caller does not wish to wait for a response than
* an event to wait on must be supplied. This event will be set when a
* response FIB is received from the adapter.
*/
int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
{
u32 index;
u32 qid;
struct aac_dev * dev = fibptr->dev;
unsigned long nointr = 0;
struct hw_fib * hw_fib = fibptr->hw_fib;
struct aac_queue * q;
unsigned long flags = 0;
if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
return -EBUSY;
/*
* There are 5 cases with the wait and reponse requested flags.
* The only invalid cases are if the caller requests to wait and
* does not request a response and if the caller does not want a
* response and the Fib is not allocated from pool. If a response
* is not requesed the Fib will just be deallocaed by the DPC
* routine when the response comes back from the adapter. No
* further processing will be done besides deleting the Fib. We
* will have a debug mode where the adapter can notify the host
* it had a problem and the host can log that fact.
*/
if (wait && !reply) {
return -EINVAL;
} else if (!wait && reply) {
hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
} else if (!wait && !reply) {
hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
} else if (wait && reply) {
hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.NormalSent);
}
/*
* Map the fib into 32bits by using the fib number
*/
hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
/*
* Set FIB state to indicate where it came from and if we want a
* response from the adapter. Also load the command from the
* caller.
*
* Map the hw fib pointer as a 32bit value
*/
hw_fib->header.Command = cpu_to_le16(command);
hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
/*
* Set the size of the Fib we want to send to the adapter
*/
hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
return -EMSGSIZE;
}
/*
* Get a queue entry connect the FIB to it and send an notify
* the adapter a command is ready.
*/
if (priority == FsaHigh) {
hw_fib->header.XferState |= cpu_to_le32(HighPriority);
qid = AdapHighCmdQueue;
} else {
hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
qid = AdapNormCmdQueue;
}
q = &dev->queues->queue[qid];
if(wait)
spin_lock_irqsave(&fibptr->event_lock, flags);
if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
return -EWOULDBLOCK;
dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
dprintk((KERN_DEBUG "Fib contents:.\n"));
dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
/*
* Fill in the Callback and CallbackContext if we are not
* going to wait.
*/
if (!wait) {
fibptr->callback = callback;
fibptr->callback_data = callback_data;
}
FIB_COUNTER_INCREMENT(aac_config.FibsSent);
list_add_tail(&fibptr->queue, &q->pendingq);
q->numpending++;
fibptr->done = 0;
fibptr->flags = 0;
if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
return -EWOULDBLOCK;
/*
* If the caller wanted us to wait for response wait now.
*/
if (wait) {
spin_unlock_irqrestore(&fibptr->event_lock, flags);
down(&fibptr->event_wait);
if(fibptr->done == 0)
BUG();
if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
return -ETIMEDOUT;
} else {
return 0;
}
}
/*
* If the user does not want a response than return success otherwise
* return pending
*/
if (reply)
return -EINPROGRESS;
else
return 0;
}
/**
* aac_consumer_get - get the top of the queue
* @dev: Adapter
* @q: Queue
* @entry: Return entry
*
* Will return a pointer to the entry on the top of the queue requested that
* we are a consumer of, and return the address of the queue entry. It does
* not change the state of the queue.
*/
int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
{
u32 index;
int status;
if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
status = 0;
} else {
/*
* The consumer index must be wrapped if we have reached
* the end of the queue, else we just use the entry
* pointed to by the header index
*/
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
index = 0;
else
index = le32_to_cpu(*q->headers.consumer);
*entry = q->base + index;
status = 1;
}
return(status);
}
/**
* aac_consumer_free - free consumer entry
* @dev: Adapter
* @q: Queue
* @qid: Queue ident
*
* Frees up the current top of the queue we are a consumer of. If the
* queue was full notify the producer that the queue is no longer full.
*/
void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
{
int wasfull = 0;
u32 notify;
if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
wasfull = 1;
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
*q->headers.consumer = cpu_to_le32(1);
else
*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
if (wasfull) {
switch (qid) {
case HostNormCmdQueue:
notify = HostNormCmdNotFull;
break;
case HostHighCmdQueue:
notify = HostHighCmdNotFull;
break;
case HostNormRespQueue:
notify = HostNormRespNotFull;
break;
case HostHighRespQueue:
notify = HostHighRespNotFull;
break;
default:
BUG();
return;
}
aac_adapter_notify(dev, notify);
}
}
/**
* fib_adapter_complete - complete adapter issued fib
* @fibptr: fib to complete
* @size: size of fib
*
* Will do all necessary work to complete a FIB that was sent from
* the adapter.
*/
int fib_adapter_complete(struct fib * fibptr, unsigned short size)
{
struct hw_fib * hw_fib = fibptr->hw_fib;
struct aac_dev * dev = fibptr->dev;
unsigned long nointr = 0;
if (hw_fib->header.XferState == 0)
return 0;
/*
* If we plan to do anything check the structure type first.
*/
if ( hw_fib->header.StructType != FIB_MAGIC ) {
return -EINVAL;
}
/*
* This block handles the case where the adapter had sent us a
* command and we have finished processing the command. We
* call completeFib when we are done processing the command
* and want to send a response back to the adapter. This will
* send the completed cdb to the adapter.
*/
if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
u32 index;
if (size)
{
size += sizeof(struct aac_fibhdr);
if (size > le16_to_cpu(hw_fib->header.SenderSize))
return -EMSGSIZE;
hw_fib->header.Size = cpu_to_le16(size);
}
if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
return -EWOULDBLOCK;
}
if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) {
}
}
else if (hw_fib->header.XferState & NormalPriority)
{
u32 index;
if (size) {
size += sizeof(struct aac_fibhdr);
if (size > le16_to_cpu(hw_fib->header.SenderSize))
return -EMSGSIZE;
hw_fib->header.Size = cpu_to_le16(size);
}
if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
return -EWOULDBLOCK;
if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
{
}
}
}
else
{
printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
BUG();
}
return 0;
}
/**
* fib_complete - fib completion handler
* @fib: FIB to complete
*
* Will do all necessary work to complete a FIB.
*/
int fib_complete(struct fib * fibptr)
{
struct hw_fib * hw_fib = fibptr->hw_fib;
/*
* Check for a fib which has already been completed
*/
if (hw_fib->header.XferState == 0)
return 0;
/*
* If we plan to do anything check the structure type first.
*/
if (hw_fib->header.StructType != FIB_MAGIC)
return -EINVAL;
/*
* This block completes a cdb which orginated on the host and we
* just need to deallocate the cdb or reinit it. At this point the
* command is complete that we had sent to the adapter and this
* cdb could be reused.
*/
if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
{
fib_dealloc(fibptr);
}
else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
{
/*
* This handles the case when the host has aborted the I/O
* to the adapter because the adapter is not responding
*/
fib_dealloc(fibptr);
} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
fib_dealloc(fibptr);
} else {
BUG();
}
return 0;
}
/**
* aac_printf - handle printf from firmware
* @dev: Adapter
* @val: Message info
*
* Print a message passed to us by the controller firmware on the
* Adaptec board
*/
void aac_printf(struct aac_dev *dev, u32 val)
{
int length = val & 0xffff;
int level = (val >> 16) & 0xffff;
char *cp = dev->printfbuf;
/*
* The size of the printfbuf is set in port.c
* There is no variable or define for it
*/
if (length > 255)
length = 255;
if (cp[length] != 0)
cp[length] = 0;
if (level == LOG_AAC_HIGH_ERROR)
printk(KERN_WARNING "aacraid:%s", cp);
else
printk(KERN_INFO "aacraid:%s", cp);
memset(cp, 0, 256);
}
/**
* aac_command_thread - command processing thread
* @dev: Adapter to monitor
*
* Waits on the commandready event in it's queue. When the event gets set
* it will pull FIBs off it's queue. It will continue to pull FIBs off
* until the queue is empty. When the queue is empty it will wait for
* more FIBs.
*/
int aac_command_thread(struct aac_dev * dev)
{
struct hw_fib *hw_fib, *hw_newfib;
struct fib *fib, *newfib;
struct aac_queue_block *queues = dev->queues;
struct aac_fib_context *fibctx;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
/*
* We can only have one thread per adapter for AIF's.
*/
if (dev->aif_thread)
return -EINVAL;
/*
* Set up the name that will appear in 'ps'
* stored in task_struct.comm[16].
*/
daemonize("aacraid");
allow_signal(SIGKILL);
/*
* Let the DPC know it has a place to send the AIF's to.
*/
dev->aif_thread = 1;
add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
set_current_state(TASK_INTERRUPTIBLE);
while(1)
{
spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
struct list_head *entry;
struct aac_aifcmd * aifcmd;
set_current_state(TASK_RUNNING);
entry = queues->queue[HostNormCmdQueue].cmdq.next;
list_del(entry);
spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
fib = list_entry(entry, struct fib, fiblink);
/*
* We will process the FIB here or pass it to a
* worker thread that is TBD. We Really can't
* do anything at this point since we don't have
* anything defined for this thread to do.
*/
hw_fib = fib->hw_fib;
memset(fib, 0, sizeof(struct fib));
fib->type = FSAFS_NTC_FIB_CONTEXT;
fib->size = sizeof( struct fib );
fib->hw_fib = hw_fib;
fib->data = hw_fib->data;
fib->dev = dev;
/*
* We only handle AifRequest fibs from the adapter.
*/
aifcmd = (struct aac_aifcmd *) hw_fib->data;
if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
/* Handle Driver Notify Events */
*(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
fib_adapter_complete(fib, sizeof(u32));
} else {
struct list_head *entry;
/* The u32 here is important and intended. We are using
32bit wrapping time to fit the adapter field */
u32 time_now, time_last;
unsigned long flagv;
time_now = jiffies/HZ;
spin_lock_irqsave(&dev->fib_lock, flagv);
entry = dev->fib_list.next;
/*
* For each Context that is on the
* fibctxList, make a copy of the
* fib, and then set the event to wake up the
* thread that is waiting for it.
*/
while (entry != &dev->fib_list) {
/*
* Extract the fibctx
*/
fibctx = list_entry(entry, struct aac_fib_context, next);
/*
* Check if the queue is getting
* backlogged
*/
if (fibctx->count > 20)
{
/*
* It's *not* jiffies folks,
* but jiffies / HZ so do not
* panic ...
*/
time_last = fibctx->jiffies;
/*
* Has it been > 2 minutes
* since the last read off
* the queue?
*/
if ((time_now - time_last) > 120) {
entry = entry->next;
aac_close_fib_context(dev, fibctx);
continue;
}
}
/*
* Warning: no sleep allowed while
* holding spinlock
*/
hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
if (newfib && hw_newfib) {
/*
* Make the copy of the FIB
*/
memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
memcpy(newfib, fib, sizeof(struct fib));
newfib->hw_fib = hw_newfib;
/*
* Put the FIB onto the
* fibctx's fibs
*/
list_add_tail(&newfib->fiblink, &fibctx->fib_list);
fibctx->count++;
/*
* Set the event to wake up the
* thread that will waiting.
*/
up(&fibctx->wait_sem);
} else {
printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
if(newfib)
kfree(newfib);
if(hw_newfib)
kfree(hw_newfib);
}
entry = entry->next;
}
/*
* Set the status of this FIB
*/
*(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
fib_adapter_complete(fib, sizeof(u32));
spin_unlock_irqrestore(&dev->fib_lock, flagv);
}
spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
kfree(fib);
}
/*
* There are no more AIF's
*/
spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
schedule();
if(signal_pending(current))
break;
set_current_state(TASK_INTERRUPTIBLE);
}
remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
dev->aif_thread = 0;
complete_and_exit(&dev->aif_completion, 0);
}