1115 строки
30 KiB
C
1115 строки
30 KiB
C
/*
|
|
* linux/net/sunrpc/svc_xprt.c
|
|
*
|
|
* Author: Tom Tucker <tom@opengridcomputing.com>
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <net/sock.h>
|
|
#include <linux/sunrpc/stats.h>
|
|
#include <linux/sunrpc/svc_xprt.h>
|
|
|
|
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
|
|
|
|
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
|
|
static int svc_deferred_recv(struct svc_rqst *rqstp);
|
|
static struct cache_deferred_req *svc_defer(struct cache_req *req);
|
|
static void svc_age_temp_xprts(unsigned long closure);
|
|
|
|
/* apparently the "standard" is that clients close
|
|
* idle connections after 5 minutes, servers after
|
|
* 6 minutes
|
|
* http://www.connectathon.org/talks96/nfstcp.pdf
|
|
*/
|
|
static int svc_conn_age_period = 6*60;
|
|
|
|
/* List of registered transport classes */
|
|
static DEFINE_SPINLOCK(svc_xprt_class_lock);
|
|
static LIST_HEAD(svc_xprt_class_list);
|
|
|
|
/* SMP locking strategy:
|
|
*
|
|
* svc_pool->sp_lock protects most of the fields of that pool.
|
|
* svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
|
|
* when both need to be taken (rare), svc_serv->sv_lock is first.
|
|
* BKL protects svc_serv->sv_nrthread.
|
|
* svc_sock->sk_lock protects the svc_sock->sk_deferred list
|
|
* and the ->sk_info_authunix cache.
|
|
*
|
|
* The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
|
|
* enqueued multiply. During normal transport processing this bit
|
|
* is set by svc_xprt_enqueue and cleared by svc_xprt_received.
|
|
* Providers should not manipulate this bit directly.
|
|
*
|
|
* Some flags can be set to certain values at any time
|
|
* providing that certain rules are followed:
|
|
*
|
|
* XPT_CONN, XPT_DATA:
|
|
* - Can be set or cleared at any time.
|
|
* - After a set, svc_xprt_enqueue must be called to enqueue
|
|
* the transport for processing.
|
|
* - After a clear, the transport must be read/accepted.
|
|
* If this succeeds, it must be set again.
|
|
* XPT_CLOSE:
|
|
* - Can set at any time. It is never cleared.
|
|
* XPT_DEAD:
|
|
* - Can only be set while XPT_BUSY is held which ensures
|
|
* that no other thread will be using the transport or will
|
|
* try to set XPT_DEAD.
|
|
*/
|
|
|
|
int svc_reg_xprt_class(struct svc_xprt_class *xcl)
|
|
{
|
|
struct svc_xprt_class *cl;
|
|
int res = -EEXIST;
|
|
|
|
dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
|
|
|
|
INIT_LIST_HEAD(&xcl->xcl_list);
|
|
spin_lock(&svc_xprt_class_lock);
|
|
/* Make sure there isn't already a class with the same name */
|
|
list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
|
|
if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
|
|
goto out;
|
|
}
|
|
list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
|
|
res = 0;
|
|
out:
|
|
spin_unlock(&svc_xprt_class_lock);
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
|
|
|
|
void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
|
|
{
|
|
dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
|
|
spin_lock(&svc_xprt_class_lock);
|
|
list_del_init(&xcl->xcl_list);
|
|
spin_unlock(&svc_xprt_class_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
|
|
|
|
/*
|
|
* Format the transport list for printing
|
|
*/
|
|
int svc_print_xprts(char *buf, int maxlen)
|
|
{
|
|
struct list_head *le;
|
|
char tmpstr[80];
|
|
int len = 0;
|
|
buf[0] = '\0';
|
|
|
|
spin_lock(&svc_xprt_class_lock);
|
|
list_for_each(le, &svc_xprt_class_list) {
|
|
int slen;
|
|
struct svc_xprt_class *xcl =
|
|
list_entry(le, struct svc_xprt_class, xcl_list);
|
|
|
|
sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
|
|
slen = strlen(tmpstr);
|
|
if (len + slen > maxlen)
|
|
break;
|
|
len += slen;
|
|
strcat(buf, tmpstr);
|
|
}
|
|
spin_unlock(&svc_xprt_class_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
static void svc_xprt_free(struct kref *kref)
|
|
{
|
|
struct svc_xprt *xprt =
|
|
container_of(kref, struct svc_xprt, xpt_ref);
|
|
struct module *owner = xprt->xpt_class->xcl_owner;
|
|
if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
|
|
&& xprt->xpt_auth_cache != NULL)
|
|
svcauth_unix_info_release(xprt->xpt_auth_cache);
|
|
xprt->xpt_ops->xpo_free(xprt);
|
|
module_put(owner);
|
|
}
|
|
|
|
void svc_xprt_put(struct svc_xprt *xprt)
|
|
{
|
|
kref_put(&xprt->xpt_ref, svc_xprt_free);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_xprt_put);
|
|
|
|
/*
|
|
* Called by transport drivers to initialize the transport independent
|
|
* portion of the transport instance.
|
|
*/
|
|
void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
|
|
struct svc_serv *serv)
|
|
{
|
|
memset(xprt, 0, sizeof(*xprt));
|
|
xprt->xpt_class = xcl;
|
|
xprt->xpt_ops = xcl->xcl_ops;
|
|
kref_init(&xprt->xpt_ref);
|
|
xprt->xpt_server = serv;
|
|
INIT_LIST_HEAD(&xprt->xpt_list);
|
|
INIT_LIST_HEAD(&xprt->xpt_ready);
|
|
INIT_LIST_HEAD(&xprt->xpt_deferred);
|
|
mutex_init(&xprt->xpt_mutex);
|
|
spin_lock_init(&xprt->xpt_lock);
|
|
set_bit(XPT_BUSY, &xprt->xpt_flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_xprt_init);
|
|
|
|
static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
|
|
struct svc_serv *serv,
|
|
const int family,
|
|
const unsigned short port,
|
|
int flags)
|
|
{
|
|
struct sockaddr_in sin = {
|
|
.sin_family = AF_INET,
|
|
.sin_addr.s_addr = htonl(INADDR_ANY),
|
|
.sin_port = htons(port),
|
|
};
|
|
struct sockaddr_in6 sin6 = {
|
|
.sin6_family = AF_INET6,
|
|
.sin6_addr = IN6ADDR_ANY_INIT,
|
|
.sin6_port = htons(port),
|
|
};
|
|
struct sockaddr *sap;
|
|
size_t len;
|
|
|
|
switch (family) {
|
|
case PF_INET:
|
|
sap = (struct sockaddr *)&sin;
|
|
len = sizeof(sin);
|
|
break;
|
|
case PF_INET6:
|
|
sap = (struct sockaddr *)&sin6;
|
|
len = sizeof(sin6);
|
|
break;
|
|
default:
|
|
return ERR_PTR(-EAFNOSUPPORT);
|
|
}
|
|
|
|
return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
|
|
}
|
|
|
|
int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
|
|
const int family, const unsigned short port,
|
|
int flags)
|
|
{
|
|
struct svc_xprt_class *xcl;
|
|
|
|
dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
|
|
spin_lock(&svc_xprt_class_lock);
|
|
list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
|
|
struct svc_xprt *newxprt;
|
|
|
|
if (strcmp(xprt_name, xcl->xcl_name))
|
|
continue;
|
|
|
|
if (!try_module_get(xcl->xcl_owner))
|
|
goto err;
|
|
|
|
spin_unlock(&svc_xprt_class_lock);
|
|
newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
|
|
if (IS_ERR(newxprt)) {
|
|
module_put(xcl->xcl_owner);
|
|
return PTR_ERR(newxprt);
|
|
}
|
|
|
|
clear_bit(XPT_TEMP, &newxprt->xpt_flags);
|
|
spin_lock_bh(&serv->sv_lock);
|
|
list_add(&newxprt->xpt_list, &serv->sv_permsocks);
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
clear_bit(XPT_BUSY, &newxprt->xpt_flags);
|
|
return svc_xprt_local_port(newxprt);
|
|
}
|
|
err:
|
|
spin_unlock(&svc_xprt_class_lock);
|
|
dprintk("svc: transport %s not found\n", xprt_name);
|
|
return -ENOENT;
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_create_xprt);
|
|
|
|
/*
|
|
* Copy the local and remote xprt addresses to the rqstp structure
|
|
*/
|
|
void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
|
|
{
|
|
struct sockaddr *sin;
|
|
|
|
memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
|
|
rqstp->rq_addrlen = xprt->xpt_remotelen;
|
|
|
|
/*
|
|
* Destination address in request is needed for binding the
|
|
* source address in RPC replies/callbacks later.
|
|
*/
|
|
sin = (struct sockaddr *)&xprt->xpt_local;
|
|
switch (sin->sa_family) {
|
|
case AF_INET:
|
|
rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
|
|
break;
|
|
case AF_INET6:
|
|
rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
|
|
|
|
/**
|
|
* svc_print_addr - Format rq_addr field for printing
|
|
* @rqstp: svc_rqst struct containing address to print
|
|
* @buf: target buffer for formatted address
|
|
* @len: length of target buffer
|
|
*
|
|
*/
|
|
char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
|
|
{
|
|
return __svc_print_addr(svc_addr(rqstp), buf, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_print_addr);
|
|
|
|
/*
|
|
* Queue up an idle server thread. Must have pool->sp_lock held.
|
|
* Note: this is really a stack rather than a queue, so that we only
|
|
* use as many different threads as we need, and the rest don't pollute
|
|
* the cache.
|
|
*/
|
|
static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
|
|
{
|
|
list_add(&rqstp->rq_list, &pool->sp_threads);
|
|
}
|
|
|
|
/*
|
|
* Dequeue an nfsd thread. Must have pool->sp_lock held.
|
|
*/
|
|
static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
|
|
{
|
|
list_del(&rqstp->rq_list);
|
|
}
|
|
|
|
/*
|
|
* Queue up a transport with data pending. If there are idle nfsd
|
|
* processes, wake 'em up.
|
|
*
|
|
*/
|
|
void svc_xprt_enqueue(struct svc_xprt *xprt)
|
|
{
|
|
struct svc_serv *serv = xprt->xpt_server;
|
|
struct svc_pool *pool;
|
|
struct svc_rqst *rqstp;
|
|
int cpu;
|
|
|
|
if (!(xprt->xpt_flags &
|
|
((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
|
|
return;
|
|
|
|
cpu = get_cpu();
|
|
pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
|
|
put_cpu();
|
|
|
|
spin_lock_bh(&pool->sp_lock);
|
|
|
|
if (!list_empty(&pool->sp_threads) &&
|
|
!list_empty(&pool->sp_sockets))
|
|
printk(KERN_ERR
|
|
"svc_xprt_enqueue: "
|
|
"threads and transports both waiting??\n");
|
|
|
|
if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
|
|
/* Don't enqueue dead transports */
|
|
dprintk("svc: transport %p is dead, not enqueued\n", xprt);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Mark transport as busy. It will remain in this state until
|
|
* the provider calls svc_xprt_received. We update XPT_BUSY
|
|
* atomically because it also guards against trying to enqueue
|
|
* the transport twice.
|
|
*/
|
|
if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
|
|
/* Don't enqueue transport while already enqueued */
|
|
dprintk("svc: transport %p busy, not enqueued\n", xprt);
|
|
goto out_unlock;
|
|
}
|
|
BUG_ON(xprt->xpt_pool != NULL);
|
|
xprt->xpt_pool = pool;
|
|
|
|
/* Handle pending connection */
|
|
if (test_bit(XPT_CONN, &xprt->xpt_flags))
|
|
goto process;
|
|
|
|
/* Handle close in-progress */
|
|
if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
|
|
goto process;
|
|
|
|
/* Check if we have space to reply to a request */
|
|
if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
|
|
/* Don't enqueue while not enough space for reply */
|
|
dprintk("svc: no write space, transport %p not enqueued\n",
|
|
xprt);
|
|
xprt->xpt_pool = NULL;
|
|
clear_bit(XPT_BUSY, &xprt->xpt_flags);
|
|
goto out_unlock;
|
|
}
|
|
|
|
process:
|
|
if (!list_empty(&pool->sp_threads)) {
|
|
rqstp = list_entry(pool->sp_threads.next,
|
|
struct svc_rqst,
|
|
rq_list);
|
|
dprintk("svc: transport %p served by daemon %p\n",
|
|
xprt, rqstp);
|
|
svc_thread_dequeue(pool, rqstp);
|
|
if (rqstp->rq_xprt)
|
|
printk(KERN_ERR
|
|
"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
|
|
rqstp, rqstp->rq_xprt);
|
|
rqstp->rq_xprt = xprt;
|
|
svc_xprt_get(xprt);
|
|
rqstp->rq_reserved = serv->sv_max_mesg;
|
|
atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
|
|
BUG_ON(xprt->xpt_pool != pool);
|
|
wake_up(&rqstp->rq_wait);
|
|
} else {
|
|
dprintk("svc: transport %p put into queue\n", xprt);
|
|
list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
|
|
BUG_ON(xprt->xpt_pool != pool);
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
|
|
|
|
/*
|
|
* Dequeue the first transport. Must be called with the pool->sp_lock held.
|
|
*/
|
|
static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
|
|
{
|
|
struct svc_xprt *xprt;
|
|
|
|
if (list_empty(&pool->sp_sockets))
|
|
return NULL;
|
|
|
|
xprt = list_entry(pool->sp_sockets.next,
|
|
struct svc_xprt, xpt_ready);
|
|
list_del_init(&xprt->xpt_ready);
|
|
|
|
dprintk("svc: transport %p dequeued, inuse=%d\n",
|
|
xprt, atomic_read(&xprt->xpt_ref.refcount));
|
|
|
|
return xprt;
|
|
}
|
|
|
|
/*
|
|
* svc_xprt_received conditionally queues the transport for processing
|
|
* by another thread. The caller must hold the XPT_BUSY bit and must
|
|
* not thereafter touch transport data.
|
|
*
|
|
* Note: XPT_DATA only gets cleared when a read-attempt finds no (or
|
|
* insufficient) data.
|
|
*/
|
|
void svc_xprt_received(struct svc_xprt *xprt)
|
|
{
|
|
BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
|
|
xprt->xpt_pool = NULL;
|
|
clear_bit(XPT_BUSY, &xprt->xpt_flags);
|
|
svc_xprt_enqueue(xprt);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_xprt_received);
|
|
|
|
/**
|
|
* svc_reserve - change the space reserved for the reply to a request.
|
|
* @rqstp: The request in question
|
|
* @space: new max space to reserve
|
|
*
|
|
* Each request reserves some space on the output queue of the transport
|
|
* to make sure the reply fits. This function reduces that reserved
|
|
* space to be the amount of space used already, plus @space.
|
|
*
|
|
*/
|
|
void svc_reserve(struct svc_rqst *rqstp, int space)
|
|
{
|
|
space += rqstp->rq_res.head[0].iov_len;
|
|
|
|
if (space < rqstp->rq_reserved) {
|
|
struct svc_xprt *xprt = rqstp->rq_xprt;
|
|
atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
|
|
rqstp->rq_reserved = space;
|
|
|
|
svc_xprt_enqueue(xprt);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_reserve);
|
|
|
|
static void svc_xprt_release(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_xprt *xprt = rqstp->rq_xprt;
|
|
|
|
rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
|
|
|
|
kfree(rqstp->rq_deferred);
|
|
rqstp->rq_deferred = NULL;
|
|
|
|
svc_free_res_pages(rqstp);
|
|
rqstp->rq_res.page_len = 0;
|
|
rqstp->rq_res.page_base = 0;
|
|
|
|
/* Reset response buffer and release
|
|
* the reservation.
|
|
* But first, check that enough space was reserved
|
|
* for the reply, otherwise we have a bug!
|
|
*/
|
|
if ((rqstp->rq_res.len) > rqstp->rq_reserved)
|
|
printk(KERN_ERR "RPC request reserved %d but used %d\n",
|
|
rqstp->rq_reserved,
|
|
rqstp->rq_res.len);
|
|
|
|
rqstp->rq_res.head[0].iov_len = 0;
|
|
svc_reserve(rqstp, 0);
|
|
rqstp->rq_xprt = NULL;
|
|
|
|
svc_xprt_put(xprt);
|
|
}
|
|
|
|
/*
|
|
* External function to wake up a server waiting for data
|
|
* This really only makes sense for services like lockd
|
|
* which have exactly one thread anyway.
|
|
*/
|
|
void svc_wake_up(struct svc_serv *serv)
|
|
{
|
|
struct svc_rqst *rqstp;
|
|
unsigned int i;
|
|
struct svc_pool *pool;
|
|
|
|
for (i = 0; i < serv->sv_nrpools; i++) {
|
|
pool = &serv->sv_pools[i];
|
|
|
|
spin_lock_bh(&pool->sp_lock);
|
|
if (!list_empty(&pool->sp_threads)) {
|
|
rqstp = list_entry(pool->sp_threads.next,
|
|
struct svc_rqst,
|
|
rq_list);
|
|
dprintk("svc: daemon %p woken up.\n", rqstp);
|
|
/*
|
|
svc_thread_dequeue(pool, rqstp);
|
|
rqstp->rq_xprt = NULL;
|
|
*/
|
|
wake_up(&rqstp->rq_wait);
|
|
}
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_wake_up);
|
|
|
|
int svc_port_is_privileged(struct sockaddr *sin)
|
|
{
|
|
switch (sin->sa_family) {
|
|
case AF_INET:
|
|
return ntohs(((struct sockaddr_in *)sin)->sin_port)
|
|
< PROT_SOCK;
|
|
case AF_INET6:
|
|
return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
|
|
< PROT_SOCK;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that we don't have too many active connections. If we have,
|
|
* something must be dropped. It's not clear what will happen if we allow
|
|
* "too many" connections, but when dealing with network-facing software,
|
|
* we have to code defensively. Here we do that by imposing hard limits.
|
|
*
|
|
* There's no point in trying to do random drop here for DoS
|
|
* prevention. The NFS clients does 1 reconnect in 15 seconds. An
|
|
* attacker can easily beat that.
|
|
*
|
|
* The only somewhat efficient mechanism would be if drop old
|
|
* connections from the same IP first. But right now we don't even
|
|
* record the client IP in svc_sock.
|
|
*
|
|
* single-threaded services that expect a lot of clients will probably
|
|
* need to set sv_maxconn to override the default value which is based
|
|
* on the number of threads
|
|
*/
|
|
static void svc_check_conn_limits(struct svc_serv *serv)
|
|
{
|
|
unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
|
|
(serv->sv_nrthreads+3) * 20;
|
|
|
|
if (serv->sv_tmpcnt > limit) {
|
|
struct svc_xprt *xprt = NULL;
|
|
spin_lock_bh(&serv->sv_lock);
|
|
if (!list_empty(&serv->sv_tempsocks)) {
|
|
if (net_ratelimit()) {
|
|
/* Try to help the admin */
|
|
printk(KERN_NOTICE "%s: too many open "
|
|
"connections, consider increasing %s\n",
|
|
serv->sv_name, serv->sv_maxconn ?
|
|
"the max number of connections." :
|
|
"the number of threads.");
|
|
}
|
|
/*
|
|
* Always select the oldest connection. It's not fair,
|
|
* but so is life
|
|
*/
|
|
xprt = list_entry(serv->sv_tempsocks.prev,
|
|
struct svc_xprt,
|
|
xpt_list);
|
|
set_bit(XPT_CLOSE, &xprt->xpt_flags);
|
|
svc_xprt_get(xprt);
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
|
|
if (xprt) {
|
|
svc_xprt_enqueue(xprt);
|
|
svc_xprt_put(xprt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Receive the next request on any transport. This code is carefully
|
|
* organised not to touch any cachelines in the shared svc_serv
|
|
* structure, only cachelines in the local svc_pool.
|
|
*/
|
|
int svc_recv(struct svc_rqst *rqstp, long timeout)
|
|
{
|
|
struct svc_xprt *xprt = NULL;
|
|
struct svc_serv *serv = rqstp->rq_server;
|
|
struct svc_pool *pool = rqstp->rq_pool;
|
|
int len, i;
|
|
int pages;
|
|
struct xdr_buf *arg;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
dprintk("svc: server %p waiting for data (to = %ld)\n",
|
|
rqstp, timeout);
|
|
|
|
if (rqstp->rq_xprt)
|
|
printk(KERN_ERR
|
|
"svc_recv: service %p, transport not NULL!\n",
|
|
rqstp);
|
|
if (waitqueue_active(&rqstp->rq_wait))
|
|
printk(KERN_ERR
|
|
"svc_recv: service %p, wait queue active!\n",
|
|
rqstp);
|
|
|
|
/* now allocate needed pages. If we get a failure, sleep briefly */
|
|
pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
|
|
for (i = 0; i < pages ; i++)
|
|
while (rqstp->rq_pages[i] == NULL) {
|
|
struct page *p = alloc_page(GFP_KERNEL);
|
|
if (!p) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (signalled() || kthread_should_stop()) {
|
|
set_current_state(TASK_RUNNING);
|
|
return -EINTR;
|
|
}
|
|
schedule_timeout(msecs_to_jiffies(500));
|
|
}
|
|
rqstp->rq_pages[i] = p;
|
|
}
|
|
rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
|
|
BUG_ON(pages >= RPCSVC_MAXPAGES);
|
|
|
|
/* Make arg->head point to first page and arg->pages point to rest */
|
|
arg = &rqstp->rq_arg;
|
|
arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
|
|
arg->head[0].iov_len = PAGE_SIZE;
|
|
arg->pages = rqstp->rq_pages + 1;
|
|
arg->page_base = 0;
|
|
/* save at least one page for response */
|
|
arg->page_len = (pages-2)*PAGE_SIZE;
|
|
arg->len = (pages-1)*PAGE_SIZE;
|
|
arg->tail[0].iov_len = 0;
|
|
|
|
try_to_freeze();
|
|
cond_resched();
|
|
if (signalled() || kthread_should_stop())
|
|
return -EINTR;
|
|
|
|
spin_lock_bh(&pool->sp_lock);
|
|
xprt = svc_xprt_dequeue(pool);
|
|
if (xprt) {
|
|
rqstp->rq_xprt = xprt;
|
|
svc_xprt_get(xprt);
|
|
rqstp->rq_reserved = serv->sv_max_mesg;
|
|
atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
|
|
} else {
|
|
/* No data pending. Go to sleep */
|
|
svc_thread_enqueue(pool, rqstp);
|
|
|
|
/*
|
|
* We have to be able to interrupt this wait
|
|
* to bring down the daemons ...
|
|
*/
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
/*
|
|
* checking kthread_should_stop() here allows us to avoid
|
|
* locking and signalling when stopping kthreads that call
|
|
* svc_recv. If the thread has already been woken up, then
|
|
* we can exit here without sleeping. If not, then it
|
|
* it'll be woken up quickly during the schedule_timeout
|
|
*/
|
|
if (kthread_should_stop()) {
|
|
set_current_state(TASK_RUNNING);
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
return -EINTR;
|
|
}
|
|
|
|
add_wait_queue(&rqstp->rq_wait, &wait);
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
|
|
schedule_timeout(timeout);
|
|
|
|
try_to_freeze();
|
|
|
|
spin_lock_bh(&pool->sp_lock);
|
|
remove_wait_queue(&rqstp->rq_wait, &wait);
|
|
|
|
xprt = rqstp->rq_xprt;
|
|
if (!xprt) {
|
|
svc_thread_dequeue(pool, rqstp);
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
dprintk("svc: server %p, no data yet\n", rqstp);
|
|
if (signalled() || kthread_should_stop())
|
|
return -EINTR;
|
|
else
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
|
|
len = 0;
|
|
if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
|
|
dprintk("svc_recv: found XPT_CLOSE\n");
|
|
svc_delete_xprt(xprt);
|
|
} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
|
|
struct svc_xprt *newxpt;
|
|
newxpt = xprt->xpt_ops->xpo_accept(xprt);
|
|
if (newxpt) {
|
|
/*
|
|
* We know this module_get will succeed because the
|
|
* listener holds a reference too
|
|
*/
|
|
__module_get(newxpt->xpt_class->xcl_owner);
|
|
svc_check_conn_limits(xprt->xpt_server);
|
|
spin_lock_bh(&serv->sv_lock);
|
|
set_bit(XPT_TEMP, &newxpt->xpt_flags);
|
|
list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
|
|
serv->sv_tmpcnt++;
|
|
if (serv->sv_temptimer.function == NULL) {
|
|
/* setup timer to age temp transports */
|
|
setup_timer(&serv->sv_temptimer,
|
|
svc_age_temp_xprts,
|
|
(unsigned long)serv);
|
|
mod_timer(&serv->sv_temptimer,
|
|
jiffies + svc_conn_age_period * HZ);
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
svc_xprt_received(newxpt);
|
|
}
|
|
svc_xprt_received(xprt);
|
|
} else {
|
|
dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
|
|
rqstp, pool->sp_id, xprt,
|
|
atomic_read(&xprt->xpt_ref.refcount));
|
|
rqstp->rq_deferred = svc_deferred_dequeue(xprt);
|
|
if (rqstp->rq_deferred) {
|
|
svc_xprt_received(xprt);
|
|
len = svc_deferred_recv(rqstp);
|
|
} else
|
|
len = xprt->xpt_ops->xpo_recvfrom(rqstp);
|
|
dprintk("svc: got len=%d\n", len);
|
|
}
|
|
|
|
/* No data, incomplete (TCP) read, or accept() */
|
|
if (len == 0 || len == -EAGAIN) {
|
|
rqstp->rq_res.len = 0;
|
|
svc_xprt_release(rqstp);
|
|
return -EAGAIN;
|
|
}
|
|
clear_bit(XPT_OLD, &xprt->xpt_flags);
|
|
|
|
rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
|
|
rqstp->rq_chandle.defer = svc_defer;
|
|
|
|
if (serv->sv_stats)
|
|
serv->sv_stats->netcnt++;
|
|
return len;
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_recv);
|
|
|
|
/*
|
|
* Drop request
|
|
*/
|
|
void svc_drop(struct svc_rqst *rqstp)
|
|
{
|
|
dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
|
|
svc_xprt_release(rqstp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_drop);
|
|
|
|
/*
|
|
* Return reply to client.
|
|
*/
|
|
int svc_send(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_xprt *xprt;
|
|
int len;
|
|
struct xdr_buf *xb;
|
|
|
|
xprt = rqstp->rq_xprt;
|
|
if (!xprt)
|
|
return -EFAULT;
|
|
|
|
/* release the receive skb before sending the reply */
|
|
rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
|
|
|
|
/* calculate over-all length */
|
|
xb = &rqstp->rq_res;
|
|
xb->len = xb->head[0].iov_len +
|
|
xb->page_len +
|
|
xb->tail[0].iov_len;
|
|
|
|
/* Grab mutex to serialize outgoing data. */
|
|
mutex_lock(&xprt->xpt_mutex);
|
|
if (test_bit(XPT_DEAD, &xprt->xpt_flags))
|
|
len = -ENOTCONN;
|
|
else
|
|
len = xprt->xpt_ops->xpo_sendto(rqstp);
|
|
mutex_unlock(&xprt->xpt_mutex);
|
|
svc_xprt_release(rqstp);
|
|
|
|
if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
|
|
return 0;
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Timer function to close old temporary transports, using
|
|
* a mark-and-sweep algorithm.
|
|
*/
|
|
static void svc_age_temp_xprts(unsigned long closure)
|
|
{
|
|
struct svc_serv *serv = (struct svc_serv *)closure;
|
|
struct svc_xprt *xprt;
|
|
struct list_head *le, *next;
|
|
LIST_HEAD(to_be_aged);
|
|
|
|
dprintk("svc_age_temp_xprts\n");
|
|
|
|
if (!spin_trylock_bh(&serv->sv_lock)) {
|
|
/* busy, try again 1 sec later */
|
|
dprintk("svc_age_temp_xprts: busy\n");
|
|
mod_timer(&serv->sv_temptimer, jiffies + HZ);
|
|
return;
|
|
}
|
|
|
|
list_for_each_safe(le, next, &serv->sv_tempsocks) {
|
|
xprt = list_entry(le, struct svc_xprt, xpt_list);
|
|
|
|
/* First time through, just mark it OLD. Second time
|
|
* through, close it. */
|
|
if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
|
|
continue;
|
|
if (atomic_read(&xprt->xpt_ref.refcount) > 1
|
|
|| test_bit(XPT_BUSY, &xprt->xpt_flags))
|
|
continue;
|
|
svc_xprt_get(xprt);
|
|
list_move(le, &to_be_aged);
|
|
set_bit(XPT_CLOSE, &xprt->xpt_flags);
|
|
set_bit(XPT_DETACHED, &xprt->xpt_flags);
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
|
|
while (!list_empty(&to_be_aged)) {
|
|
le = to_be_aged.next;
|
|
/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
|
|
list_del_init(le);
|
|
xprt = list_entry(le, struct svc_xprt, xpt_list);
|
|
|
|
dprintk("queuing xprt %p for closing\n", xprt);
|
|
|
|
/* a thread will dequeue and close it soon */
|
|
svc_xprt_enqueue(xprt);
|
|
svc_xprt_put(xprt);
|
|
}
|
|
|
|
mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
|
|
}
|
|
|
|
/*
|
|
* Remove a dead transport
|
|
*/
|
|
void svc_delete_xprt(struct svc_xprt *xprt)
|
|
{
|
|
struct svc_serv *serv = xprt->xpt_server;
|
|
struct svc_deferred_req *dr;
|
|
|
|
/* Only do this once */
|
|
if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
|
|
return;
|
|
|
|
dprintk("svc: svc_delete_xprt(%p)\n", xprt);
|
|
xprt->xpt_ops->xpo_detach(xprt);
|
|
|
|
spin_lock_bh(&serv->sv_lock);
|
|
if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
|
|
list_del_init(&xprt->xpt_list);
|
|
/*
|
|
* We used to delete the transport from whichever list
|
|
* it's sk_xprt.xpt_ready node was on, but we don't actually
|
|
* need to. This is because the only time we're called
|
|
* while still attached to a queue, the queue itself
|
|
* is about to be destroyed (in svc_destroy).
|
|
*/
|
|
if (test_bit(XPT_TEMP, &xprt->xpt_flags))
|
|
serv->sv_tmpcnt--;
|
|
|
|
for (dr = svc_deferred_dequeue(xprt); dr;
|
|
dr = svc_deferred_dequeue(xprt)) {
|
|
svc_xprt_put(xprt);
|
|
kfree(dr);
|
|
}
|
|
|
|
svc_xprt_put(xprt);
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
}
|
|
|
|
void svc_close_xprt(struct svc_xprt *xprt)
|
|
{
|
|
set_bit(XPT_CLOSE, &xprt->xpt_flags);
|
|
if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
|
|
/* someone else will have to effect the close */
|
|
return;
|
|
|
|
svc_xprt_get(xprt);
|
|
svc_delete_xprt(xprt);
|
|
clear_bit(XPT_BUSY, &xprt->xpt_flags);
|
|
svc_xprt_put(xprt);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_close_xprt);
|
|
|
|
void svc_close_all(struct list_head *xprt_list)
|
|
{
|
|
struct svc_xprt *xprt;
|
|
struct svc_xprt *tmp;
|
|
|
|
list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
|
|
set_bit(XPT_CLOSE, &xprt->xpt_flags);
|
|
if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
|
|
/* Waiting to be processed, but no threads left,
|
|
* So just remove it from the waiting list
|
|
*/
|
|
list_del_init(&xprt->xpt_ready);
|
|
clear_bit(XPT_BUSY, &xprt->xpt_flags);
|
|
}
|
|
svc_close_xprt(xprt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle defer and revisit of requests
|
|
*/
|
|
|
|
static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
|
|
{
|
|
struct svc_deferred_req *dr =
|
|
container_of(dreq, struct svc_deferred_req, handle);
|
|
struct svc_xprt *xprt = dr->xprt;
|
|
|
|
spin_lock(&xprt->xpt_lock);
|
|
set_bit(XPT_DEFERRED, &xprt->xpt_flags);
|
|
if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
|
|
spin_unlock(&xprt->xpt_lock);
|
|
dprintk("revisit canceled\n");
|
|
svc_xprt_put(xprt);
|
|
kfree(dr);
|
|
return;
|
|
}
|
|
dprintk("revisit queued\n");
|
|
dr->xprt = NULL;
|
|
list_add(&dr->handle.recent, &xprt->xpt_deferred);
|
|
spin_unlock(&xprt->xpt_lock);
|
|
svc_xprt_enqueue(xprt);
|
|
svc_xprt_put(xprt);
|
|
}
|
|
|
|
/*
|
|
* Save the request off for later processing. The request buffer looks
|
|
* like this:
|
|
*
|
|
* <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
|
|
*
|
|
* This code can only handle requests that consist of an xprt-header
|
|
* and rpc-header.
|
|
*/
|
|
static struct cache_deferred_req *svc_defer(struct cache_req *req)
|
|
{
|
|
struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
|
|
struct svc_deferred_req *dr;
|
|
|
|
if (rqstp->rq_arg.page_len)
|
|
return NULL; /* if more than a page, give up FIXME */
|
|
if (rqstp->rq_deferred) {
|
|
dr = rqstp->rq_deferred;
|
|
rqstp->rq_deferred = NULL;
|
|
} else {
|
|
size_t skip;
|
|
size_t size;
|
|
/* FIXME maybe discard if size too large */
|
|
size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
|
|
dr = kmalloc(size, GFP_KERNEL);
|
|
if (dr == NULL)
|
|
return NULL;
|
|
|
|
dr->handle.owner = rqstp->rq_server;
|
|
dr->prot = rqstp->rq_prot;
|
|
memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
|
|
dr->addrlen = rqstp->rq_addrlen;
|
|
dr->daddr = rqstp->rq_daddr;
|
|
dr->argslen = rqstp->rq_arg.len >> 2;
|
|
dr->xprt_hlen = rqstp->rq_xprt_hlen;
|
|
|
|
/* back up head to the start of the buffer and copy */
|
|
skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
|
|
memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
|
|
dr->argslen << 2);
|
|
}
|
|
svc_xprt_get(rqstp->rq_xprt);
|
|
dr->xprt = rqstp->rq_xprt;
|
|
|
|
dr->handle.revisit = svc_revisit;
|
|
return &dr->handle;
|
|
}
|
|
|
|
/*
|
|
* recv data from a deferred request into an active one
|
|
*/
|
|
static int svc_deferred_recv(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_deferred_req *dr = rqstp->rq_deferred;
|
|
|
|
/* setup iov_base past transport header */
|
|
rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
|
|
/* The iov_len does not include the transport header bytes */
|
|
rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
|
|
rqstp->rq_arg.page_len = 0;
|
|
/* The rq_arg.len includes the transport header bytes */
|
|
rqstp->rq_arg.len = dr->argslen<<2;
|
|
rqstp->rq_prot = dr->prot;
|
|
memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
|
|
rqstp->rq_addrlen = dr->addrlen;
|
|
/* Save off transport header len in case we get deferred again */
|
|
rqstp->rq_xprt_hlen = dr->xprt_hlen;
|
|
rqstp->rq_daddr = dr->daddr;
|
|
rqstp->rq_respages = rqstp->rq_pages;
|
|
return (dr->argslen<<2) - dr->xprt_hlen;
|
|
}
|
|
|
|
|
|
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
|
|
{
|
|
struct svc_deferred_req *dr = NULL;
|
|
|
|
if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
|
|
return NULL;
|
|
spin_lock(&xprt->xpt_lock);
|
|
clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
|
|
if (!list_empty(&xprt->xpt_deferred)) {
|
|
dr = list_entry(xprt->xpt_deferred.next,
|
|
struct svc_deferred_req,
|
|
handle.recent);
|
|
list_del_init(&dr->handle.recent);
|
|
set_bit(XPT_DEFERRED, &xprt->xpt_flags);
|
|
}
|
|
spin_unlock(&xprt->xpt_lock);
|
|
return dr;
|
|
}
|
|
|
|
/**
|
|
* svc_find_xprt - find an RPC transport instance
|
|
* @serv: pointer to svc_serv to search
|
|
* @xcl_name: C string containing transport's class name
|
|
* @af: Address family of transport's local address
|
|
* @port: transport's IP port number
|
|
*
|
|
* Return the transport instance pointer for the endpoint accepting
|
|
* connections/peer traffic from the specified transport class,
|
|
* address family and port.
|
|
*
|
|
* Specifying 0 for the address family or port is effectively a
|
|
* wild-card, and will result in matching the first transport in the
|
|
* service's list that has a matching class name.
|
|
*/
|
|
struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
|
|
const sa_family_t af, const unsigned short port)
|
|
{
|
|
struct svc_xprt *xprt;
|
|
struct svc_xprt *found = NULL;
|
|
|
|
/* Sanity check the args */
|
|
if (serv == NULL || xcl_name == NULL)
|
|
return found;
|
|
|
|
spin_lock_bh(&serv->sv_lock);
|
|
list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
|
|
if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
|
|
continue;
|
|
if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
|
|
continue;
|
|
if (port != 0 && port != svc_xprt_local_port(xprt))
|
|
continue;
|
|
found = xprt;
|
|
svc_xprt_get(xprt);
|
|
break;
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
return found;
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_find_xprt);
|
|
|
|
/*
|
|
* Format a buffer with a list of the active transports. A zero for
|
|
* the buflen parameter disables target buffer overflow checking.
|
|
*/
|
|
int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen)
|
|
{
|
|
struct svc_xprt *xprt;
|
|
char xprt_str[64];
|
|
int totlen = 0;
|
|
int len;
|
|
|
|
/* Sanity check args */
|
|
if (!serv)
|
|
return 0;
|
|
|
|
spin_lock_bh(&serv->sv_lock);
|
|
list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
|
|
len = snprintf(xprt_str, sizeof(xprt_str),
|
|
"%s %d\n", xprt->xpt_class->xcl_name,
|
|
svc_xprt_local_port(xprt));
|
|
/* If the string was truncated, replace with error string */
|
|
if (len >= sizeof(xprt_str))
|
|
strcpy(xprt_str, "name-too-long\n");
|
|
/* Don't overflow buffer */
|
|
len = strlen(xprt_str);
|
|
if (buflen && (len + totlen >= buflen))
|
|
break;
|
|
strcpy(buf+totlen, xprt_str);
|
|
totlen += len;
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
return totlen;
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_xprt_names);
|