WSL2-Linux-Kernel/arch/cris/arch-v32/kernel/process.c

185 строки
4.6 KiB
C

/*
* Copyright (C) 2000-2003 Axis Communications AB
*
* Authors: Bjorn Wesen (bjornw@axis.com)
* Mikael Starvik (starvik@axis.com)
* Tobias Anderberg (tobiasa@axis.com), CRISv32 port.
*
* This file handles the architecture-dependent parts of process handling..
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/reg_map.h>
#include <hwregs/timer_defs.h>
#include <hwregs/intr_vect_defs.h>
#include <linux/ptrace.h>
extern void stop_watchdog(void);
/* We use this if we don't have any better idle routine. */
void default_idle(void)
{
/* Halt until exception. */
__asm__ volatile("ei \n\t"
"halt ");
}
/*
* Free current thread data structures etc..
*/
extern void deconfigure_bp(long pid);
void exit_thread(void)
{
deconfigure_bp(current->pid);
}
/*
* If the watchdog is enabled, disable interrupts and enter an infinite loop.
* The watchdog will reset the CPU after 0.1s. If the watchdog isn't enabled
* then enable it and wait.
*/
extern void arch_enable_nmi(void);
void
hard_reset_now(void)
{
/*
* Don't declare this variable elsewhere. We don't want any other
* code to know about it than the watchdog handler in entry.S and
* this code, implementing hard reset through the watchdog.
*/
#if defined(CONFIG_ETRAX_WATCHDOG)
extern int cause_of_death;
#endif
printk("*** HARD RESET ***\n");
local_irq_disable();
#if defined(CONFIG_ETRAX_WATCHDOG)
cause_of_death = 0xbedead;
#else
{
reg_timer_rw_wd_ctrl wd_ctrl = {0};
stop_watchdog();
wd_ctrl.key = 16; /* Arbitrary key. */
wd_ctrl.cnt = 1; /* Minimum time. */
wd_ctrl.cmd = regk_timer_start;
arch_enable_nmi();
REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
}
#endif
while (1)
; /* Wait for reset. */
}
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *t)
{
return task_pt_regs(t)->erp;
}
/*
* Setup the child's kernel stack with a pt_regs and call switch_stack() on it.
* It will be unnested during _resume and _ret_from_sys_call when the new thread
* is scheduled.
*
* Also setup the thread switching structure which is used to keep
* thread-specific data during _resumes.
*/
extern asmlinkage void ret_from_fork(void);
extern asmlinkage void ret_from_kernel_thread(void);
int
copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long arg, struct task_struct *p)
{
struct pt_regs *childregs = task_pt_regs(p);
struct switch_stack *swstack = ((struct switch_stack *) childregs) - 1;
/*
* Put the pt_regs structure at the end of the new kernel stack page and
* fix it up. Note: the task_struct doubles as the kernel stack for the
* task.
*/
if (unlikely(p->flags & PF_KTHREAD)) {
memset(swstack, 0,
sizeof(struct switch_stack) + sizeof(struct pt_regs));
swstack->r1 = usp;
swstack->r2 = arg;
childregs->ccs = 1 << (I_CCS_BITNR + CCS_SHIFT);
swstack->return_ip = (unsigned long) ret_from_kernel_thread;
p->thread.ksp = (unsigned long) swstack;
p->thread.usp = 0;
return 0;
}
*childregs = *current_pt_regs(); /* Struct copy of pt_regs. */
childregs->r10 = 0; /* Child returns 0 after a fork/clone. */
/* Set a new TLS ?
* The TLS is in $mof because it is the 5th argument to sys_clone.
*/
if (p->mm && (clone_flags & CLONE_SETTLS)) {
task_thread_info(p)->tls = childregs->mof;
}
/* Put the switch stack right below the pt_regs. */
/* Parameter to ret_from_sys_call. 0 is don't restart the syscall. */
swstack->r9 = 0;
/*
* We want to return into ret_from_sys_call after the _resume.
* ret_from_fork will call ret_from_sys_call.
*/
swstack->return_ip = (unsigned long) ret_from_fork;
/* Fix the user-mode and kernel-mode stackpointer. */
p->thread.usp = usp ?: rdusp();
p->thread.ksp = (unsigned long) swstack;
return 0;
}
unsigned long
get_wchan(struct task_struct *p)
{
/* TODO */
return 0;
}
#undef last_sched
#undef first_sched
void show_regs(struct pt_regs * regs)
{
unsigned long usp = rdusp();
show_regs_print_info(KERN_DEFAULT);
printk("ERP: %08lx SRP: %08lx CCS: %08lx USP: %08lx MOF: %08lx\n",
regs->erp, regs->srp, regs->ccs, usp, regs->mof);
printk(" r0: %08lx r1: %08lx r2: %08lx r3: %08lx\n",
regs->r0, regs->r1, regs->r2, regs->r3);
printk(" r4: %08lx r5: %08lx r6: %08lx r7: %08lx\n",
regs->r4, regs->r5, regs->r6, regs->r7);
printk(" r8: %08lx r9: %08lx r10: %08lx r11: %08lx\n",
regs->r8, regs->r9, regs->r10, regs->r11);
printk("r12: %08lx r13: %08lx oR10: %08lx\n",
regs->r12, regs->r13, regs->orig_r10);
}