WSL2-Linux-Kernel/net/ceph/messenger.c

2638 строки
64 KiB
C

#include <linux/ceph/ceph_debug.h>
#include <linux/crc32c.h>
#include <linux/ctype.h>
#include <linux/highmem.h>
#include <linux/inet.h>
#include <linux/kthread.h>
#include <linux/net.h>
#include <linux/slab.h>
#include <linux/socket.h>
#include <linux/string.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/dns_resolver.h>
#include <net/tcp.h>
#include <linux/ceph/libceph.h>
#include <linux/ceph/messenger.h>
#include <linux/ceph/decode.h>
#include <linux/ceph/pagelist.h>
#include <linux/export.h>
/*
* Ceph uses the messenger to exchange ceph_msg messages with other
* hosts in the system. The messenger provides ordered and reliable
* delivery. We tolerate TCP disconnects by reconnecting (with
* exponential backoff) in the case of a fault (disconnection, bad
* crc, protocol error). Acks allow sent messages to be discarded by
* the sender.
*/
/* static tag bytes (protocol control messages) */
static char tag_msg = CEPH_MSGR_TAG_MSG;
static char tag_ack = CEPH_MSGR_TAG_ACK;
static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
#ifdef CONFIG_LOCKDEP
static struct lock_class_key socket_class;
#endif
/*
* When skipping (ignoring) a block of input we read it into a "skip
* buffer," which is this many bytes in size.
*/
#define SKIP_BUF_SIZE 1024
static void queue_con(struct ceph_connection *con);
static void con_work(struct work_struct *);
static void ceph_fault(struct ceph_connection *con);
/*
* Nicely render a sockaddr as a string. An array of formatted
* strings is used, to approximate reentrancy.
*/
#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
static atomic_t addr_str_seq = ATOMIC_INIT(0);
static struct page *zero_page; /* used in certain error cases */
const char *ceph_pr_addr(const struct sockaddr_storage *ss)
{
int i;
char *s;
struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
s = addr_str[i];
switch (ss->ss_family) {
case AF_INET:
snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
ntohs(in4->sin_port));
break;
case AF_INET6:
snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
ntohs(in6->sin6_port));
break;
default:
snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
ss->ss_family);
}
return s;
}
EXPORT_SYMBOL(ceph_pr_addr);
static void encode_my_addr(struct ceph_messenger *msgr)
{
memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
ceph_encode_addr(&msgr->my_enc_addr);
}
/*
* work queue for all reading and writing to/from the socket.
*/
static struct workqueue_struct *ceph_msgr_wq;
void _ceph_msgr_exit(void)
{
if (ceph_msgr_wq) {
destroy_workqueue(ceph_msgr_wq);
ceph_msgr_wq = NULL;
}
BUG_ON(zero_page == NULL);
kunmap(zero_page);
page_cache_release(zero_page);
zero_page = NULL;
}
int ceph_msgr_init(void)
{
BUG_ON(zero_page != NULL);
zero_page = ZERO_PAGE(0);
page_cache_get(zero_page);
ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
if (ceph_msgr_wq)
return 0;
pr_err("msgr_init failed to create workqueue\n");
_ceph_msgr_exit();
return -ENOMEM;
}
EXPORT_SYMBOL(ceph_msgr_init);
void ceph_msgr_exit(void)
{
BUG_ON(ceph_msgr_wq == NULL);
_ceph_msgr_exit();
}
EXPORT_SYMBOL(ceph_msgr_exit);
void ceph_msgr_flush(void)
{
flush_workqueue(ceph_msgr_wq);
}
EXPORT_SYMBOL(ceph_msgr_flush);
/*
* socket callback functions
*/
/* data available on socket, or listen socket received a connect */
static void ceph_data_ready(struct sock *sk, int count_unused)
{
struct ceph_connection *con = sk->sk_user_data;
if (sk->sk_state != TCP_CLOSE_WAIT) {
dout("ceph_data_ready on %p state = %lu, queueing work\n",
con, con->state);
queue_con(con);
}
}
/* socket has buffer space for writing */
static void ceph_write_space(struct sock *sk)
{
struct ceph_connection *con = sk->sk_user_data;
/* only queue to workqueue if there is data we want to write,
* and there is sufficient space in the socket buffer to accept
* more data. clear SOCK_NOSPACE so that ceph_write_space()
* doesn't get called again until try_write() fills the socket
* buffer. See net/ipv4/tcp_input.c:tcp_check_space()
* and net/core/stream.c:sk_stream_write_space().
*/
if (test_bit(WRITE_PENDING, &con->state)) {
if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
dout("ceph_write_space %p queueing write work\n", con);
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
queue_con(con);
}
} else {
dout("ceph_write_space %p nothing to write\n", con);
}
}
/* socket's state has changed */
static void ceph_state_change(struct sock *sk)
{
struct ceph_connection *con = sk->sk_user_data;
dout("ceph_state_change %p state = %lu sk_state = %u\n",
con, con->state, sk->sk_state);
if (test_bit(CLOSED, &con->state))
return;
switch (sk->sk_state) {
case TCP_CLOSE:
dout("ceph_state_change TCP_CLOSE\n");
case TCP_CLOSE_WAIT:
dout("ceph_state_change TCP_CLOSE_WAIT\n");
if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
if (test_bit(CONNECTING, &con->state))
con->error_msg = "connection failed";
else
con->error_msg = "socket closed";
queue_con(con);
}
break;
case TCP_ESTABLISHED:
dout("ceph_state_change TCP_ESTABLISHED\n");
queue_con(con);
break;
default: /* Everything else is uninteresting */
break;
}
}
/*
* set up socket callbacks
*/
static void set_sock_callbacks(struct socket *sock,
struct ceph_connection *con)
{
struct sock *sk = sock->sk;
sk->sk_user_data = con;
sk->sk_data_ready = ceph_data_ready;
sk->sk_write_space = ceph_write_space;
sk->sk_state_change = ceph_state_change;
}
/*
* socket helpers
*/
/*
* initiate connection to a remote socket.
*/
static int ceph_tcp_connect(struct ceph_connection *con)
{
struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
struct socket *sock;
int ret;
BUG_ON(con->sock);
ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
IPPROTO_TCP, &sock);
if (ret)
return ret;
sock->sk->sk_allocation = GFP_NOFS;
#ifdef CONFIG_LOCKDEP
lockdep_set_class(&sock->sk->sk_lock, &socket_class);
#endif
set_sock_callbacks(sock, con);
dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
O_NONBLOCK);
if (ret == -EINPROGRESS) {
dout("connect %s EINPROGRESS sk_state = %u\n",
ceph_pr_addr(&con->peer_addr.in_addr),
sock->sk->sk_state);
} else if (ret < 0) {
pr_err("connect %s error %d\n",
ceph_pr_addr(&con->peer_addr.in_addr), ret);
sock_release(sock);
con->error_msg = "connect error";
return ret;
}
con->sock = sock;
return 0;
}
static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
{
struct kvec iov = {buf, len};
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
int r;
r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
if (r == -EAGAIN)
r = 0;
return r;
}
/*
* write something. @more is true if caller will be sending more data
* shortly.
*/
static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
size_t kvlen, size_t len, int more)
{
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
int r;
if (more)
msg.msg_flags |= MSG_MORE;
else
msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
if (r == -EAGAIN)
r = 0;
return r;
}
static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
int offset, size_t size, int more)
{
int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
int ret;
ret = kernel_sendpage(sock, page, offset, size, flags);
if (ret == -EAGAIN)
ret = 0;
return ret;
}
/*
* Shutdown/close the socket for the given connection.
*/
static int con_close_socket(struct ceph_connection *con)
{
int rc;
dout("con_close_socket on %p sock %p\n", con, con->sock);
if (!con->sock)
return 0;
set_bit(SOCK_CLOSED, &con->state);
rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
sock_release(con->sock);
con->sock = NULL;
clear_bit(SOCK_CLOSED, &con->state);
return rc;
}
/*
* Reset a connection. Discard all incoming and outgoing messages
* and clear *_seq state.
*/
static void ceph_msg_remove(struct ceph_msg *msg)
{
list_del_init(&msg->list_head);
ceph_msg_put(msg);
}
static void ceph_msg_remove_list(struct list_head *head)
{
while (!list_empty(head)) {
struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
list_head);
ceph_msg_remove(msg);
}
}
static void reset_connection(struct ceph_connection *con)
{
/* reset connection, out_queue, msg_ and connect_seq */
/* discard existing out_queue and msg_seq */
ceph_msg_remove_list(&con->out_queue);
ceph_msg_remove_list(&con->out_sent);
if (con->in_msg) {
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
}
con->connect_seq = 0;
con->out_seq = 0;
if (con->out_msg) {
ceph_msg_put(con->out_msg);
con->out_msg = NULL;
}
con->in_seq = 0;
con->in_seq_acked = 0;
}
/*
* mark a peer down. drop any open connections.
*/
void ceph_con_close(struct ceph_connection *con)
{
dout("con_close %p peer %s\n", con,
ceph_pr_addr(&con->peer_addr.in_addr));
set_bit(CLOSED, &con->state); /* in case there's queued work */
clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
clear_bit(KEEPALIVE_PENDING, &con->state);
clear_bit(WRITE_PENDING, &con->state);
mutex_lock(&con->mutex);
reset_connection(con);
con->peer_global_seq = 0;
cancel_delayed_work(&con->work);
mutex_unlock(&con->mutex);
queue_con(con);
}
EXPORT_SYMBOL(ceph_con_close);
/*
* Reopen a closed connection, with a new peer address.
*/
void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
{
dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
set_bit(OPENING, &con->state);
clear_bit(CLOSED, &con->state);
memcpy(&con->peer_addr, addr, sizeof(*addr));
con->delay = 0; /* reset backoff memory */
queue_con(con);
}
EXPORT_SYMBOL(ceph_con_open);
/*
* return true if this connection ever successfully opened
*/
bool ceph_con_opened(struct ceph_connection *con)
{
return con->connect_seq > 0;
}
/*
* generic get/put
*/
struct ceph_connection *ceph_con_get(struct ceph_connection *con)
{
int nref = __atomic_add_unless(&con->nref, 1, 0);
dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
return nref ? con : NULL;
}
void ceph_con_put(struct ceph_connection *con)
{
int nref = atomic_dec_return(&con->nref);
BUG_ON(nref < 0);
if (nref == 0) {
BUG_ON(con->sock);
kfree(con);
}
dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
}
/*
* initialize a new connection.
*/
void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
{
dout("con_init %p\n", con);
memset(con, 0, sizeof(*con));
atomic_set(&con->nref, 1);
con->msgr = msgr;
mutex_init(&con->mutex);
INIT_LIST_HEAD(&con->out_queue);
INIT_LIST_HEAD(&con->out_sent);
INIT_DELAYED_WORK(&con->work, con_work);
}
EXPORT_SYMBOL(ceph_con_init);
/*
* We maintain a global counter to order connection attempts. Get
* a unique seq greater than @gt.
*/
static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
{
u32 ret;
spin_lock(&msgr->global_seq_lock);
if (msgr->global_seq < gt)
msgr->global_seq = gt;
ret = ++msgr->global_seq;
spin_unlock(&msgr->global_seq_lock);
return ret;
}
static void ceph_con_out_kvec_reset(struct ceph_connection *con)
{
con->out_kvec_left = 0;
con->out_kvec_bytes = 0;
con->out_kvec_cur = &con->out_kvec[0];
}
static void ceph_con_out_kvec_add(struct ceph_connection *con,
size_t size, void *data)
{
int index;
index = con->out_kvec_left;
BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
con->out_kvec[index].iov_len = size;
con->out_kvec[index].iov_base = data;
con->out_kvec_left++;
con->out_kvec_bytes += size;
}
/*
* Prepare footer for currently outgoing message, and finish things
* off. Assumes out_kvec* are already valid.. we just add on to the end.
*/
static void prepare_write_message_footer(struct ceph_connection *con)
{
struct ceph_msg *m = con->out_msg;
int v = con->out_kvec_left;
dout("prepare_write_message_footer %p\n", con);
con->out_kvec_is_msg = true;
con->out_kvec[v].iov_base = &m->footer;
con->out_kvec[v].iov_len = sizeof(m->footer);
con->out_kvec_bytes += sizeof(m->footer);
con->out_kvec_left++;
con->out_more = m->more_to_follow;
con->out_msg_done = true;
}
/*
* Prepare headers for the next outgoing message.
*/
static void prepare_write_message(struct ceph_connection *con)
{
struct ceph_msg *m;
u32 crc;
ceph_con_out_kvec_reset(con);
con->out_kvec_is_msg = true;
con->out_msg_done = false;
/* Sneak an ack in there first? If we can get it into the same
* TCP packet that's a good thing. */
if (con->in_seq > con->in_seq_acked) {
con->in_seq_acked = con->in_seq;
ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
&con->out_temp_ack);
}
m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
con->out_msg = m;
/* put message on sent list */
ceph_msg_get(m);
list_move_tail(&m->list_head, &con->out_sent);
/*
* only assign outgoing seq # if we haven't sent this message
* yet. if it is requeued, resend with it's original seq.
*/
if (m->needs_out_seq) {
m->hdr.seq = cpu_to_le64(++con->out_seq);
m->needs_out_seq = false;
}
#ifdef CONFIG_BLOCK
else
m->bio_iter = NULL;
#endif
dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
m, con->out_seq, le16_to_cpu(m->hdr.type),
le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
le32_to_cpu(m->hdr.data_len),
m->nr_pages);
BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
/* tag + hdr + front + middle */
ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
if (m->middle)
ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
m->middle->vec.iov_base);
/* fill in crc (except data pages), footer */
crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
con->out_msg->hdr.crc = cpu_to_le32(crc);
con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
crc = crc32c(0, m->front.iov_base, m->front.iov_len);
con->out_msg->footer.front_crc = cpu_to_le32(crc);
if (m->middle) {
crc = crc32c(0, m->middle->vec.iov_base,
m->middle->vec.iov_len);
con->out_msg->footer.middle_crc = cpu_to_le32(crc);
} else
con->out_msg->footer.middle_crc = 0;
con->out_msg->footer.data_crc = 0;
dout("prepare_write_message front_crc %u data_crc %u\n",
le32_to_cpu(con->out_msg->footer.front_crc),
le32_to_cpu(con->out_msg->footer.middle_crc));
/* is there a data payload? */
if (le32_to_cpu(m->hdr.data_len) > 0) {
/* initialize page iterator */
con->out_msg_pos.page = 0;
if (m->pages)
con->out_msg_pos.page_pos = m->page_alignment;
else
con->out_msg_pos.page_pos = 0;
con->out_msg_pos.data_pos = 0;
con->out_msg_pos.did_page_crc = false;
con->out_more = 1; /* data + footer will follow */
} else {
/* no, queue up footer too and be done */
prepare_write_message_footer(con);
}
set_bit(WRITE_PENDING, &con->state);
}
/*
* Prepare an ack.
*/
static void prepare_write_ack(struct ceph_connection *con)
{
dout("prepare_write_ack %p %llu -> %llu\n", con,
con->in_seq_acked, con->in_seq);
con->in_seq_acked = con->in_seq;
ceph_con_out_kvec_reset(con);
ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
&con->out_temp_ack);
con->out_more = 1; /* more will follow.. eventually.. */
set_bit(WRITE_PENDING, &con->state);
}
/*
* Prepare to write keepalive byte.
*/
static void prepare_write_keepalive(struct ceph_connection *con)
{
dout("prepare_write_keepalive %p\n", con);
ceph_con_out_kvec_reset(con);
ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
set_bit(WRITE_PENDING, &con->state);
}
/*
* Connection negotiation.
*/
static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
int *auth_proto)
{
struct ceph_auth_handshake *auth;
if (!con->ops->get_authorizer) {
con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
con->out_connect.authorizer_len = 0;
return NULL;
}
/* Can't hold the mutex while getting authorizer */
mutex_unlock(&con->mutex);
auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
mutex_lock(&con->mutex);
if (IS_ERR(auth))
return auth;
if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state))
return ERR_PTR(-EAGAIN);
con->auth_reply_buf = auth->authorizer_reply_buf;
con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
return auth;
}
/*
* We connected to a peer and are saying hello.
*/
static void prepare_write_banner(struct ceph_connection *con)
{
ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
&con->msgr->my_enc_addr);
con->out_more = 0;
set_bit(WRITE_PENDING, &con->state);
}
static int prepare_write_connect(struct ceph_connection *con)
{
unsigned int global_seq = get_global_seq(con->msgr, 0);
int proto;
int auth_proto;
struct ceph_auth_handshake *auth;
switch (con->peer_name.type) {
case CEPH_ENTITY_TYPE_MON:
proto = CEPH_MONC_PROTOCOL;
break;
case CEPH_ENTITY_TYPE_OSD:
proto = CEPH_OSDC_PROTOCOL;
break;
case CEPH_ENTITY_TYPE_MDS:
proto = CEPH_MDSC_PROTOCOL;
break;
default:
BUG();
}
dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
con->connect_seq, global_seq, proto);
con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
con->out_connect.global_seq = cpu_to_le32(global_seq);
con->out_connect.protocol_version = cpu_to_le32(proto);
con->out_connect.flags = 0;
auth_proto = CEPH_AUTH_UNKNOWN;
auth = get_connect_authorizer(con, &auth_proto);
if (IS_ERR(auth))
return PTR_ERR(auth);
con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
con->out_connect.authorizer_len = auth ?
cpu_to_le32(auth->authorizer_buf_len) : 0;
ceph_con_out_kvec_add(con, sizeof (con->out_connect),
&con->out_connect);
if (auth && auth->authorizer_buf_len)
ceph_con_out_kvec_add(con, auth->authorizer_buf_len,
auth->authorizer_buf);
con->out_more = 0;
set_bit(WRITE_PENDING, &con->state);
return 0;
}
/*
* write as much of pending kvecs to the socket as we can.
* 1 -> done
* 0 -> socket full, but more to do
* <0 -> error
*/
static int write_partial_kvec(struct ceph_connection *con)
{
int ret;
dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
while (con->out_kvec_bytes > 0) {
ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
con->out_kvec_left, con->out_kvec_bytes,
con->out_more);
if (ret <= 0)
goto out;
con->out_kvec_bytes -= ret;
if (con->out_kvec_bytes == 0)
break; /* done */
/* account for full iov entries consumed */
while (ret >= con->out_kvec_cur->iov_len) {
BUG_ON(!con->out_kvec_left);
ret -= con->out_kvec_cur->iov_len;
con->out_kvec_cur++;
con->out_kvec_left--;
}
/* and for a partially-consumed entry */
if (ret) {
con->out_kvec_cur->iov_len -= ret;
con->out_kvec_cur->iov_base += ret;
}
}
con->out_kvec_left = 0;
con->out_kvec_is_msg = false;
ret = 1;
out:
dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
con->out_kvec_bytes, con->out_kvec_left, ret);
return ret; /* done! */
}
#ifdef CONFIG_BLOCK
static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
{
if (!bio) {
*iter = NULL;
*seg = 0;
return;
}
*iter = bio;
*seg = bio->bi_idx;
}
static void iter_bio_next(struct bio **bio_iter, int *seg)
{
if (*bio_iter == NULL)
return;
BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
(*seg)++;
if (*seg == (*bio_iter)->bi_vcnt)
init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
}
#endif
/*
* Write as much message data payload as we can. If we finish, queue
* up the footer.
* 1 -> done, footer is now queued in out_kvec[].
* 0 -> socket full, but more to do
* <0 -> error
*/
static int write_partial_msg_pages(struct ceph_connection *con)
{
struct ceph_msg *msg = con->out_msg;
unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
size_t len;
bool do_datacrc = !con->msgr->nocrc;
int ret;
int total_max_write;
int in_trail = 0;
size_t trail_len = (msg->trail ? msg->trail->length : 0);
dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
con->out_msg_pos.page_pos);
#ifdef CONFIG_BLOCK
if (msg->bio && !msg->bio_iter)
init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
#endif
while (data_len > con->out_msg_pos.data_pos) {
struct page *page = NULL;
int max_write = PAGE_SIZE;
int bio_offset = 0;
total_max_write = data_len - trail_len -
con->out_msg_pos.data_pos;
/*
* if we are calculating the data crc (the default), we need
* to map the page. if our pages[] has been revoked, use the
* zero page.
*/
/* have we reached the trail part of the data? */
if (con->out_msg_pos.data_pos >= data_len - trail_len) {
in_trail = 1;
total_max_write = data_len - con->out_msg_pos.data_pos;
page = list_first_entry(&msg->trail->head,
struct page, lru);
max_write = PAGE_SIZE;
} else if (msg->pages) {
page = msg->pages[con->out_msg_pos.page];
} else if (msg->pagelist) {
page = list_first_entry(&msg->pagelist->head,
struct page, lru);
#ifdef CONFIG_BLOCK
} else if (msg->bio) {
struct bio_vec *bv;
bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
page = bv->bv_page;
bio_offset = bv->bv_offset;
max_write = bv->bv_len;
#endif
} else {
page = zero_page;
}
len = min_t(int, max_write - con->out_msg_pos.page_pos,
total_max_write);
if (do_datacrc && !con->out_msg_pos.did_page_crc) {
void *base;
u32 crc;
u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
char *kaddr;
kaddr = kmap(page);
BUG_ON(kaddr == NULL);
base = kaddr + con->out_msg_pos.page_pos + bio_offset;
crc = crc32c(tmpcrc, base, len);
con->out_msg->footer.data_crc = cpu_to_le32(crc);
con->out_msg_pos.did_page_crc = true;
}
ret = ceph_tcp_sendpage(con->sock, page,
con->out_msg_pos.page_pos + bio_offset,
len, 1);
if (do_datacrc)
kunmap(page);
if (ret <= 0)
goto out;
con->out_msg_pos.data_pos += ret;
con->out_msg_pos.page_pos += ret;
if (ret == len) {
con->out_msg_pos.page_pos = 0;
con->out_msg_pos.page++;
con->out_msg_pos.did_page_crc = false;
if (in_trail)
list_move_tail(&page->lru,
&msg->trail->head);
else if (msg->pagelist)
list_move_tail(&page->lru,
&msg->pagelist->head);
#ifdef CONFIG_BLOCK
else if (msg->bio)
iter_bio_next(&msg->bio_iter, &msg->bio_seg);
#endif
}
}
dout("write_partial_msg_pages %p msg %p done\n", con, msg);
/* prepare and queue up footer, too */
if (!do_datacrc)
con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
ceph_con_out_kvec_reset(con);
prepare_write_message_footer(con);
ret = 1;
out:
return ret;
}
/*
* write some zeros
*/
static int write_partial_skip(struct ceph_connection *con)
{
int ret;
while (con->out_skip > 0) {
size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
if (ret <= 0)
goto out;
con->out_skip -= ret;
}
ret = 1;
out:
return ret;
}
/*
* Prepare to read connection handshake, or an ack.
*/
static void prepare_read_banner(struct ceph_connection *con)
{
dout("prepare_read_banner %p\n", con);
con->in_base_pos = 0;
}
static void prepare_read_connect(struct ceph_connection *con)
{
dout("prepare_read_connect %p\n", con);
con->in_base_pos = 0;
}
static void prepare_read_ack(struct ceph_connection *con)
{
dout("prepare_read_ack %p\n", con);
con->in_base_pos = 0;
}
static void prepare_read_tag(struct ceph_connection *con)
{
dout("prepare_read_tag %p\n", con);
con->in_base_pos = 0;
con->in_tag = CEPH_MSGR_TAG_READY;
}
/*
* Prepare to read a message.
*/
static int prepare_read_message(struct ceph_connection *con)
{
dout("prepare_read_message %p\n", con);
BUG_ON(con->in_msg != NULL);
con->in_base_pos = 0;
con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
return 0;
}
static int read_partial(struct ceph_connection *con,
int end, int size, void *object)
{
while (con->in_base_pos < end) {
int left = end - con->in_base_pos;
int have = size - left;
int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
if (ret <= 0)
return ret;
con->in_base_pos += ret;
}
return 1;
}
/*
* Read all or part of the connect-side handshake on a new connection
*/
static int read_partial_banner(struct ceph_connection *con)
{
int size;
int end;
int ret;
dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
/* peer's banner */
size = strlen(CEPH_BANNER);
end = size;
ret = read_partial(con, end, size, con->in_banner);
if (ret <= 0)
goto out;
size = sizeof (con->actual_peer_addr);
end += size;
ret = read_partial(con, end, size, &con->actual_peer_addr);
if (ret <= 0)
goto out;
size = sizeof (con->peer_addr_for_me);
end += size;
ret = read_partial(con, end, size, &con->peer_addr_for_me);
if (ret <= 0)
goto out;
out:
return ret;
}
static int read_partial_connect(struct ceph_connection *con)
{
int size;
int end;
int ret;
dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
size = sizeof (con->in_reply);
end = size;
ret = read_partial(con, end, size, &con->in_reply);
if (ret <= 0)
goto out;
size = le32_to_cpu(con->in_reply.authorizer_len);
end += size;
ret = read_partial(con, end, size, con->auth_reply_buf);
if (ret <= 0)
goto out;
dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
con, (int)con->in_reply.tag,
le32_to_cpu(con->in_reply.connect_seq),
le32_to_cpu(con->in_reply.global_seq));
out:
return ret;
}
/*
* Verify the hello banner looks okay.
*/
static int verify_hello(struct ceph_connection *con)
{
if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
pr_err("connect to %s got bad banner\n",
ceph_pr_addr(&con->peer_addr.in_addr));
con->error_msg = "protocol error, bad banner";
return -1;
}
return 0;
}
static bool addr_is_blank(struct sockaddr_storage *ss)
{
switch (ss->ss_family) {
case AF_INET:
return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
case AF_INET6:
return
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
}
return false;
}
static int addr_port(struct sockaddr_storage *ss)
{
switch (ss->ss_family) {
case AF_INET:
return ntohs(((struct sockaddr_in *)ss)->sin_port);
case AF_INET6:
return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
}
return 0;
}
static void addr_set_port(struct sockaddr_storage *ss, int p)
{
switch (ss->ss_family) {
case AF_INET:
((struct sockaddr_in *)ss)->sin_port = htons(p);
break;
case AF_INET6:
((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
break;
}
}
/*
* Unlike other *_pton function semantics, zero indicates success.
*/
static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
char delim, const char **ipend)
{
struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
memset(ss, 0, sizeof(*ss));
if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
ss->ss_family = AF_INET;
return 0;
}
if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
ss->ss_family = AF_INET6;
return 0;
}
return -EINVAL;
}
/*
* Extract hostname string and resolve using kernel DNS facility.
*/
#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
static int ceph_dns_resolve_name(const char *name, size_t namelen,
struct sockaddr_storage *ss, char delim, const char **ipend)
{
const char *end, *delim_p;
char *colon_p, *ip_addr = NULL;
int ip_len, ret;
/*
* The end of the hostname occurs immediately preceding the delimiter or
* the port marker (':') where the delimiter takes precedence.
*/
delim_p = memchr(name, delim, namelen);
colon_p = memchr(name, ':', namelen);
if (delim_p && colon_p)
end = delim_p < colon_p ? delim_p : colon_p;
else if (!delim_p && colon_p)
end = colon_p;
else {
end = delim_p;
if (!end) /* case: hostname:/ */
end = name + namelen;
}
if (end <= name)
return -EINVAL;
/* do dns_resolve upcall */
ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
if (ip_len > 0)
ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
else
ret = -ESRCH;
kfree(ip_addr);
*ipend = end;
pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
ret, ret ? "failed" : ceph_pr_addr(ss));
return ret;
}
#else
static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
struct sockaddr_storage *ss, char delim, const char **ipend)
{
return -EINVAL;
}
#endif
/*
* Parse a server name (IP or hostname). If a valid IP address is not found
* then try to extract a hostname to resolve using userspace DNS upcall.
*/
static int ceph_parse_server_name(const char *name, size_t namelen,
struct sockaddr_storage *ss, char delim, const char **ipend)
{
int ret;
ret = ceph_pton(name, namelen, ss, delim, ipend);
if (ret)
ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
return ret;
}
/*
* Parse an ip[:port] list into an addr array. Use the default
* monitor port if a port isn't specified.
*/
int ceph_parse_ips(const char *c, const char *end,
struct ceph_entity_addr *addr,
int max_count, int *count)
{
int i, ret = -EINVAL;
const char *p = c;
dout("parse_ips on '%.*s'\n", (int)(end-c), c);
for (i = 0; i < max_count; i++) {
const char *ipend;
struct sockaddr_storage *ss = &addr[i].in_addr;
int port;
char delim = ',';
if (*p == '[') {
delim = ']';
p++;
}
ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
if (ret)
goto bad;
ret = -EINVAL;
p = ipend;
if (delim == ']') {
if (*p != ']') {
dout("missing matching ']'\n");
goto bad;
}
p++;
}
/* port? */
if (p < end && *p == ':') {
port = 0;
p++;
while (p < end && *p >= '0' && *p <= '9') {
port = (port * 10) + (*p - '0');
p++;
}
if (port > 65535 || port == 0)
goto bad;
} else {
port = CEPH_MON_PORT;
}
addr_set_port(ss, port);
dout("parse_ips got %s\n", ceph_pr_addr(ss));
if (p == end)
break;
if (*p != ',')
goto bad;
p++;
}
if (p != end)
goto bad;
if (count)
*count = i + 1;
return 0;
bad:
pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
return ret;
}
EXPORT_SYMBOL(ceph_parse_ips);
static int process_banner(struct ceph_connection *con)
{
dout("process_banner on %p\n", con);
if (verify_hello(con) < 0)
return -1;
ceph_decode_addr(&con->actual_peer_addr);
ceph_decode_addr(&con->peer_addr_for_me);
/*
* Make sure the other end is who we wanted. note that the other
* end may not yet know their ip address, so if it's 0.0.0.0, give
* them the benefit of the doubt.
*/
if (memcmp(&con->peer_addr, &con->actual_peer_addr,
sizeof(con->peer_addr)) != 0 &&
!(addr_is_blank(&con->actual_peer_addr.in_addr) &&
con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
pr_warning("wrong peer, want %s/%d, got %s/%d\n",
ceph_pr_addr(&con->peer_addr.in_addr),
(int)le32_to_cpu(con->peer_addr.nonce),
ceph_pr_addr(&con->actual_peer_addr.in_addr),
(int)le32_to_cpu(con->actual_peer_addr.nonce));
con->error_msg = "wrong peer at address";
return -1;
}
/*
* did we learn our address?
*/
if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
int port = addr_port(&con->msgr->inst.addr.in_addr);
memcpy(&con->msgr->inst.addr.in_addr,
&con->peer_addr_for_me.in_addr,
sizeof(con->peer_addr_for_me.in_addr));
addr_set_port(&con->msgr->inst.addr.in_addr, port);
encode_my_addr(con->msgr);
dout("process_banner learned my addr is %s\n",
ceph_pr_addr(&con->msgr->inst.addr.in_addr));
}
set_bit(NEGOTIATING, &con->state);
prepare_read_connect(con);
return 0;
}
static void fail_protocol(struct ceph_connection *con)
{
reset_connection(con);
set_bit(CLOSED, &con->state); /* in case there's queued work */
mutex_unlock(&con->mutex);
if (con->ops->bad_proto)
con->ops->bad_proto(con);
mutex_lock(&con->mutex);
}
static int process_connect(struct ceph_connection *con)
{
u64 sup_feat = con->msgr->supported_features;
u64 req_feat = con->msgr->required_features;
u64 server_feat = le64_to_cpu(con->in_reply.features);
int ret;
dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
switch (con->in_reply.tag) {
case CEPH_MSGR_TAG_FEATURES:
pr_err("%s%lld %s feature set mismatch,"
" my %llx < server's %llx, missing %llx\n",
ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr.in_addr),
sup_feat, server_feat, server_feat & ~sup_feat);
con->error_msg = "missing required protocol features";
fail_protocol(con);
return -1;
case CEPH_MSGR_TAG_BADPROTOVER:
pr_err("%s%lld %s protocol version mismatch,"
" my %d != server's %d\n",
ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr.in_addr),
le32_to_cpu(con->out_connect.protocol_version),
le32_to_cpu(con->in_reply.protocol_version));
con->error_msg = "protocol version mismatch";
fail_protocol(con);
return -1;
case CEPH_MSGR_TAG_BADAUTHORIZER:
con->auth_retry++;
dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
con->auth_retry);
if (con->auth_retry == 2) {
con->error_msg = "connect authorization failure";
return -1;
}
con->auth_retry = 1;
ceph_con_out_kvec_reset(con);
ret = prepare_write_connect(con);
if (ret < 0)
return ret;
prepare_read_connect(con);
break;
case CEPH_MSGR_TAG_RESETSESSION:
/*
* If we connected with a large connect_seq but the peer
* has no record of a session with us (no connection, or
* connect_seq == 0), they will send RESETSESION to indicate
* that they must have reset their session, and may have
* dropped messages.
*/
dout("process_connect got RESET peer seq %u\n",
le32_to_cpu(con->in_connect.connect_seq));
pr_err("%s%lld %s connection reset\n",
ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr.in_addr));
reset_connection(con);
ceph_con_out_kvec_reset(con);
ret = prepare_write_connect(con);
if (ret < 0)
return ret;
prepare_read_connect(con);
/* Tell ceph about it. */
mutex_unlock(&con->mutex);
pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
if (con->ops->peer_reset)
con->ops->peer_reset(con);
mutex_lock(&con->mutex);
if (test_bit(CLOSED, &con->state) ||
test_bit(OPENING, &con->state))
return -EAGAIN;
break;
case CEPH_MSGR_TAG_RETRY_SESSION:
/*
* If we sent a smaller connect_seq than the peer has, try
* again with a larger value.
*/
dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
le32_to_cpu(con->out_connect.connect_seq),
le32_to_cpu(con->in_connect.connect_seq));
con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
ceph_con_out_kvec_reset(con);
ret = prepare_write_connect(con);
if (ret < 0)
return ret;
prepare_read_connect(con);
break;
case CEPH_MSGR_TAG_RETRY_GLOBAL:
/*
* If we sent a smaller global_seq than the peer has, try
* again with a larger value.
*/
dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
con->peer_global_seq,
le32_to_cpu(con->in_connect.global_seq));
get_global_seq(con->msgr,
le32_to_cpu(con->in_connect.global_seq));
ceph_con_out_kvec_reset(con);
ret = prepare_write_connect(con);
if (ret < 0)
return ret;
prepare_read_connect(con);
break;
case CEPH_MSGR_TAG_READY:
if (req_feat & ~server_feat) {
pr_err("%s%lld %s protocol feature mismatch,"
" my required %llx > server's %llx, need %llx\n",
ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr.in_addr),
req_feat, server_feat, req_feat & ~server_feat);
con->error_msg = "missing required protocol features";
fail_protocol(con);
return -1;
}
clear_bit(CONNECTING, &con->state);
con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
con->connect_seq++;
con->peer_features = server_feat;
dout("process_connect got READY gseq %d cseq %d (%d)\n",
con->peer_global_seq,
le32_to_cpu(con->in_reply.connect_seq),
con->connect_seq);
WARN_ON(con->connect_seq !=
le32_to_cpu(con->in_reply.connect_seq));
if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
set_bit(LOSSYTX, &con->state);
prepare_read_tag(con);
break;
case CEPH_MSGR_TAG_WAIT:
/*
* If there is a connection race (we are opening
* connections to each other), one of us may just have
* to WAIT. This shouldn't happen if we are the
* client.
*/
pr_err("process_connect got WAIT as client\n");
con->error_msg = "protocol error, got WAIT as client";
return -1;
default:
pr_err("connect protocol error, will retry\n");
con->error_msg = "protocol error, garbage tag during connect";
return -1;
}
return 0;
}
/*
* read (part of) an ack
*/
static int read_partial_ack(struct ceph_connection *con)
{
int size = sizeof (con->in_temp_ack);
int end = size;
return read_partial(con, end, size, &con->in_temp_ack);
}
/*
* We can finally discard anything that's been acked.
*/
static void process_ack(struct ceph_connection *con)
{
struct ceph_msg *m;
u64 ack = le64_to_cpu(con->in_temp_ack);
u64 seq;
while (!list_empty(&con->out_sent)) {
m = list_first_entry(&con->out_sent, struct ceph_msg,
list_head);
seq = le64_to_cpu(m->hdr.seq);
if (seq > ack)
break;
dout("got ack for seq %llu type %d at %p\n", seq,
le16_to_cpu(m->hdr.type), m);
m->ack_stamp = jiffies;
ceph_msg_remove(m);
}
prepare_read_tag(con);
}
static int read_partial_message_section(struct ceph_connection *con,
struct kvec *section,
unsigned int sec_len, u32 *crc)
{
int ret, left;
BUG_ON(!section);
while (section->iov_len < sec_len) {
BUG_ON(section->iov_base == NULL);
left = sec_len - section->iov_len;
ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
section->iov_len, left);
if (ret <= 0)
return ret;
section->iov_len += ret;
}
if (section->iov_len == sec_len)
*crc = crc32c(0, section->iov_base, section->iov_len);
return 1;
}
static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
struct ceph_msg_header *hdr,
int *skip);
static int read_partial_message_pages(struct ceph_connection *con,
struct page **pages,
unsigned int data_len, bool do_datacrc)
{
void *p;
int ret;
int left;
left = min((int)(data_len - con->in_msg_pos.data_pos),
(int)(PAGE_SIZE - con->in_msg_pos.page_pos));
/* (page) data */
BUG_ON(pages == NULL);
p = kmap(pages[con->in_msg_pos.page]);
ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
left);
if (ret > 0 && do_datacrc)
con->in_data_crc =
crc32c(con->in_data_crc,
p + con->in_msg_pos.page_pos, ret);
kunmap(pages[con->in_msg_pos.page]);
if (ret <= 0)
return ret;
con->in_msg_pos.data_pos += ret;
con->in_msg_pos.page_pos += ret;
if (con->in_msg_pos.page_pos == PAGE_SIZE) {
con->in_msg_pos.page_pos = 0;
con->in_msg_pos.page++;
}
return ret;
}
#ifdef CONFIG_BLOCK
static int read_partial_message_bio(struct ceph_connection *con,
struct bio **bio_iter, int *bio_seg,
unsigned int data_len, bool do_datacrc)
{
struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
void *p;
int ret, left;
if (IS_ERR(bv))
return PTR_ERR(bv);
left = min((int)(data_len - con->in_msg_pos.data_pos),
(int)(bv->bv_len - con->in_msg_pos.page_pos));
p = kmap(bv->bv_page) + bv->bv_offset;
ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
left);
if (ret > 0 && do_datacrc)
con->in_data_crc =
crc32c(con->in_data_crc,
p + con->in_msg_pos.page_pos, ret);
kunmap(bv->bv_page);
if (ret <= 0)
return ret;
con->in_msg_pos.data_pos += ret;
con->in_msg_pos.page_pos += ret;
if (con->in_msg_pos.page_pos == bv->bv_len) {
con->in_msg_pos.page_pos = 0;
iter_bio_next(bio_iter, bio_seg);
}
return ret;
}
#endif
/*
* read (part of) a message.
*/
static int read_partial_message(struct ceph_connection *con)
{
struct ceph_msg *m = con->in_msg;
int size;
int end;
int ret;
unsigned int front_len, middle_len, data_len;
bool do_datacrc = !con->msgr->nocrc;
int skip;
u64 seq;
u32 crc;
dout("read_partial_message con %p msg %p\n", con, m);
/* header */
size = sizeof (con->in_hdr);
end = size;
ret = read_partial(con, end, size, &con->in_hdr);
if (ret <= 0)
return ret;
crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
if (cpu_to_le32(crc) != con->in_hdr.crc) {
pr_err("read_partial_message bad hdr "
" crc %u != expected %u\n",
crc, con->in_hdr.crc);
return -EBADMSG;
}
front_len = le32_to_cpu(con->in_hdr.front_len);
if (front_len > CEPH_MSG_MAX_FRONT_LEN)
return -EIO;
middle_len = le32_to_cpu(con->in_hdr.middle_len);
if (middle_len > CEPH_MSG_MAX_DATA_LEN)
return -EIO;
data_len = le32_to_cpu(con->in_hdr.data_len);
if (data_len > CEPH_MSG_MAX_DATA_LEN)
return -EIO;
/* verify seq# */
seq = le64_to_cpu(con->in_hdr.seq);
if ((s64)seq - (s64)con->in_seq < 1) {
pr_info("skipping %s%lld %s seq %lld expected %lld\n",
ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr.in_addr),
seq, con->in_seq + 1);
con->in_base_pos = -front_len - middle_len - data_len -
sizeof(m->footer);
con->in_tag = CEPH_MSGR_TAG_READY;
return 0;
} else if ((s64)seq - (s64)con->in_seq > 1) {
pr_err("read_partial_message bad seq %lld expected %lld\n",
seq, con->in_seq + 1);
con->error_msg = "bad message sequence # for incoming message";
return -EBADMSG;
}
/* allocate message? */
if (!con->in_msg) {
dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
con->in_hdr.front_len, con->in_hdr.data_len);
skip = 0;
con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
if (skip) {
/* skip this message */
dout("alloc_msg said skip message\n");
BUG_ON(con->in_msg);
con->in_base_pos = -front_len - middle_len - data_len -
sizeof(m->footer);
con->in_tag = CEPH_MSGR_TAG_READY;
con->in_seq++;
return 0;
}
if (!con->in_msg) {
con->error_msg =
"error allocating memory for incoming message";
return -ENOMEM;
}
m = con->in_msg;
m->front.iov_len = 0; /* haven't read it yet */
if (m->middle)
m->middle->vec.iov_len = 0;
con->in_msg_pos.page = 0;
if (m->pages)
con->in_msg_pos.page_pos = m->page_alignment;
else
con->in_msg_pos.page_pos = 0;
con->in_msg_pos.data_pos = 0;
}
/* front */
ret = read_partial_message_section(con, &m->front, front_len,
&con->in_front_crc);
if (ret <= 0)
return ret;
/* middle */
if (m->middle) {
ret = read_partial_message_section(con, &m->middle->vec,
middle_len,
&con->in_middle_crc);
if (ret <= 0)
return ret;
}
#ifdef CONFIG_BLOCK
if (m->bio && !m->bio_iter)
init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
#endif
/* (page) data */
while (con->in_msg_pos.data_pos < data_len) {
if (m->pages) {
ret = read_partial_message_pages(con, m->pages,
data_len, do_datacrc);
if (ret <= 0)
return ret;
#ifdef CONFIG_BLOCK
} else if (m->bio) {
ret = read_partial_message_bio(con,
&m->bio_iter, &m->bio_seg,
data_len, do_datacrc);
if (ret <= 0)
return ret;
#endif
} else {
BUG_ON(1);
}
}
/* footer */
size = sizeof (m->footer);
end += size;
ret = read_partial(con, end, size, &m->footer);
if (ret <= 0)
return ret;
dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
m, front_len, m->footer.front_crc, middle_len,
m->footer.middle_crc, data_len, m->footer.data_crc);
/* crc ok? */
if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
pr_err("read_partial_message %p front crc %u != exp. %u\n",
m, con->in_front_crc, m->footer.front_crc);
return -EBADMSG;
}
if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
pr_err("read_partial_message %p middle crc %u != exp %u\n",
m, con->in_middle_crc, m->footer.middle_crc);
return -EBADMSG;
}
if (do_datacrc &&
(m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
con->in_data_crc, le32_to_cpu(m->footer.data_crc));
return -EBADMSG;
}
return 1; /* done! */
}
/*
* Process message. This happens in the worker thread. The callback should
* be careful not to do anything that waits on other incoming messages or it
* may deadlock.
*/
static void process_message(struct ceph_connection *con)
{
struct ceph_msg *msg;
msg = con->in_msg;
con->in_msg = NULL;
/* if first message, set peer_name */
if (con->peer_name.type == 0)
con->peer_name = msg->hdr.src;
con->in_seq++;
mutex_unlock(&con->mutex);
dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
msg, le64_to_cpu(msg->hdr.seq),
ENTITY_NAME(msg->hdr.src),
le16_to_cpu(msg->hdr.type),
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
le32_to_cpu(msg->hdr.front_len),
le32_to_cpu(msg->hdr.data_len),
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
con->ops->dispatch(con, msg);
mutex_lock(&con->mutex);
prepare_read_tag(con);
}
/*
* Write something to the socket. Called in a worker thread when the
* socket appears to be writeable and we have something ready to send.
*/
static int try_write(struct ceph_connection *con)
{
int ret = 1;
dout("try_write start %p state %lu nref %d\n", con, con->state,
atomic_read(&con->nref));
more:
dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
/* open the socket first? */
if (con->sock == NULL) {
ceph_con_out_kvec_reset(con);
prepare_write_banner(con);
ret = prepare_write_connect(con);
if (ret < 0)
goto out;
prepare_read_banner(con);
set_bit(CONNECTING, &con->state);
clear_bit(NEGOTIATING, &con->state);
BUG_ON(con->in_msg);
con->in_tag = CEPH_MSGR_TAG_READY;
dout("try_write initiating connect on %p new state %lu\n",
con, con->state);
ret = ceph_tcp_connect(con);
if (ret < 0) {
con->error_msg = "connect error";
goto out;
}
}
more_kvec:
/* kvec data queued? */
if (con->out_skip) {
ret = write_partial_skip(con);
if (ret <= 0)
goto out;
}
if (con->out_kvec_left) {
ret = write_partial_kvec(con);
if (ret <= 0)
goto out;
}
/* msg pages? */
if (con->out_msg) {
if (con->out_msg_done) {
ceph_msg_put(con->out_msg);
con->out_msg = NULL; /* we're done with this one */
goto do_next;
}
ret = write_partial_msg_pages(con);
if (ret == 1)
goto more_kvec; /* we need to send the footer, too! */
if (ret == 0)
goto out;
if (ret < 0) {
dout("try_write write_partial_msg_pages err %d\n",
ret);
goto out;
}
}
do_next:
if (!test_bit(CONNECTING, &con->state)) {
/* is anything else pending? */
if (!list_empty(&con->out_queue)) {
prepare_write_message(con);
goto more;
}
if (con->in_seq > con->in_seq_acked) {
prepare_write_ack(con);
goto more;
}
if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
prepare_write_keepalive(con);
goto more;
}
}
/* Nothing to do! */
clear_bit(WRITE_PENDING, &con->state);
dout("try_write nothing else to write.\n");
ret = 0;
out:
dout("try_write done on %p ret %d\n", con, ret);
return ret;
}
/*
* Read what we can from the socket.
*/
static int try_read(struct ceph_connection *con)
{
int ret = -1;
if (!con->sock)
return 0;
if (test_bit(STANDBY, &con->state))
return 0;
dout("try_read start on %p\n", con);
more:
dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
con->in_base_pos);
/*
* process_connect and process_message drop and re-take
* con->mutex. make sure we handle a racing close or reopen.
*/
if (test_bit(CLOSED, &con->state) ||
test_bit(OPENING, &con->state)) {
ret = -EAGAIN;
goto out;
}
if (test_bit(CONNECTING, &con->state)) {
if (!test_bit(NEGOTIATING, &con->state)) {
dout("try_read connecting\n");
ret = read_partial_banner(con);
if (ret <= 0)
goto out;
ret = process_banner(con);
if (ret < 0)
goto out;
}
ret = read_partial_connect(con);
if (ret <= 0)
goto out;
ret = process_connect(con);
if (ret < 0)
goto out;
goto more;
}
if (con->in_base_pos < 0) {
/*
* skipping + discarding content.
*
* FIXME: there must be a better way to do this!
*/
static char buf[SKIP_BUF_SIZE];
int skip = min((int) sizeof (buf), -con->in_base_pos);
dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
ret = ceph_tcp_recvmsg(con->sock, buf, skip);
if (ret <= 0)
goto out;
con->in_base_pos += ret;
if (con->in_base_pos)
goto more;
}
if (con->in_tag == CEPH_MSGR_TAG_READY) {
/*
* what's next?
*/
ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
if (ret <= 0)
goto out;
dout("try_read got tag %d\n", (int)con->in_tag);
switch (con->in_tag) {
case CEPH_MSGR_TAG_MSG:
prepare_read_message(con);
break;
case CEPH_MSGR_TAG_ACK:
prepare_read_ack(con);
break;
case CEPH_MSGR_TAG_CLOSE:
set_bit(CLOSED, &con->state); /* fixme */
goto out;
default:
goto bad_tag;
}
}
if (con->in_tag == CEPH_MSGR_TAG_MSG) {
ret = read_partial_message(con);
if (ret <= 0) {
switch (ret) {
case -EBADMSG:
con->error_msg = "bad crc";
ret = -EIO;
break;
case -EIO:
con->error_msg = "io error";
break;
}
goto out;
}
if (con->in_tag == CEPH_MSGR_TAG_READY)
goto more;
process_message(con);
goto more;
}
if (con->in_tag == CEPH_MSGR_TAG_ACK) {
ret = read_partial_ack(con);
if (ret <= 0)
goto out;
process_ack(con);
goto more;
}
out:
dout("try_read done on %p ret %d\n", con, ret);
return ret;
bad_tag:
pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
con->error_msg = "protocol error, garbage tag";
ret = -1;
goto out;
}
/*
* Atomically queue work on a connection. Bump @con reference to
* avoid races with connection teardown.
*/
static void queue_con(struct ceph_connection *con)
{
if (test_bit(DEAD, &con->state)) {
dout("queue_con %p ignoring: DEAD\n",
con);
return;
}
if (!con->ops->get(con)) {
dout("queue_con %p ref count 0\n", con);
return;
}
if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
dout("queue_con %p - already queued\n", con);
con->ops->put(con);
} else {
dout("queue_con %p\n", con);
}
}
/*
* Do some work on a connection. Drop a connection ref when we're done.
*/
static void con_work(struct work_struct *work)
{
struct ceph_connection *con = container_of(work, struct ceph_connection,
work.work);
int ret;
mutex_lock(&con->mutex);
restart:
if (test_and_clear_bit(BACKOFF, &con->state)) {
dout("con_work %p backing off\n", con);
if (queue_delayed_work(ceph_msgr_wq, &con->work,
round_jiffies_relative(con->delay))) {
dout("con_work %p backoff %lu\n", con, con->delay);
mutex_unlock(&con->mutex);
return;
} else {
con->ops->put(con);
dout("con_work %p FAILED to back off %lu\n", con,
con->delay);
}
}
if (test_bit(STANDBY, &con->state)) {
dout("con_work %p STANDBY\n", con);
goto done;
}
if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
dout("con_work CLOSED\n");
con_close_socket(con);
goto done;
}
if (test_and_clear_bit(OPENING, &con->state)) {
/* reopen w/ new peer */
dout("con_work OPENING\n");
con_close_socket(con);
}
if (test_and_clear_bit(SOCK_CLOSED, &con->state))
goto fault;
ret = try_read(con);
if (ret == -EAGAIN)
goto restart;
if (ret < 0)
goto fault;
ret = try_write(con);
if (ret == -EAGAIN)
goto restart;
if (ret < 0)
goto fault;
done:
mutex_unlock(&con->mutex);
done_unlocked:
con->ops->put(con);
return;
fault:
mutex_unlock(&con->mutex);
ceph_fault(con); /* error/fault path */
goto done_unlocked;
}
/*
* Generic error/fault handler. A retry mechanism is used with
* exponential backoff
*/
static void ceph_fault(struct ceph_connection *con)
{
pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
dout("fault %p state %lu to peer %s\n",
con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
if (test_bit(LOSSYTX, &con->state)) {
dout("fault on LOSSYTX channel\n");
goto out;
}
mutex_lock(&con->mutex);
if (test_bit(CLOSED, &con->state))
goto out_unlock;
con_close_socket(con);
if (con->in_msg) {
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
}
/* Requeue anything that hasn't been acked */
list_splice_init(&con->out_sent, &con->out_queue);
/* If there are no messages queued or keepalive pending, place
* the connection in a STANDBY state */
if (list_empty(&con->out_queue) &&
!test_bit(KEEPALIVE_PENDING, &con->state)) {
dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
clear_bit(WRITE_PENDING, &con->state);
set_bit(STANDBY, &con->state);
} else {
/* retry after a delay. */
if (con->delay == 0)
con->delay = BASE_DELAY_INTERVAL;
else if (con->delay < MAX_DELAY_INTERVAL)
con->delay *= 2;
con->ops->get(con);
if (queue_delayed_work(ceph_msgr_wq, &con->work,
round_jiffies_relative(con->delay))) {
dout("fault queued %p delay %lu\n", con, con->delay);
} else {
con->ops->put(con);
dout("fault failed to queue %p delay %lu, backoff\n",
con, con->delay);
/*
* In many cases we see a socket state change
* while con_work is running and end up
* queuing (non-delayed) work, such that we
* can't backoff with a delay. Set a flag so
* that when con_work restarts we schedule the
* delay then.
*/
set_bit(BACKOFF, &con->state);
}
}
out_unlock:
mutex_unlock(&con->mutex);
out:
/*
* in case we faulted due to authentication, invalidate our
* current tickets so that we can get new ones.
*/
if (con->auth_retry && con->ops->invalidate_authorizer) {
dout("calling invalidate_authorizer()\n");
con->ops->invalidate_authorizer(con);
}
if (con->ops->fault)
con->ops->fault(con);
}
/*
* create a new messenger instance
*/
struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
u32 supported_features,
u32 required_features)
{
struct ceph_messenger *msgr;
msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
if (msgr == NULL)
return ERR_PTR(-ENOMEM);
msgr->supported_features = supported_features;
msgr->required_features = required_features;
spin_lock_init(&msgr->global_seq_lock);
if (myaddr)
msgr->inst.addr = *myaddr;
/* select a random nonce */
msgr->inst.addr.type = 0;
get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
encode_my_addr(msgr);
dout("messenger_create %p\n", msgr);
return msgr;
}
EXPORT_SYMBOL(ceph_messenger_create);
void ceph_messenger_destroy(struct ceph_messenger *msgr)
{
dout("destroy %p\n", msgr);
kfree(msgr);
dout("destroyed messenger %p\n", msgr);
}
EXPORT_SYMBOL(ceph_messenger_destroy);
static void clear_standby(struct ceph_connection *con)
{
/* come back from STANDBY? */
if (test_and_clear_bit(STANDBY, &con->state)) {
mutex_lock(&con->mutex);
dout("clear_standby %p and ++connect_seq\n", con);
con->connect_seq++;
WARN_ON(test_bit(WRITE_PENDING, &con->state));
WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
mutex_unlock(&con->mutex);
}
}
/*
* Queue up an outgoing message on the given connection.
*/
void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
{
if (test_bit(CLOSED, &con->state)) {
dout("con_send %p closed, dropping %p\n", con, msg);
ceph_msg_put(msg);
return;
}
/* set src+dst */
msg->hdr.src = con->msgr->inst.name;
BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
msg->needs_out_seq = true;
/* queue */
mutex_lock(&con->mutex);
BUG_ON(!list_empty(&msg->list_head));
list_add_tail(&msg->list_head, &con->out_queue);
dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
le32_to_cpu(msg->hdr.front_len),
le32_to_cpu(msg->hdr.middle_len),
le32_to_cpu(msg->hdr.data_len));
mutex_unlock(&con->mutex);
/* if there wasn't anything waiting to send before, queue
* new work */
clear_standby(con);
if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
queue_con(con);
}
EXPORT_SYMBOL(ceph_con_send);
/*
* Revoke a message that was previously queued for send
*/
void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
{
mutex_lock(&con->mutex);
if (!list_empty(&msg->list_head)) {
dout("con_revoke %p msg %p - was on queue\n", con, msg);
list_del_init(&msg->list_head);
ceph_msg_put(msg);
msg->hdr.seq = 0;
}
if (con->out_msg == msg) {
dout("con_revoke %p msg %p - was sending\n", con, msg);
con->out_msg = NULL;
if (con->out_kvec_is_msg) {
con->out_skip = con->out_kvec_bytes;
con->out_kvec_is_msg = false;
}
ceph_msg_put(msg);
msg->hdr.seq = 0;
}
mutex_unlock(&con->mutex);
}
/*
* Revoke a message that we may be reading data into
*/
void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
{
mutex_lock(&con->mutex);
if (con->in_msg && con->in_msg == msg) {
unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
/* skip rest of message */
dout("con_revoke_pages %p msg %p revoked\n", con, msg);
con->in_base_pos = con->in_base_pos -
sizeof(struct ceph_msg_header) -
front_len -
middle_len -
data_len -
sizeof(struct ceph_msg_footer);
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
con->in_tag = CEPH_MSGR_TAG_READY;
con->in_seq++;
} else {
dout("con_revoke_pages %p msg %p pages %p no-op\n",
con, con->in_msg, msg);
}
mutex_unlock(&con->mutex);
}
/*
* Queue a keepalive byte to ensure the tcp connection is alive.
*/
void ceph_con_keepalive(struct ceph_connection *con)
{
dout("con_keepalive %p\n", con);
clear_standby(con);
if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
test_and_set_bit(WRITE_PENDING, &con->state) == 0)
queue_con(con);
}
EXPORT_SYMBOL(ceph_con_keepalive);
/*
* construct a new message with given type, size
* the new msg has a ref count of 1.
*/
struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
bool can_fail)
{
struct ceph_msg *m;
m = kmalloc(sizeof(*m), flags);
if (m == NULL)
goto out;
kref_init(&m->kref);
INIT_LIST_HEAD(&m->list_head);
m->hdr.tid = 0;
m->hdr.type = cpu_to_le16(type);
m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
m->hdr.version = 0;
m->hdr.front_len = cpu_to_le32(front_len);
m->hdr.middle_len = 0;
m->hdr.data_len = 0;
m->hdr.data_off = 0;
m->hdr.reserved = 0;
m->footer.front_crc = 0;
m->footer.middle_crc = 0;
m->footer.data_crc = 0;
m->footer.flags = 0;
m->front_max = front_len;
m->front_is_vmalloc = false;
m->more_to_follow = false;
m->ack_stamp = 0;
m->pool = NULL;
/* middle */
m->middle = NULL;
/* data */
m->nr_pages = 0;
m->page_alignment = 0;
m->pages = NULL;
m->pagelist = NULL;
m->bio = NULL;
m->bio_iter = NULL;
m->bio_seg = 0;
m->trail = NULL;
/* front */
if (front_len) {
if (front_len > PAGE_CACHE_SIZE) {
m->front.iov_base = __vmalloc(front_len, flags,
PAGE_KERNEL);
m->front_is_vmalloc = true;
} else {
m->front.iov_base = kmalloc(front_len, flags);
}
if (m->front.iov_base == NULL) {
dout("ceph_msg_new can't allocate %d bytes\n",
front_len);
goto out2;
}
} else {
m->front.iov_base = NULL;
}
m->front.iov_len = front_len;
dout("ceph_msg_new %p front %d\n", m, front_len);
return m;
out2:
ceph_msg_put(m);
out:
if (!can_fail) {
pr_err("msg_new can't create type %d front %d\n", type,
front_len);
WARN_ON(1);
} else {
dout("msg_new can't create type %d front %d\n", type,
front_len);
}
return NULL;
}
EXPORT_SYMBOL(ceph_msg_new);
/*
* Allocate "middle" portion of a message, if it is needed and wasn't
* allocated by alloc_msg. This allows us to read a small fixed-size
* per-type header in the front and then gracefully fail (i.e.,
* propagate the error to the caller based on info in the front) when
* the middle is too large.
*/
static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
{
int type = le16_to_cpu(msg->hdr.type);
int middle_len = le32_to_cpu(msg->hdr.middle_len);
dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
ceph_msg_type_name(type), middle_len);
BUG_ON(!middle_len);
BUG_ON(msg->middle);
msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
if (!msg->middle)
return -ENOMEM;
return 0;
}
/*
* Generic message allocator, for incoming messages.
*/
static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
struct ceph_msg_header *hdr,
int *skip)
{
int type = le16_to_cpu(hdr->type);
int front_len = le32_to_cpu(hdr->front_len);
int middle_len = le32_to_cpu(hdr->middle_len);
struct ceph_msg *msg = NULL;
int ret;
if (con->ops->alloc_msg) {
mutex_unlock(&con->mutex);
msg = con->ops->alloc_msg(con, hdr, skip);
mutex_lock(&con->mutex);
if (!msg || *skip)
return NULL;
}
if (!msg) {
*skip = 0;
msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
if (!msg) {
pr_err("unable to allocate msg type %d len %d\n",
type, front_len);
return NULL;
}
msg->page_alignment = le16_to_cpu(hdr->data_off);
}
memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
if (middle_len && !msg->middle) {
ret = ceph_alloc_middle(con, msg);
if (ret < 0) {
ceph_msg_put(msg);
return NULL;
}
}
return msg;
}
/*
* Free a generically kmalloc'd message.
*/
void ceph_msg_kfree(struct ceph_msg *m)
{
dout("msg_kfree %p\n", m);
if (m->front_is_vmalloc)
vfree(m->front.iov_base);
else
kfree(m->front.iov_base);
kfree(m);
}
/*
* Drop a msg ref. Destroy as needed.
*/
void ceph_msg_last_put(struct kref *kref)
{
struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
dout("ceph_msg_put last one on %p\n", m);
WARN_ON(!list_empty(&m->list_head));
/* drop middle, data, if any */
if (m->middle) {
ceph_buffer_put(m->middle);
m->middle = NULL;
}
m->nr_pages = 0;
m->pages = NULL;
if (m->pagelist) {
ceph_pagelist_release(m->pagelist);
kfree(m->pagelist);
m->pagelist = NULL;
}
m->trail = NULL;
if (m->pool)
ceph_msgpool_put(m->pool, m);
else
ceph_msg_kfree(m);
}
EXPORT_SYMBOL(ceph_msg_last_put);
void ceph_msg_dump(struct ceph_msg *msg)
{
pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
msg->front_max, msg->nr_pages);
print_hex_dump(KERN_DEBUG, "header: ",
DUMP_PREFIX_OFFSET, 16, 1,
&msg->hdr, sizeof(msg->hdr), true);
print_hex_dump(KERN_DEBUG, " front: ",
DUMP_PREFIX_OFFSET, 16, 1,
msg->front.iov_base, msg->front.iov_len, true);
if (msg->middle)
print_hex_dump(KERN_DEBUG, "middle: ",
DUMP_PREFIX_OFFSET, 16, 1,
msg->middle->vec.iov_base,
msg->middle->vec.iov_len, true);
print_hex_dump(KERN_DEBUG, "footer: ",
DUMP_PREFIX_OFFSET, 16, 1,
&msg->footer, sizeof(msg->footer), true);
}
EXPORT_SYMBOL(ceph_msg_dump);