2079 строки
55 KiB
C
2079 строки
55 KiB
C
/*
|
|
* Copyright (c) 2006 ARM Ltd.
|
|
* Copyright (c) 2010 ST-Ericsson SA
|
|
*
|
|
* Author: Peter Pearse <peter.pearse@arm.com>
|
|
* Author: Linus Walleij <linus.walleij@stericsson.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59
|
|
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The full GNU General Public License is in this distribution in the file
|
|
* called COPYING.
|
|
*
|
|
* Documentation: ARM DDI 0196G == PL080
|
|
* Documentation: ARM DDI 0218E == PL081
|
|
*
|
|
* PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
|
|
* channel.
|
|
*
|
|
* The PL080 has 8 channels available for simultaneous use, and the PL081
|
|
* has only two channels. So on these DMA controllers the number of channels
|
|
* and the number of incoming DMA signals are two totally different things.
|
|
* It is usually not possible to theoretically handle all physical signals,
|
|
* so a multiplexing scheme with possible denial of use is necessary.
|
|
*
|
|
* The PL080 has a dual bus master, PL081 has a single master.
|
|
*
|
|
* Memory to peripheral transfer may be visualized as
|
|
* Get data from memory to DMAC
|
|
* Until no data left
|
|
* On burst request from peripheral
|
|
* Destination burst from DMAC to peripheral
|
|
* Clear burst request
|
|
* Raise terminal count interrupt
|
|
*
|
|
* For peripherals with a FIFO:
|
|
* Source burst size == half the depth of the peripheral FIFO
|
|
* Destination burst size == the depth of the peripheral FIFO
|
|
*
|
|
* (Bursts are irrelevant for mem to mem transfers - there are no burst
|
|
* signals, the DMA controller will simply facilitate its AHB master.)
|
|
*
|
|
* ASSUMES default (little) endianness for DMA transfers
|
|
*
|
|
* The PL08x has two flow control settings:
|
|
* - DMAC flow control: the transfer size defines the number of transfers
|
|
* which occur for the current LLI entry, and the DMAC raises TC at the
|
|
* end of every LLI entry. Observed behaviour shows the DMAC listening
|
|
* to both the BREQ and SREQ signals (contrary to documented),
|
|
* transferring data if either is active. The LBREQ and LSREQ signals
|
|
* are ignored.
|
|
*
|
|
* - Peripheral flow control: the transfer size is ignored (and should be
|
|
* zero). The data is transferred from the current LLI entry, until
|
|
* after the final transfer signalled by LBREQ or LSREQ. The DMAC
|
|
* will then move to the next LLI entry.
|
|
*
|
|
* Only the former works sanely with scatter lists, so we only implement
|
|
* the DMAC flow control method. However, peripherals which use the LBREQ
|
|
* and LSREQ signals (eg, MMCI) are unable to use this mode, which through
|
|
* these hardware restrictions prevents them from using scatter DMA.
|
|
*
|
|
* Global TODO:
|
|
* - Break out common code from arch/arm/mach-s3c64xx and share
|
|
*/
|
|
#include <linux/device.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/amba/pl08x.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/seq_file.h>
|
|
|
|
#include <asm/hardware/pl080.h>
|
|
|
|
#define DRIVER_NAME "pl08xdmac"
|
|
|
|
/**
|
|
* struct vendor_data - vendor-specific config parameters for PL08x derivatives
|
|
* @channels: the number of channels available in this variant
|
|
* @dualmaster: whether this version supports dual AHB masters or not.
|
|
*/
|
|
struct vendor_data {
|
|
u8 channels;
|
|
bool dualmaster;
|
|
};
|
|
|
|
/*
|
|
* PL08X private data structures
|
|
* An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
|
|
* start & end do not - their bus bit info is in cctl. Also note that these
|
|
* are fixed 32-bit quantities.
|
|
*/
|
|
struct pl08x_lli {
|
|
u32 src;
|
|
u32 dst;
|
|
u32 lli;
|
|
u32 cctl;
|
|
};
|
|
|
|
/**
|
|
* struct pl08x_driver_data - the local state holder for the PL08x
|
|
* @slave: slave engine for this instance
|
|
* @memcpy: memcpy engine for this instance
|
|
* @base: virtual memory base (remapped) for the PL08x
|
|
* @adev: the corresponding AMBA (PrimeCell) bus entry
|
|
* @vd: vendor data for this PL08x variant
|
|
* @pd: platform data passed in from the platform/machine
|
|
* @phy_chans: array of data for the physical channels
|
|
* @pool: a pool for the LLI descriptors
|
|
* @pool_ctr: counter of LLIs in the pool
|
|
* @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
|
|
* @mem_buses: set to indicate memory transfers on AHB2.
|
|
* @lock: a spinlock for this struct
|
|
*/
|
|
struct pl08x_driver_data {
|
|
struct dma_device slave;
|
|
struct dma_device memcpy;
|
|
void __iomem *base;
|
|
struct amba_device *adev;
|
|
const struct vendor_data *vd;
|
|
struct pl08x_platform_data *pd;
|
|
struct pl08x_phy_chan *phy_chans;
|
|
struct dma_pool *pool;
|
|
int pool_ctr;
|
|
u8 lli_buses;
|
|
u8 mem_buses;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
/*
|
|
* PL08X specific defines
|
|
*/
|
|
|
|
/*
|
|
* Memory boundaries: the manual for PL08x says that the controller
|
|
* cannot read past a 1KiB boundary, so these defines are used to
|
|
* create transfer LLIs that do not cross such boundaries.
|
|
*/
|
|
#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
|
|
#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
|
|
|
|
/* Minimum period between work queue runs */
|
|
#define PL08X_WQ_PERIODMIN 20
|
|
|
|
/* Size (bytes) of each LLI buffer allocated for one transfer */
|
|
# define PL08X_LLI_TSFR_SIZE 0x2000
|
|
|
|
/* Maximum times we call dma_pool_alloc on this pool without freeing */
|
|
#define PL08X_MAX_ALLOCS 0x40
|
|
#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
|
|
#define PL08X_ALIGN 8
|
|
|
|
static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
|
|
{
|
|
return container_of(chan, struct pl08x_dma_chan, chan);
|
|
}
|
|
|
|
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
return container_of(tx, struct pl08x_txd, tx);
|
|
}
|
|
|
|
/*
|
|
* Physical channel handling
|
|
*/
|
|
|
|
/* Whether a certain channel is busy or not */
|
|
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = readl(ch->base + PL080_CH_CONFIG);
|
|
return val & PL080_CONFIG_ACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Set the initial DMA register values i.e. those for the first LLI
|
|
* The next LLI pointer and the configuration interrupt bit have
|
|
* been set when the LLIs were constructed. Poke them into the hardware
|
|
* and start the transfer.
|
|
*/
|
|
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
|
|
struct pl08x_txd *txd)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_phy_chan *phychan = plchan->phychan;
|
|
struct pl08x_lli *lli = &txd->llis_va[0];
|
|
u32 val;
|
|
|
|
plchan->at = txd;
|
|
|
|
/* Wait for channel inactive */
|
|
while (pl08x_phy_channel_busy(phychan))
|
|
cpu_relax();
|
|
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
|
|
"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
|
|
phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
|
|
txd->ccfg);
|
|
|
|
writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
|
|
writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
|
|
writel(lli->lli, phychan->base + PL080_CH_LLI);
|
|
writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
|
|
writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
|
|
|
|
/* Enable the DMA channel */
|
|
/* Do not access config register until channel shows as disabled */
|
|
while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
|
|
cpu_relax();
|
|
|
|
/* Do not access config register until channel shows as inactive */
|
|
val = readl(phychan->base + PL080_CH_CONFIG);
|
|
while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
|
|
val = readl(phychan->base + PL080_CH_CONFIG);
|
|
|
|
writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
|
|
}
|
|
|
|
/*
|
|
* Pause the channel by setting the HALT bit.
|
|
*
|
|
* For M->P transfers, pause the DMAC first and then stop the peripheral -
|
|
* the FIFO can only drain if the peripheral is still requesting data.
|
|
* (note: this can still timeout if the DMAC FIFO never drains of data.)
|
|
*
|
|
* For P->M transfers, disable the peripheral first to stop it filling
|
|
* the DMAC FIFO, and then pause the DMAC.
|
|
*/
|
|
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
|
|
{
|
|
u32 val;
|
|
int timeout;
|
|
|
|
/* Set the HALT bit and wait for the FIFO to drain */
|
|
val = readl(ch->base + PL080_CH_CONFIG);
|
|
val |= PL080_CONFIG_HALT;
|
|
writel(val, ch->base + PL080_CH_CONFIG);
|
|
|
|
/* Wait for channel inactive */
|
|
for (timeout = 1000; timeout; timeout--) {
|
|
if (!pl08x_phy_channel_busy(ch))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
if (pl08x_phy_channel_busy(ch))
|
|
pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
|
|
}
|
|
|
|
static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
|
|
{
|
|
u32 val;
|
|
|
|
/* Clear the HALT bit */
|
|
val = readl(ch->base + PL080_CH_CONFIG);
|
|
val &= ~PL080_CONFIG_HALT;
|
|
writel(val, ch->base + PL080_CH_CONFIG);
|
|
}
|
|
|
|
|
|
/*
|
|
* pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
|
|
* clears any pending interrupt status. This should not be used for
|
|
* an on-going transfer, but as a method of shutting down a channel
|
|
* (eg, when it's no longer used) or terminating a transfer.
|
|
*/
|
|
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_phy_chan *ch)
|
|
{
|
|
u32 val = readl(ch->base + PL080_CH_CONFIG);
|
|
|
|
val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
|
|
PL080_CONFIG_TC_IRQ_MASK);
|
|
|
|
writel(val, ch->base + PL080_CH_CONFIG);
|
|
|
|
writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
|
|
writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
|
|
}
|
|
|
|
static inline u32 get_bytes_in_cctl(u32 cctl)
|
|
{
|
|
/* The source width defines the number of bytes */
|
|
u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
|
|
|
|
switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
|
|
case PL080_WIDTH_8BIT:
|
|
break;
|
|
case PL080_WIDTH_16BIT:
|
|
bytes *= 2;
|
|
break;
|
|
case PL080_WIDTH_32BIT:
|
|
bytes *= 4;
|
|
break;
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
/* The channel should be paused when calling this */
|
|
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_phy_chan *ch;
|
|
struct pl08x_txd *txd;
|
|
unsigned long flags;
|
|
size_t bytes = 0;
|
|
|
|
spin_lock_irqsave(&plchan->lock, flags);
|
|
ch = plchan->phychan;
|
|
txd = plchan->at;
|
|
|
|
/*
|
|
* Follow the LLIs to get the number of remaining
|
|
* bytes in the currently active transaction.
|
|
*/
|
|
if (ch && txd) {
|
|
u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
|
|
|
|
/* First get the remaining bytes in the active transfer */
|
|
bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
|
|
|
|
if (clli) {
|
|
struct pl08x_lli *llis_va = txd->llis_va;
|
|
dma_addr_t llis_bus = txd->llis_bus;
|
|
int index;
|
|
|
|
BUG_ON(clli < llis_bus || clli >= llis_bus +
|
|
sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
|
|
|
|
/*
|
|
* Locate the next LLI - as this is an array,
|
|
* it's simple maths to find.
|
|
*/
|
|
index = (clli - llis_bus) / sizeof(struct pl08x_lli);
|
|
|
|
for (; index < MAX_NUM_TSFR_LLIS; index++) {
|
|
bytes += get_bytes_in_cctl(llis_va[index].cctl);
|
|
|
|
/*
|
|
* A LLI pointer of 0 terminates the LLI list
|
|
*/
|
|
if (!llis_va[index].lli)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Sum up all queued transactions */
|
|
if (!list_empty(&plchan->pend_list)) {
|
|
struct pl08x_txd *txdi;
|
|
list_for_each_entry(txdi, &plchan->pend_list, node) {
|
|
bytes += txdi->len;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
/*
|
|
* Allocate a physical channel for a virtual channel
|
|
*
|
|
* Try to locate a physical channel to be used for this transfer. If all
|
|
* are taken return NULL and the requester will have to cope by using
|
|
* some fallback PIO mode or retrying later.
|
|
*/
|
|
static struct pl08x_phy_chan *
|
|
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_dma_chan *virt_chan)
|
|
{
|
|
struct pl08x_phy_chan *ch = NULL;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
for (i = 0; i < pl08x->vd->channels; i++) {
|
|
ch = &pl08x->phy_chans[i];
|
|
|
|
spin_lock_irqsave(&ch->lock, flags);
|
|
|
|
if (!ch->serving) {
|
|
ch->serving = virt_chan;
|
|
ch->signal = -1;
|
|
spin_unlock_irqrestore(&ch->lock, flags);
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ch->lock, flags);
|
|
}
|
|
|
|
if (i == pl08x->vd->channels) {
|
|
/* No physical channel available, cope with it */
|
|
return NULL;
|
|
}
|
|
|
|
return ch;
|
|
}
|
|
|
|
static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_phy_chan *ch)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ch->lock, flags);
|
|
|
|
/* Stop the channel and clear its interrupts */
|
|
pl08x_terminate_phy_chan(pl08x, ch);
|
|
|
|
/* Mark it as free */
|
|
ch->serving = NULL;
|
|
spin_unlock_irqrestore(&ch->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* LLI handling
|
|
*/
|
|
|
|
static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
|
|
{
|
|
switch (coded) {
|
|
case PL080_WIDTH_8BIT:
|
|
return 1;
|
|
case PL080_WIDTH_16BIT:
|
|
return 2;
|
|
case PL080_WIDTH_32BIT:
|
|
return 4;
|
|
default:
|
|
break;
|
|
}
|
|
BUG();
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
|
|
size_t tsize)
|
|
{
|
|
u32 retbits = cctl;
|
|
|
|
/* Remove all src, dst and transfer size bits */
|
|
retbits &= ~PL080_CONTROL_DWIDTH_MASK;
|
|
retbits &= ~PL080_CONTROL_SWIDTH_MASK;
|
|
retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
|
|
|
|
/* Then set the bits according to the parameters */
|
|
switch (srcwidth) {
|
|
case 1:
|
|
retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
|
|
break;
|
|
case 2:
|
|
retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
|
|
break;
|
|
case 4:
|
|
retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
switch (dstwidth) {
|
|
case 1:
|
|
retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
case 2:
|
|
retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
case 4:
|
|
retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
|
|
return retbits;
|
|
}
|
|
|
|
struct pl08x_lli_build_data {
|
|
struct pl08x_txd *txd;
|
|
struct pl08x_driver_data *pl08x;
|
|
struct pl08x_bus_data srcbus;
|
|
struct pl08x_bus_data dstbus;
|
|
size_t remainder;
|
|
};
|
|
|
|
/*
|
|
* Autoselect a master bus to use for the transfer this prefers the
|
|
* destination bus if both available if fixed address on one bus the
|
|
* other will be chosen
|
|
*/
|
|
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
|
|
struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
|
|
{
|
|
if (!(cctl & PL080_CONTROL_DST_INCR)) {
|
|
*mbus = &bd->srcbus;
|
|
*sbus = &bd->dstbus;
|
|
} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
|
|
*mbus = &bd->dstbus;
|
|
*sbus = &bd->srcbus;
|
|
} else {
|
|
if (bd->dstbus.buswidth == 4) {
|
|
*mbus = &bd->dstbus;
|
|
*sbus = &bd->srcbus;
|
|
} else if (bd->srcbus.buswidth == 4) {
|
|
*mbus = &bd->srcbus;
|
|
*sbus = &bd->dstbus;
|
|
} else if (bd->dstbus.buswidth == 2) {
|
|
*mbus = &bd->dstbus;
|
|
*sbus = &bd->srcbus;
|
|
} else if (bd->srcbus.buswidth == 2) {
|
|
*mbus = &bd->srcbus;
|
|
*sbus = &bd->dstbus;
|
|
} else {
|
|
/* bd->srcbus.buswidth == 1 */
|
|
*mbus = &bd->dstbus;
|
|
*sbus = &bd->srcbus;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fills in one LLI for a certain transfer descriptor and advance the counter
|
|
*/
|
|
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
|
|
int num_llis, int len, u32 cctl)
|
|
{
|
|
struct pl08x_lli *llis_va = bd->txd->llis_va;
|
|
dma_addr_t llis_bus = bd->txd->llis_bus;
|
|
|
|
BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
|
|
|
|
llis_va[num_llis].cctl = cctl;
|
|
llis_va[num_llis].src = bd->srcbus.addr;
|
|
llis_va[num_llis].dst = bd->dstbus.addr;
|
|
llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
|
|
if (bd->pl08x->lli_buses & PL08X_AHB2)
|
|
llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
|
|
|
|
if (cctl & PL080_CONTROL_SRC_INCR)
|
|
bd->srcbus.addr += len;
|
|
if (cctl & PL080_CONTROL_DST_INCR)
|
|
bd->dstbus.addr += len;
|
|
|
|
BUG_ON(bd->remainder < len);
|
|
|
|
bd->remainder -= len;
|
|
}
|
|
|
|
/*
|
|
* Return number of bytes to fill to boundary, or len.
|
|
* This calculation works for any value of addr.
|
|
*/
|
|
static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
|
|
{
|
|
size_t boundary_len = PL08X_BOUNDARY_SIZE -
|
|
(addr & (PL08X_BOUNDARY_SIZE - 1));
|
|
|
|
return min(boundary_len, len);
|
|
}
|
|
|
|
/*
|
|
* This fills in the table of LLIs for the transfer descriptor
|
|
* Note that we assume we never have to change the burst sizes
|
|
* Return 0 for error
|
|
*/
|
|
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_txd *txd)
|
|
{
|
|
struct pl08x_bus_data *mbus, *sbus;
|
|
struct pl08x_lli_build_data bd;
|
|
int num_llis = 0;
|
|
u32 cctl;
|
|
size_t max_bytes_per_lli;
|
|
size_t total_bytes = 0;
|
|
struct pl08x_lli *llis_va;
|
|
|
|
txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
|
|
&txd->llis_bus);
|
|
if (!txd->llis_va) {
|
|
dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
pl08x->pool_ctr++;
|
|
|
|
/* Get the default CCTL */
|
|
cctl = txd->cctl;
|
|
|
|
bd.txd = txd;
|
|
bd.pl08x = pl08x;
|
|
bd.srcbus.addr = txd->src_addr;
|
|
bd.dstbus.addr = txd->dst_addr;
|
|
|
|
/* Find maximum width of the source bus */
|
|
bd.srcbus.maxwidth =
|
|
pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
|
|
PL080_CONTROL_SWIDTH_SHIFT);
|
|
|
|
/* Find maximum width of the destination bus */
|
|
bd.dstbus.maxwidth =
|
|
pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
|
|
PL080_CONTROL_DWIDTH_SHIFT);
|
|
|
|
/* Set up the bus widths to the maximum */
|
|
bd.srcbus.buswidth = bd.srcbus.maxwidth;
|
|
bd.dstbus.buswidth = bd.dstbus.maxwidth;
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
|
|
__func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
|
|
|
|
|
|
/*
|
|
* Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
|
|
*/
|
|
max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
|
|
PL080_CONTROL_TRANSFER_SIZE_MASK;
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s max bytes per lli = %zu\n",
|
|
__func__, max_bytes_per_lli);
|
|
|
|
/* We need to count this down to zero */
|
|
bd.remainder = txd->len;
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s remainder = %zu\n",
|
|
__func__, bd.remainder);
|
|
|
|
/*
|
|
* Choose bus to align to
|
|
* - prefers destination bus if both available
|
|
* - if fixed address on one bus chooses other
|
|
*/
|
|
pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
|
|
|
|
if (txd->len < mbus->buswidth) {
|
|
/* Less than a bus width available - send as single bytes */
|
|
while (bd.remainder) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s single byte LLIs for a transfer of "
|
|
"less than a bus width (remain 0x%08x)\n",
|
|
__func__, bd.remainder);
|
|
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
|
|
pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
|
|
total_bytes++;
|
|
}
|
|
} else {
|
|
/* Make one byte LLIs until master bus is aligned */
|
|
while ((mbus->addr) % (mbus->buswidth)) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s adjustment lli for less than bus width "
|
|
"(remain 0x%08x)\n",
|
|
__func__, bd.remainder);
|
|
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
|
|
pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
|
|
total_bytes++;
|
|
}
|
|
|
|
/*
|
|
* Master now aligned
|
|
* - if slave is not then we must set its width down
|
|
*/
|
|
if (sbus->addr % sbus->buswidth) {
|
|
dev_dbg(&pl08x->adev->dev,
|
|
"%s set down bus width to one byte\n",
|
|
__func__);
|
|
|
|
sbus->buswidth = 1;
|
|
}
|
|
|
|
/*
|
|
* Make largest possible LLIs until less than one bus
|
|
* width left
|
|
*/
|
|
while (bd.remainder > (mbus->buswidth - 1)) {
|
|
size_t lli_len, target_len, tsize, odd_bytes;
|
|
|
|
/*
|
|
* If enough left try to send max possible,
|
|
* otherwise try to send the remainder
|
|
*/
|
|
target_len = min(bd.remainder, max_bytes_per_lli);
|
|
|
|
/*
|
|
* Set bus lengths for incrementing buses to the
|
|
* number of bytes which fill to next memory boundary,
|
|
* limiting on the target length calculated above.
|
|
*/
|
|
if (cctl & PL080_CONTROL_SRC_INCR)
|
|
bd.srcbus.fill_bytes =
|
|
pl08x_pre_boundary(bd.srcbus.addr,
|
|
target_len);
|
|
else
|
|
bd.srcbus.fill_bytes = target_len;
|
|
|
|
if (cctl & PL080_CONTROL_DST_INCR)
|
|
bd.dstbus.fill_bytes =
|
|
pl08x_pre_boundary(bd.dstbus.addr,
|
|
target_len);
|
|
else
|
|
bd.dstbus.fill_bytes = target_len;
|
|
|
|
/* Find the nearest */
|
|
lli_len = min(bd.srcbus.fill_bytes,
|
|
bd.dstbus.fill_bytes);
|
|
|
|
BUG_ON(lli_len > bd.remainder);
|
|
|
|
if (lli_len <= 0) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s lli_len is %zu, <= 0\n",
|
|
__func__, lli_len);
|
|
return 0;
|
|
}
|
|
|
|
if (lli_len == target_len) {
|
|
/*
|
|
* Can send what we wanted.
|
|
* Maintain alignment
|
|
*/
|
|
lli_len = (lli_len/mbus->buswidth) *
|
|
mbus->buswidth;
|
|
odd_bytes = 0;
|
|
} else {
|
|
/*
|
|
* So now we know how many bytes to transfer
|
|
* to get to the nearest boundary. The next
|
|
* LLI will past the boundary. However, we
|
|
* may be working to a boundary on the slave
|
|
* bus. We need to ensure the master stays
|
|
* aligned, and that we are working in
|
|
* multiples of the bus widths.
|
|
*/
|
|
odd_bytes = lli_len % mbus->buswidth;
|
|
lli_len -= odd_bytes;
|
|
|
|
}
|
|
|
|
if (lli_len) {
|
|
/*
|
|
* Check against minimum bus alignment:
|
|
* Calculate actual transfer size in relation
|
|
* to bus width an get a maximum remainder of
|
|
* the smallest bus width - 1
|
|
*/
|
|
/* FIXME: use round_down()? */
|
|
tsize = lli_len / min(mbus->buswidth,
|
|
sbus->buswidth);
|
|
lli_len = tsize * min(mbus->buswidth,
|
|
sbus->buswidth);
|
|
|
|
if (target_len != lli_len) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
|
|
__func__, target_len, lli_len, txd->len);
|
|
}
|
|
|
|
cctl = pl08x_cctl_bits(cctl,
|
|
bd.srcbus.buswidth,
|
|
bd.dstbus.buswidth,
|
|
tsize);
|
|
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
|
|
__func__, lli_len, bd.remainder);
|
|
pl08x_fill_lli_for_desc(&bd, num_llis++,
|
|
lli_len, cctl);
|
|
total_bytes += lli_len;
|
|
}
|
|
|
|
|
|
if (odd_bytes) {
|
|
/*
|
|
* Creep past the boundary, maintaining
|
|
* master alignment
|
|
*/
|
|
int j;
|
|
for (j = 0; (j < mbus->buswidth)
|
|
&& (bd.remainder); j++) {
|
|
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s align with boundary, single byte (remain 0x%08zx)\n",
|
|
__func__, bd.remainder);
|
|
pl08x_fill_lli_for_desc(&bd,
|
|
num_llis++, 1, cctl);
|
|
total_bytes++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send any odd bytes
|
|
*/
|
|
while (bd.remainder) {
|
|
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s align with boundary, single odd byte (remain %zu)\n",
|
|
__func__, bd.remainder);
|
|
pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
|
|
total_bytes++;
|
|
}
|
|
}
|
|
if (total_bytes != txd->len) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
|
|
__func__, total_bytes, txd->len);
|
|
return 0;
|
|
}
|
|
|
|
if (num_llis >= MAX_NUM_TSFR_LLIS) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
|
|
__func__, (u32) MAX_NUM_TSFR_LLIS);
|
|
return 0;
|
|
}
|
|
|
|
llis_va = txd->llis_va;
|
|
/* The final LLI terminates the LLI. */
|
|
llis_va[num_llis - 1].lli = 0;
|
|
/* The final LLI element shall also fire an interrupt. */
|
|
llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
|
|
|
|
#ifdef VERBOSE_DEBUG
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_llis; i++) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
|
|
i,
|
|
&llis_va[i],
|
|
llis_va[i].src,
|
|
llis_va[i].dst,
|
|
llis_va[i].cctl,
|
|
llis_va[i].lli
|
|
);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return num_llis;
|
|
}
|
|
|
|
/* You should call this with the struct pl08x lock held */
|
|
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_txd *txd)
|
|
{
|
|
/* Free the LLI */
|
|
dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
|
|
|
|
pl08x->pool_ctr--;
|
|
|
|
kfree(txd);
|
|
}
|
|
|
|
static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_txd *txdi = NULL;
|
|
struct pl08x_txd *next;
|
|
|
|
if (!list_empty(&plchan->pend_list)) {
|
|
list_for_each_entry_safe(txdi,
|
|
next, &plchan->pend_list, node) {
|
|
list_del(&txdi->node);
|
|
pl08x_free_txd(pl08x, txdi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The DMA ENGINE API
|
|
*/
|
|
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void pl08x_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This should be called with the channel plchan->lock held
|
|
*/
|
|
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
|
|
struct pl08x_txd *txd)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_phy_chan *ch;
|
|
int ret;
|
|
|
|
/* Check if we already have a channel */
|
|
if (plchan->phychan)
|
|
return 0;
|
|
|
|
ch = pl08x_get_phy_channel(pl08x, plchan);
|
|
if (!ch) {
|
|
/* No physical channel available, cope with it */
|
|
dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* OK we have a physical channel: for memcpy() this is all we
|
|
* need, but for slaves the physical signals may be muxed!
|
|
* Can the platform allow us to use this channel?
|
|
*/
|
|
if (plchan->slave &&
|
|
ch->signal < 0 &&
|
|
pl08x->pd->get_signal) {
|
|
ret = pl08x->pd->get_signal(plchan);
|
|
if (ret < 0) {
|
|
dev_dbg(&pl08x->adev->dev,
|
|
"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
|
|
ch->id, plchan->name);
|
|
/* Release physical channel & return */
|
|
pl08x_put_phy_channel(pl08x, ch);
|
|
return -EBUSY;
|
|
}
|
|
ch->signal = ret;
|
|
|
|
/* Assign the flow control signal to this channel */
|
|
if (txd->direction == DMA_TO_DEVICE)
|
|
txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
|
|
else if (txd->direction == DMA_FROM_DEVICE)
|
|
txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
|
|
}
|
|
|
|
dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
|
|
ch->id,
|
|
ch->signal,
|
|
plchan->name);
|
|
|
|
plchan->phychan_hold++;
|
|
plchan->phychan = ch;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void release_phy_channel(struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
|
|
if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
|
|
pl08x->pd->put_signal(plchan);
|
|
plchan->phychan->signal = -1;
|
|
}
|
|
pl08x_put_phy_channel(pl08x, plchan->phychan);
|
|
plchan->phychan = NULL;
|
|
}
|
|
|
|
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
|
|
struct pl08x_txd *txd = to_pl08x_txd(tx);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&plchan->lock, flags);
|
|
|
|
plchan->chan.cookie += 1;
|
|
if (plchan->chan.cookie < 0)
|
|
plchan->chan.cookie = 1;
|
|
tx->cookie = plchan->chan.cookie;
|
|
|
|
/* Put this onto the pending list */
|
|
list_add_tail(&txd->node, &plchan->pend_list);
|
|
|
|
/*
|
|
* If there was no physical channel available for this memcpy,
|
|
* stack the request up and indicate that the channel is waiting
|
|
* for a free physical channel.
|
|
*/
|
|
if (!plchan->slave && !plchan->phychan) {
|
|
/* Do this memcpy whenever there is a channel ready */
|
|
plchan->state = PL08X_CHAN_WAITING;
|
|
plchan->waiting = txd;
|
|
} else {
|
|
plchan->phychan_hold--;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
|
|
return tx->cookie;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
|
|
struct dma_chan *chan, unsigned long flags)
|
|
{
|
|
struct dma_async_tx_descriptor *retval = NULL;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Code accessing dma_async_is_complete() in a tight loop may give problems.
|
|
* If slaves are relying on interrupts to signal completion this function
|
|
* must not be called with interrupts disabled.
|
|
*/
|
|
static enum dma_status
|
|
pl08x_dma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
dma_cookie_t last_used;
|
|
dma_cookie_t last_complete;
|
|
enum dma_status ret;
|
|
u32 bytesleft = 0;
|
|
|
|
last_used = plchan->chan.cookie;
|
|
last_complete = plchan->lc;
|
|
|
|
ret = dma_async_is_complete(cookie, last_complete, last_used);
|
|
if (ret == DMA_SUCCESS) {
|
|
dma_set_tx_state(txstate, last_complete, last_used, 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This cookie not complete yet
|
|
*/
|
|
last_used = plchan->chan.cookie;
|
|
last_complete = plchan->lc;
|
|
|
|
/* Get number of bytes left in the active transactions and queue */
|
|
bytesleft = pl08x_getbytes_chan(plchan);
|
|
|
|
dma_set_tx_state(txstate, last_complete, last_used,
|
|
bytesleft);
|
|
|
|
if (plchan->state == PL08X_CHAN_PAUSED)
|
|
return DMA_PAUSED;
|
|
|
|
/* Whether waiting or running, we're in progress */
|
|
return DMA_IN_PROGRESS;
|
|
}
|
|
|
|
/* PrimeCell DMA extension */
|
|
struct burst_table {
|
|
int burstwords;
|
|
u32 reg;
|
|
};
|
|
|
|
static const struct burst_table burst_sizes[] = {
|
|
{
|
|
.burstwords = 256,
|
|
.reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
|
|
},
|
|
{
|
|
.burstwords = 128,
|
|
.reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
|
|
},
|
|
{
|
|
.burstwords = 64,
|
|
.reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
|
|
},
|
|
{
|
|
.burstwords = 32,
|
|
.reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
|
|
},
|
|
{
|
|
.burstwords = 16,
|
|
.reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
|
|
},
|
|
{
|
|
.burstwords = 8,
|
|
.reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
|
|
},
|
|
{
|
|
.burstwords = 4,
|
|
.reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
|
|
},
|
|
{
|
|
.burstwords = 1,
|
|
.reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
|
|
},
|
|
};
|
|
|
|
static int dma_set_runtime_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_channel_data *cd = plchan->cd;
|
|
enum dma_slave_buswidth addr_width;
|
|
dma_addr_t addr;
|
|
u32 maxburst;
|
|
u32 cctl = 0;
|
|
int i;
|
|
|
|
if (!plchan->slave)
|
|
return -EINVAL;
|
|
|
|
/* Transfer direction */
|
|
plchan->runtime_direction = config->direction;
|
|
if (config->direction == DMA_TO_DEVICE) {
|
|
addr = config->dst_addr;
|
|
addr_width = config->dst_addr_width;
|
|
maxburst = config->dst_maxburst;
|
|
} else if (config->direction == DMA_FROM_DEVICE) {
|
|
addr = config->src_addr;
|
|
addr_width = config->src_addr_width;
|
|
maxburst = config->src_maxburst;
|
|
} else {
|
|
dev_err(&pl08x->adev->dev,
|
|
"bad runtime_config: alien transfer direction\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (addr_width) {
|
|
case DMA_SLAVE_BUSWIDTH_1_BYTE:
|
|
cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
|
|
(PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
|
|
break;
|
|
case DMA_SLAVE_BUSWIDTH_2_BYTES:
|
|
cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
|
|
(PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
|
|
break;
|
|
case DMA_SLAVE_BUSWIDTH_4_BYTES:
|
|
cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
|
|
(PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
|
|
break;
|
|
default:
|
|
dev_err(&pl08x->adev->dev,
|
|
"bad runtime_config: alien address width\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now decide on a maxburst:
|
|
* If this channel will only request single transfers, set this
|
|
* down to ONE element. Also select one element if no maxburst
|
|
* is specified.
|
|
*/
|
|
if (plchan->cd->single || maxburst == 0) {
|
|
cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
|
|
(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
|
|
} else {
|
|
for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
|
|
if (burst_sizes[i].burstwords <= maxburst)
|
|
break;
|
|
cctl |= burst_sizes[i].reg;
|
|
}
|
|
|
|
plchan->runtime_addr = addr;
|
|
|
|
/* Modify the default channel data to fit PrimeCell request */
|
|
cd->cctl = cctl;
|
|
|
|
dev_dbg(&pl08x->adev->dev,
|
|
"configured channel %s (%s) for %s, data width %d, "
|
|
"maxburst %d words, LE, CCTL=0x%08x\n",
|
|
dma_chan_name(chan), plchan->name,
|
|
(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
|
|
addr_width,
|
|
maxburst,
|
|
cctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Slave transactions callback to the slave device to allow
|
|
* synchronization of slave DMA signals with the DMAC enable
|
|
*/
|
|
static void pl08x_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&plchan->lock, flags);
|
|
/* Something is already active, or we're waiting for a channel... */
|
|
if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Take the first element in the queue and execute it */
|
|
if (!list_empty(&plchan->pend_list)) {
|
|
struct pl08x_txd *next;
|
|
|
|
next = list_first_entry(&plchan->pend_list,
|
|
struct pl08x_txd,
|
|
node);
|
|
list_del(&next->node);
|
|
plchan->state = PL08X_CHAN_RUNNING;
|
|
|
|
pl08x_start_txd(plchan, next);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
}
|
|
|
|
static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
|
|
struct pl08x_txd *txd)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
unsigned long flags;
|
|
int num_llis, ret;
|
|
|
|
num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
|
|
if (!num_llis) {
|
|
kfree(txd);
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_irqsave(&plchan->lock, flags);
|
|
|
|
/*
|
|
* See if we already have a physical channel allocated,
|
|
* else this is the time to try to get one.
|
|
*/
|
|
ret = prep_phy_channel(plchan, txd);
|
|
if (ret) {
|
|
/*
|
|
* No physical channel was available.
|
|
*
|
|
* memcpy transfers can be sorted out at submission time.
|
|
*
|
|
* Slave transfers may have been denied due to platform
|
|
* channel muxing restrictions. Since there is no guarantee
|
|
* that this will ever be resolved, and the signal must be
|
|
* acquired AFTER acquiring the physical channel, we will let
|
|
* them be NACK:ed with -EBUSY here. The drivers can retry
|
|
* the prep() call if they are eager on doing this using DMA.
|
|
*/
|
|
if (plchan->slave) {
|
|
pl08x_free_txd_list(pl08x, plchan);
|
|
pl08x_free_txd(pl08x, txd);
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
return -EBUSY;
|
|
}
|
|
} else
|
|
/*
|
|
* Else we're all set, paused and ready to roll, status
|
|
* will switch to PL08X_CHAN_RUNNING when we call
|
|
* issue_pending(). If there is something running on the
|
|
* channel already we don't change its state.
|
|
*/
|
|
if (plchan->state == PL08X_CHAN_IDLE)
|
|
plchan->state = PL08X_CHAN_PAUSED;
|
|
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given the source and destination available bus masks, select which
|
|
* will be routed to each port. We try to have source and destination
|
|
* on separate ports, but always respect the allowable settings.
|
|
*/
|
|
static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
|
|
{
|
|
u32 cctl = 0;
|
|
|
|
if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
|
|
cctl |= PL080_CONTROL_DST_AHB2;
|
|
if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
|
|
cctl |= PL080_CONTROL_SRC_AHB2;
|
|
|
|
return cctl;
|
|
}
|
|
|
|
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
|
|
unsigned long flags)
|
|
{
|
|
struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
|
|
|
|
if (txd) {
|
|
dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
|
|
txd->tx.flags = flags;
|
|
txd->tx.tx_submit = pl08x_tx_submit;
|
|
INIT_LIST_HEAD(&txd->node);
|
|
|
|
/* Always enable error and terminal interrupts */
|
|
txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
|
|
PL080_CONFIG_TC_IRQ_MASK;
|
|
}
|
|
return txd;
|
|
}
|
|
|
|
/*
|
|
* Initialize a descriptor to be used by memcpy submit
|
|
*/
|
|
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
|
|
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_txd *txd;
|
|
int ret;
|
|
|
|
txd = pl08x_get_txd(plchan, flags);
|
|
if (!txd) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s no memory for descriptor\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
txd->direction = DMA_NONE;
|
|
txd->src_addr = src;
|
|
txd->dst_addr = dest;
|
|
txd->len = len;
|
|
|
|
/* Set platform data for m2m */
|
|
txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
|
|
txd->cctl = pl08x->pd->memcpy_channel.cctl &
|
|
~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
|
|
|
|
/* Both to be incremented or the code will break */
|
|
txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
|
|
|
|
if (pl08x->vd->dualmaster)
|
|
txd->cctl |= pl08x_select_bus(pl08x,
|
|
pl08x->mem_buses, pl08x->mem_buses);
|
|
|
|
ret = pl08x_prep_channel_resources(plchan, txd);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
return &txd->tx;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_data_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_txd *txd;
|
|
u8 src_buses, dst_buses;
|
|
int ret;
|
|
|
|
/*
|
|
* Current implementation ASSUMES only one sg
|
|
*/
|
|
if (sg_len != 1) {
|
|
dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
|
|
__func__);
|
|
BUG();
|
|
}
|
|
|
|
dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
|
|
__func__, sgl->length, plchan->name);
|
|
|
|
txd = pl08x_get_txd(plchan, flags);
|
|
if (!txd) {
|
|
dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
if (direction != plchan->runtime_direction)
|
|
dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
|
|
"the direction configured for the PrimeCell\n",
|
|
__func__);
|
|
|
|
/*
|
|
* Set up addresses, the PrimeCell configured address
|
|
* will take precedence since this may configure the
|
|
* channel target address dynamically at runtime.
|
|
*/
|
|
txd->direction = direction;
|
|
txd->len = sgl->length;
|
|
|
|
txd->cctl = plchan->cd->cctl &
|
|
~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
|
|
PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
|
|
PL080_CONTROL_PROT_MASK);
|
|
|
|
/* Access the cell in privileged mode, non-bufferable, non-cacheable */
|
|
txd->cctl |= PL080_CONTROL_PROT_SYS;
|
|
|
|
if (direction == DMA_TO_DEVICE) {
|
|
txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
|
|
txd->cctl |= PL080_CONTROL_SRC_INCR;
|
|
txd->src_addr = sgl->dma_address;
|
|
if (plchan->runtime_addr)
|
|
txd->dst_addr = plchan->runtime_addr;
|
|
else
|
|
txd->dst_addr = plchan->cd->addr;
|
|
src_buses = pl08x->mem_buses;
|
|
dst_buses = plchan->cd->periph_buses;
|
|
} else if (direction == DMA_FROM_DEVICE) {
|
|
txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
|
|
txd->cctl |= PL080_CONTROL_DST_INCR;
|
|
if (plchan->runtime_addr)
|
|
txd->src_addr = plchan->runtime_addr;
|
|
else
|
|
txd->src_addr = plchan->cd->addr;
|
|
txd->dst_addr = sgl->dma_address;
|
|
src_buses = plchan->cd->periph_buses;
|
|
dst_buses = pl08x->mem_buses;
|
|
} else {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s direction unsupported\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
|
|
|
|
ret = pl08x_prep_channel_resources(plchan, txd);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
return &txd->tx;
|
|
}
|
|
|
|
static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* Controls applicable to inactive channels */
|
|
if (cmd == DMA_SLAVE_CONFIG) {
|
|
return dma_set_runtime_config(chan,
|
|
(struct dma_slave_config *)arg);
|
|
}
|
|
|
|
/*
|
|
* Anything succeeds on channels with no physical allocation and
|
|
* no queued transfers.
|
|
*/
|
|
spin_lock_irqsave(&plchan->lock, flags);
|
|
if (!plchan->phychan && !plchan->at) {
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case DMA_TERMINATE_ALL:
|
|
plchan->state = PL08X_CHAN_IDLE;
|
|
|
|
if (plchan->phychan) {
|
|
pl08x_terminate_phy_chan(pl08x, plchan->phychan);
|
|
|
|
/*
|
|
* Mark physical channel as free and free any slave
|
|
* signal
|
|
*/
|
|
release_phy_channel(plchan);
|
|
}
|
|
/* Dequeue jobs and free LLIs */
|
|
if (plchan->at) {
|
|
pl08x_free_txd(pl08x, plchan->at);
|
|
plchan->at = NULL;
|
|
}
|
|
/* Dequeue jobs not yet fired as well */
|
|
pl08x_free_txd_list(pl08x, plchan);
|
|
break;
|
|
case DMA_PAUSE:
|
|
pl08x_pause_phy_chan(plchan->phychan);
|
|
plchan->state = PL08X_CHAN_PAUSED;
|
|
break;
|
|
case DMA_RESUME:
|
|
pl08x_resume_phy_chan(plchan->phychan);
|
|
plchan->state = PL08X_CHAN_RUNNING;
|
|
break;
|
|
default:
|
|
/* Unknown command */
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
char *name = chan_id;
|
|
|
|
/* Check that the channel is not taken! */
|
|
if (!strcmp(plchan->name, name))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Just check that the device is there and active
|
|
* TODO: turn this bit on/off depending on the number of physical channels
|
|
* actually used, if it is zero... well shut it off. That will save some
|
|
* power. Cut the clock at the same time.
|
|
*/
|
|
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(pl08x->base + PL080_CONFIG);
|
|
val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
|
|
/* We implicitly clear bit 1 and that means little-endian mode */
|
|
val |= PL080_CONFIG_ENABLE;
|
|
writel(val, pl08x->base + PL080_CONFIG);
|
|
}
|
|
|
|
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
|
|
{
|
|
struct device *dev = txd->tx.chan->device->dev;
|
|
|
|
if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
|
|
if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
|
|
dma_unmap_single(dev, txd->src_addr, txd->len,
|
|
DMA_TO_DEVICE);
|
|
else
|
|
dma_unmap_page(dev, txd->src_addr, txd->len,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
|
|
if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
|
|
dma_unmap_single(dev, txd->dst_addr, txd->len,
|
|
DMA_FROM_DEVICE);
|
|
else
|
|
dma_unmap_page(dev, txd->dst_addr, txd->len,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
}
|
|
|
|
static void pl08x_tasklet(unsigned long data)
|
|
{
|
|
struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_txd *txd;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&plchan->lock, flags);
|
|
|
|
txd = plchan->at;
|
|
plchan->at = NULL;
|
|
|
|
if (txd) {
|
|
/* Update last completed */
|
|
plchan->lc = txd->tx.cookie;
|
|
}
|
|
|
|
/* If a new descriptor is queued, set it up plchan->at is NULL here */
|
|
if (!list_empty(&plchan->pend_list)) {
|
|
struct pl08x_txd *next;
|
|
|
|
next = list_first_entry(&plchan->pend_list,
|
|
struct pl08x_txd,
|
|
node);
|
|
list_del(&next->node);
|
|
|
|
pl08x_start_txd(plchan, next);
|
|
} else if (plchan->phychan_hold) {
|
|
/*
|
|
* This channel is still in use - we have a new txd being
|
|
* prepared and will soon be queued. Don't give up the
|
|
* physical channel.
|
|
*/
|
|
} else {
|
|
struct pl08x_dma_chan *waiting = NULL;
|
|
|
|
/*
|
|
* No more jobs, so free up the physical channel
|
|
* Free any allocated signal on slave transfers too
|
|
*/
|
|
release_phy_channel(plchan);
|
|
plchan->state = PL08X_CHAN_IDLE;
|
|
|
|
/*
|
|
* And NOW before anyone else can grab that free:d up
|
|
* physical channel, see if there is some memcpy pending
|
|
* that seriously needs to start because of being stacked
|
|
* up while we were choking the physical channels with data.
|
|
*/
|
|
list_for_each_entry(waiting, &pl08x->memcpy.channels,
|
|
chan.device_node) {
|
|
if (waiting->state == PL08X_CHAN_WAITING &&
|
|
waiting->waiting != NULL) {
|
|
int ret;
|
|
|
|
/* This should REALLY not fail now */
|
|
ret = prep_phy_channel(waiting,
|
|
waiting->waiting);
|
|
BUG_ON(ret);
|
|
waiting->phychan_hold--;
|
|
waiting->state = PL08X_CHAN_RUNNING;
|
|
waiting->waiting = NULL;
|
|
pl08x_issue_pending(&waiting->chan);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
|
|
if (txd) {
|
|
dma_async_tx_callback callback = txd->tx.callback;
|
|
void *callback_param = txd->tx.callback_param;
|
|
|
|
/* Don't try to unmap buffers on slave channels */
|
|
if (!plchan->slave)
|
|
pl08x_unmap_buffers(txd);
|
|
|
|
/* Free the descriptor */
|
|
spin_lock_irqsave(&plchan->lock, flags);
|
|
pl08x_free_txd(pl08x, txd);
|
|
spin_unlock_irqrestore(&plchan->lock, flags);
|
|
|
|
/* Callback to signal completion */
|
|
if (callback)
|
|
callback(callback_param);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t pl08x_irq(int irq, void *dev)
|
|
{
|
|
struct pl08x_driver_data *pl08x = dev;
|
|
u32 mask = 0;
|
|
u32 val;
|
|
int i;
|
|
|
|
val = readl(pl08x->base + PL080_ERR_STATUS);
|
|
if (val) {
|
|
/* An error interrupt (on one or more channels) */
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s error interrupt, register value 0x%08x\n",
|
|
__func__, val);
|
|
/*
|
|
* Simply clear ALL PL08X error interrupts,
|
|
* regardless of channel and cause
|
|
* FIXME: should be 0x00000003 on PL081 really.
|
|
*/
|
|
writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
|
|
}
|
|
val = readl(pl08x->base + PL080_INT_STATUS);
|
|
for (i = 0; i < pl08x->vd->channels; i++) {
|
|
if ((1 << i) & val) {
|
|
/* Locate physical channel */
|
|
struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
|
|
struct pl08x_dma_chan *plchan = phychan->serving;
|
|
|
|
/* Schedule tasklet on this channel */
|
|
tasklet_schedule(&plchan->tasklet);
|
|
|
|
mask |= (1 << i);
|
|
}
|
|
}
|
|
/* Clear only the terminal interrupts on channels we processed */
|
|
writel(mask, pl08x->base + PL080_TC_CLEAR);
|
|
|
|
return mask ? IRQ_HANDLED : IRQ_NONE;
|
|
}
|
|
|
|
/*
|
|
* Initialise the DMAC memcpy/slave channels.
|
|
* Make a local wrapper to hold required data
|
|
*/
|
|
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
|
|
struct dma_device *dmadev,
|
|
unsigned int channels,
|
|
bool slave)
|
|
{
|
|
struct pl08x_dma_chan *chan;
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&dmadev->channels);
|
|
|
|
/*
|
|
* Register as many many memcpy as we have physical channels,
|
|
* we won't always be able to use all but the code will have
|
|
* to cope with that situation.
|
|
*/
|
|
for (i = 0; i < channels; i++) {
|
|
chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
|
|
if (!chan) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s no memory for channel\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
chan->host = pl08x;
|
|
chan->state = PL08X_CHAN_IDLE;
|
|
|
|
if (slave) {
|
|
chan->slave = true;
|
|
chan->name = pl08x->pd->slave_channels[i].bus_id;
|
|
chan->cd = &pl08x->pd->slave_channels[i];
|
|
} else {
|
|
chan->cd = &pl08x->pd->memcpy_channel;
|
|
chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
|
|
if (!chan->name) {
|
|
kfree(chan);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
if (chan->cd->circular_buffer) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"channel %s: circular buffers not supported\n",
|
|
chan->name);
|
|
kfree(chan);
|
|
continue;
|
|
}
|
|
dev_info(&pl08x->adev->dev,
|
|
"initialize virtual channel \"%s\"\n",
|
|
chan->name);
|
|
|
|
chan->chan.device = dmadev;
|
|
chan->chan.cookie = 0;
|
|
chan->lc = 0;
|
|
|
|
spin_lock_init(&chan->lock);
|
|
INIT_LIST_HEAD(&chan->pend_list);
|
|
tasklet_init(&chan->tasklet, pl08x_tasklet,
|
|
(unsigned long) chan);
|
|
|
|
list_add_tail(&chan->chan.device_node, &dmadev->channels);
|
|
}
|
|
dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
|
|
i, slave ? "slave" : "memcpy");
|
|
return i;
|
|
}
|
|
|
|
static void pl08x_free_virtual_channels(struct dma_device *dmadev)
|
|
{
|
|
struct pl08x_dma_chan *chan = NULL;
|
|
struct pl08x_dma_chan *next;
|
|
|
|
list_for_each_entry_safe(chan,
|
|
next, &dmadev->channels, chan.device_node) {
|
|
list_del(&chan->chan.device_node);
|
|
kfree(chan);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
|
|
{
|
|
switch (state) {
|
|
case PL08X_CHAN_IDLE:
|
|
return "idle";
|
|
case PL08X_CHAN_RUNNING:
|
|
return "running";
|
|
case PL08X_CHAN_PAUSED:
|
|
return "paused";
|
|
case PL08X_CHAN_WAITING:
|
|
return "waiting";
|
|
default:
|
|
break;
|
|
}
|
|
return "UNKNOWN STATE";
|
|
}
|
|
|
|
static int pl08x_debugfs_show(struct seq_file *s, void *data)
|
|
{
|
|
struct pl08x_driver_data *pl08x = s->private;
|
|
struct pl08x_dma_chan *chan;
|
|
struct pl08x_phy_chan *ch;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
seq_printf(s, "PL08x physical channels:\n");
|
|
seq_printf(s, "CHANNEL:\tUSER:\n");
|
|
seq_printf(s, "--------\t-----\n");
|
|
for (i = 0; i < pl08x->vd->channels; i++) {
|
|
struct pl08x_dma_chan *virt_chan;
|
|
|
|
ch = &pl08x->phy_chans[i];
|
|
|
|
spin_lock_irqsave(&ch->lock, flags);
|
|
virt_chan = ch->serving;
|
|
|
|
seq_printf(s, "%d\t\t%s\n",
|
|
ch->id, virt_chan ? virt_chan->name : "(none)");
|
|
|
|
spin_unlock_irqrestore(&ch->lock, flags);
|
|
}
|
|
|
|
seq_printf(s, "\nPL08x virtual memcpy channels:\n");
|
|
seq_printf(s, "CHANNEL:\tSTATE:\n");
|
|
seq_printf(s, "--------\t------\n");
|
|
list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
|
|
seq_printf(s, "%s\t\t%s\n", chan->name,
|
|
pl08x_state_str(chan->state));
|
|
}
|
|
|
|
seq_printf(s, "\nPL08x virtual slave channels:\n");
|
|
seq_printf(s, "CHANNEL:\tSTATE:\n");
|
|
seq_printf(s, "--------\t------\n");
|
|
list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
|
|
seq_printf(s, "%s\t\t%s\n", chan->name,
|
|
pl08x_state_str(chan->state));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl08x_debugfs_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, pl08x_debugfs_show, inode->i_private);
|
|
}
|
|
|
|
static const struct file_operations pl08x_debugfs_operations = {
|
|
.open = pl08x_debugfs_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
|
|
{
|
|
/* Expose a simple debugfs interface to view all clocks */
|
|
(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
|
|
NULL, pl08x,
|
|
&pl08x_debugfs_operations);
|
|
}
|
|
|
|
#else
|
|
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
|
|
{
|
|
struct pl08x_driver_data *pl08x;
|
|
const struct vendor_data *vd = id->data;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
ret = amba_request_regions(adev, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Create the driver state holder */
|
|
pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
|
|
if (!pl08x) {
|
|
ret = -ENOMEM;
|
|
goto out_no_pl08x;
|
|
}
|
|
|
|
/* Initialize memcpy engine */
|
|
dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
|
|
pl08x->memcpy.dev = &adev->dev;
|
|
pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
|
|
pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
|
|
pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
|
|
pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
|
|
pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
|
|
pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
|
|
pl08x->memcpy.device_control = pl08x_control;
|
|
|
|
/* Initialize slave engine */
|
|
dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
|
|
pl08x->slave.dev = &adev->dev;
|
|
pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
|
|
pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
|
|
pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
|
|
pl08x->slave.device_tx_status = pl08x_dma_tx_status;
|
|
pl08x->slave.device_issue_pending = pl08x_issue_pending;
|
|
pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
|
|
pl08x->slave.device_control = pl08x_control;
|
|
|
|
/* Get the platform data */
|
|
pl08x->pd = dev_get_platdata(&adev->dev);
|
|
if (!pl08x->pd) {
|
|
dev_err(&adev->dev, "no platform data supplied\n");
|
|
goto out_no_platdata;
|
|
}
|
|
|
|
/* Assign useful pointers to the driver state */
|
|
pl08x->adev = adev;
|
|
pl08x->vd = vd;
|
|
|
|
/* By default, AHB1 only. If dualmaster, from platform */
|
|
pl08x->lli_buses = PL08X_AHB1;
|
|
pl08x->mem_buses = PL08X_AHB1;
|
|
if (pl08x->vd->dualmaster) {
|
|
pl08x->lli_buses = pl08x->pd->lli_buses;
|
|
pl08x->mem_buses = pl08x->pd->mem_buses;
|
|
}
|
|
|
|
/* A DMA memory pool for LLIs, align on 1-byte boundary */
|
|
pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
|
|
PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
|
|
if (!pl08x->pool) {
|
|
ret = -ENOMEM;
|
|
goto out_no_lli_pool;
|
|
}
|
|
|
|
spin_lock_init(&pl08x->lock);
|
|
|
|
pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
|
|
if (!pl08x->base) {
|
|
ret = -ENOMEM;
|
|
goto out_no_ioremap;
|
|
}
|
|
|
|
/* Turn on the PL08x */
|
|
pl08x_ensure_on(pl08x);
|
|
|
|
/* Attach the interrupt handler */
|
|
writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
|
|
writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
|
|
|
|
ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
|
|
DRIVER_NAME, pl08x);
|
|
if (ret) {
|
|
dev_err(&adev->dev, "%s failed to request interrupt %d\n",
|
|
__func__, adev->irq[0]);
|
|
goto out_no_irq;
|
|
}
|
|
|
|
/* Initialize physical channels */
|
|
pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
|
|
GFP_KERNEL);
|
|
if (!pl08x->phy_chans) {
|
|
dev_err(&adev->dev, "%s failed to allocate "
|
|
"physical channel holders\n",
|
|
__func__);
|
|
goto out_no_phychans;
|
|
}
|
|
|
|
for (i = 0; i < vd->channels; i++) {
|
|
struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
|
|
|
|
ch->id = i;
|
|
ch->base = pl08x->base + PL080_Cx_BASE(i);
|
|
spin_lock_init(&ch->lock);
|
|
ch->serving = NULL;
|
|
ch->signal = -1;
|
|
dev_info(&adev->dev,
|
|
"physical channel %d is %s\n", i,
|
|
pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
|
|
}
|
|
|
|
/* Register as many memcpy channels as there are physical channels */
|
|
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
|
|
pl08x->vd->channels, false);
|
|
if (ret <= 0) {
|
|
dev_warn(&pl08x->adev->dev,
|
|
"%s failed to enumerate memcpy channels - %d\n",
|
|
__func__, ret);
|
|
goto out_no_memcpy;
|
|
}
|
|
pl08x->memcpy.chancnt = ret;
|
|
|
|
/* Register slave channels */
|
|
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
|
|
pl08x->pd->num_slave_channels,
|
|
true);
|
|
if (ret <= 0) {
|
|
dev_warn(&pl08x->adev->dev,
|
|
"%s failed to enumerate slave channels - %d\n",
|
|
__func__, ret);
|
|
goto out_no_slave;
|
|
}
|
|
pl08x->slave.chancnt = ret;
|
|
|
|
ret = dma_async_device_register(&pl08x->memcpy);
|
|
if (ret) {
|
|
dev_warn(&pl08x->adev->dev,
|
|
"%s failed to register memcpy as an async device - %d\n",
|
|
__func__, ret);
|
|
goto out_no_memcpy_reg;
|
|
}
|
|
|
|
ret = dma_async_device_register(&pl08x->slave);
|
|
if (ret) {
|
|
dev_warn(&pl08x->adev->dev,
|
|
"%s failed to register slave as an async device - %d\n",
|
|
__func__, ret);
|
|
goto out_no_slave_reg;
|
|
}
|
|
|
|
amba_set_drvdata(adev, pl08x);
|
|
init_pl08x_debugfs(pl08x);
|
|
dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
|
|
amba_part(adev), amba_rev(adev),
|
|
(unsigned long long)adev->res.start, adev->irq[0]);
|
|
return 0;
|
|
|
|
out_no_slave_reg:
|
|
dma_async_device_unregister(&pl08x->memcpy);
|
|
out_no_memcpy_reg:
|
|
pl08x_free_virtual_channels(&pl08x->slave);
|
|
out_no_slave:
|
|
pl08x_free_virtual_channels(&pl08x->memcpy);
|
|
out_no_memcpy:
|
|
kfree(pl08x->phy_chans);
|
|
out_no_phychans:
|
|
free_irq(adev->irq[0], pl08x);
|
|
out_no_irq:
|
|
iounmap(pl08x->base);
|
|
out_no_ioremap:
|
|
dma_pool_destroy(pl08x->pool);
|
|
out_no_lli_pool:
|
|
out_no_platdata:
|
|
kfree(pl08x);
|
|
out_no_pl08x:
|
|
amba_release_regions(adev);
|
|
return ret;
|
|
}
|
|
|
|
/* PL080 has 8 channels and the PL080 have just 2 */
|
|
static struct vendor_data vendor_pl080 = {
|
|
.channels = 8,
|
|
.dualmaster = true,
|
|
};
|
|
|
|
static struct vendor_data vendor_pl081 = {
|
|
.channels = 2,
|
|
.dualmaster = false,
|
|
};
|
|
|
|
static struct amba_id pl08x_ids[] = {
|
|
/* PL080 */
|
|
{
|
|
.id = 0x00041080,
|
|
.mask = 0x000fffff,
|
|
.data = &vendor_pl080,
|
|
},
|
|
/* PL081 */
|
|
{
|
|
.id = 0x00041081,
|
|
.mask = 0x000fffff,
|
|
.data = &vendor_pl081,
|
|
},
|
|
/* Nomadik 8815 PL080 variant */
|
|
{
|
|
.id = 0x00280880,
|
|
.mask = 0x00ffffff,
|
|
.data = &vendor_pl080,
|
|
},
|
|
{ 0, 0 },
|
|
};
|
|
|
|
static struct amba_driver pl08x_amba_driver = {
|
|
.drv.name = DRIVER_NAME,
|
|
.id_table = pl08x_ids,
|
|
.probe = pl08x_probe,
|
|
};
|
|
|
|
static int __init pl08x_init(void)
|
|
{
|
|
int retval;
|
|
retval = amba_driver_register(&pl08x_amba_driver);
|
|
if (retval)
|
|
printk(KERN_WARNING DRIVER_NAME
|
|
"failed to register as an AMBA device (%d)\n",
|
|
retval);
|
|
return retval;
|
|
}
|
|
subsys_initcall(pl08x_init);
|