WSL2-Linux-Kernel/drivers/media/rc/winbond-cir.c

1232 строки
33 KiB
C

/*
* winbond-cir.c - Driver for the Consumer IR functionality of Winbond
* SuperI/O chips.
*
* Currently supports the Winbond WPCD376i chip (PNP id WEC1022), but
* could probably support others (Winbond WEC102X, NatSemi, etc)
* with minor modifications.
*
* Original Author: David Härdeman <david@hardeman.nu>
* Copyright (C) 2012 Sean Young <sean@mess.org>
* Copyright (C) 2009 - 2011 David Härdeman <david@hardeman.nu>
*
* Dedicated to my daughter Matilda, without whose loving attention this
* driver would have been finished in half the time and with a fraction
* of the bugs.
*
* Written using:
* o Winbond WPCD376I datasheet helpfully provided by Jesse Barnes at Intel
* o NatSemi PC87338/PC97338 datasheet (for the serial port stuff)
* o DSDT dumps
*
* Supported features:
* o IR Receive
* o IR Transmit
* o Wake-On-CIR functionality
* o Carrier detection
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/pnp.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/leds.h>
#include <linux/spinlock.h>
#include <linux/pci_ids.h>
#include <linux/io.h>
#include <linux/bitrev.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <media/rc-core.h>
#define DRVNAME "winbond-cir"
/* CEIR Wake-Up Registers, relative to data->wbase */
#define WBCIR_REG_WCEIR_CTL 0x03 /* CEIR Receiver Control */
#define WBCIR_REG_WCEIR_STS 0x04 /* CEIR Receiver Status */
#define WBCIR_REG_WCEIR_EV_EN 0x05 /* CEIR Receiver Event Enable */
#define WBCIR_REG_WCEIR_CNTL 0x06 /* CEIR Receiver Counter Low */
#define WBCIR_REG_WCEIR_CNTH 0x07 /* CEIR Receiver Counter High */
#define WBCIR_REG_WCEIR_INDEX 0x08 /* CEIR Receiver Index */
#define WBCIR_REG_WCEIR_DATA 0x09 /* CEIR Receiver Data */
#define WBCIR_REG_WCEIR_CSL 0x0A /* CEIR Re. Compare Strlen */
#define WBCIR_REG_WCEIR_CFG1 0x0B /* CEIR Re. Configuration 1 */
#define WBCIR_REG_WCEIR_CFG2 0x0C /* CEIR Re. Configuration 2 */
/* CEIR Enhanced Functionality Registers, relative to data->ebase */
#define WBCIR_REG_ECEIR_CTS 0x00 /* Enhanced IR Control Status */
#define WBCIR_REG_ECEIR_CCTL 0x01 /* Infrared Counter Control */
#define WBCIR_REG_ECEIR_CNT_LO 0x02 /* Infrared Counter LSB */
#define WBCIR_REG_ECEIR_CNT_HI 0x03 /* Infrared Counter MSB */
#define WBCIR_REG_ECEIR_IREM 0x04 /* Infrared Emitter Status */
/* SP3 Banked Registers, relative to data->sbase */
#define WBCIR_REG_SP3_BSR 0x03 /* Bank Select, all banks */
/* Bank 0 */
#define WBCIR_REG_SP3_RXDATA 0x00 /* FIFO RX data (r) */
#define WBCIR_REG_SP3_TXDATA 0x00 /* FIFO TX data (w) */
#define WBCIR_REG_SP3_IER 0x01 /* Interrupt Enable */
#define WBCIR_REG_SP3_EIR 0x02 /* Event Identification (r) */
#define WBCIR_REG_SP3_FCR 0x02 /* FIFO Control (w) */
#define WBCIR_REG_SP3_MCR 0x04 /* Mode Control */
#define WBCIR_REG_SP3_LSR 0x05 /* Link Status */
#define WBCIR_REG_SP3_MSR 0x06 /* Modem Status */
#define WBCIR_REG_SP3_ASCR 0x07 /* Aux Status and Control */
/* Bank 2 */
#define WBCIR_REG_SP3_BGDL 0x00 /* Baud Divisor LSB */
#define WBCIR_REG_SP3_BGDH 0x01 /* Baud Divisor MSB */
#define WBCIR_REG_SP3_EXCR1 0x02 /* Extended Control 1 */
#define WBCIR_REG_SP3_EXCR2 0x04 /* Extended Control 2 */
#define WBCIR_REG_SP3_TXFLV 0x06 /* TX FIFO Level */
#define WBCIR_REG_SP3_RXFLV 0x07 /* RX FIFO Level */
/* Bank 3 */
#define WBCIR_REG_SP3_MRID 0x00 /* Module Identification */
#define WBCIR_REG_SP3_SH_LCR 0x01 /* LCR Shadow */
#define WBCIR_REG_SP3_SH_FCR 0x02 /* FCR Shadow */
/* Bank 4 */
#define WBCIR_REG_SP3_IRCR1 0x02 /* Infrared Control 1 */
/* Bank 5 */
#define WBCIR_REG_SP3_IRCR2 0x04 /* Infrared Control 2 */
/* Bank 6 */
#define WBCIR_REG_SP3_IRCR3 0x00 /* Infrared Control 3 */
#define WBCIR_REG_SP3_SIR_PW 0x02 /* SIR Pulse Width */
/* Bank 7 */
#define WBCIR_REG_SP3_IRRXDC 0x00 /* IR RX Demod Control */
#define WBCIR_REG_SP3_IRTXMC 0x01 /* IR TX Mod Control */
#define WBCIR_REG_SP3_RCCFG 0x02 /* CEIR Config */
#define WBCIR_REG_SP3_IRCFG1 0x04 /* Infrared Config 1 */
#define WBCIR_REG_SP3_IRCFG4 0x07 /* Infrared Config 4 */
/*
* Magic values follow
*/
/* No interrupts for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */
#define WBCIR_IRQ_NONE 0x00
/* RX data bit for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */
#define WBCIR_IRQ_RX 0x01
/* TX data low bit for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */
#define WBCIR_IRQ_TX_LOW 0x02
/* Over/Under-flow bit for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */
#define WBCIR_IRQ_ERR 0x04
/* TX data empty bit for WBCEIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */
#define WBCIR_IRQ_TX_EMPTY 0x20
/* Led enable/disable bit for WBCIR_REG_ECEIR_CTS */
#define WBCIR_LED_ENABLE 0x80
/* RX data available bit for WBCIR_REG_SP3_LSR */
#define WBCIR_RX_AVAIL 0x01
/* RX data overrun error bit for WBCIR_REG_SP3_LSR */
#define WBCIR_RX_OVERRUN 0x02
/* TX End-Of-Transmission bit for WBCIR_REG_SP3_ASCR */
#define WBCIR_TX_EOT 0x04
/* RX disable bit for WBCIR_REG_SP3_ASCR */
#define WBCIR_RX_DISABLE 0x20
/* TX data underrun error bit for WBCIR_REG_SP3_ASCR */
#define WBCIR_TX_UNDERRUN 0x40
/* Extended mode enable bit for WBCIR_REG_SP3_EXCR1 */
#define WBCIR_EXT_ENABLE 0x01
/* Select compare register in WBCIR_REG_WCEIR_INDEX (bits 5 & 6) */
#define WBCIR_REGSEL_COMPARE 0x10
/* Select mask register in WBCIR_REG_WCEIR_INDEX (bits 5 & 6) */
#define WBCIR_REGSEL_MASK 0x20
/* Starting address of selected register in WBCIR_REG_WCEIR_INDEX */
#define WBCIR_REG_ADDR0 0x00
/* Enable carrier counter */
#define WBCIR_CNTR_EN 0x01
/* Reset carrier counter */
#define WBCIR_CNTR_R 0x02
/* Invert TX */
#define WBCIR_IRTX_INV 0x04
/* Receiver oversampling */
#define WBCIR_RX_T_OV 0x40
/* Valid banks for the SP3 UART */
enum wbcir_bank {
WBCIR_BANK_0 = 0x00,
WBCIR_BANK_1 = 0x80,
WBCIR_BANK_2 = 0xE0,
WBCIR_BANK_3 = 0xE4,
WBCIR_BANK_4 = 0xE8,
WBCIR_BANK_5 = 0xEC,
WBCIR_BANK_6 = 0xF0,
WBCIR_BANK_7 = 0xF4,
};
/* Supported power-on IR Protocols */
enum wbcir_protocol {
IR_PROTOCOL_RC5 = 0x0,
IR_PROTOCOL_NEC = 0x1,
IR_PROTOCOL_RC6 = 0x2,
};
/* Possible states for IR reception */
enum wbcir_rxstate {
WBCIR_RXSTATE_INACTIVE = 0,
WBCIR_RXSTATE_ACTIVE,
WBCIR_RXSTATE_ERROR
};
/* Possible states for IR transmission */
enum wbcir_txstate {
WBCIR_TXSTATE_INACTIVE = 0,
WBCIR_TXSTATE_ACTIVE,
WBCIR_TXSTATE_ERROR
};
/* Misc */
#define WBCIR_NAME "Winbond CIR"
#define WBCIR_ID_FAMILY 0xF1 /* Family ID for the WPCD376I */
#define WBCIR_ID_CHIP 0x04 /* Chip ID for the WPCD376I */
#define WAKEUP_IOMEM_LEN 0x10 /* Wake-Up I/O Reg Len */
#define EHFUNC_IOMEM_LEN 0x10 /* Enhanced Func I/O Reg Len */
#define SP_IOMEM_LEN 0x08 /* Serial Port 3 (IR) Reg Len */
/* Per-device data */
struct wbcir_data {
spinlock_t spinlock;
struct rc_dev *dev;
struct led_classdev led;
unsigned long wbase; /* Wake-Up Baseaddr */
unsigned long ebase; /* Enhanced Func. Baseaddr */
unsigned long sbase; /* Serial Port Baseaddr */
unsigned int irq; /* Serial Port IRQ */
u8 irqmask;
/* RX state */
enum wbcir_rxstate rxstate;
int carrier_report_enabled;
u32 pulse_duration;
/* TX state */
enum wbcir_txstate txstate;
u32 txlen;
u32 txoff;
u32 *txbuf;
u8 txmask;
u32 txcarrier;
};
static bool invert; /* default = 0 */
module_param(invert, bool, 0444);
MODULE_PARM_DESC(invert, "Invert the signal from the IR receiver");
static bool txandrx; /* default = 0 */
module_param(txandrx, bool, 0444);
MODULE_PARM_DESC(txandrx, "Allow simultaneous TX and RX");
/*****************************************************************************
*
* UTILITY FUNCTIONS
*
*****************************************************************************/
/* Caller needs to hold wbcir_lock */
static void
wbcir_set_bits(unsigned long addr, u8 bits, u8 mask)
{
u8 val;
val = inb(addr);
val = ((val & ~mask) | (bits & mask));
outb(val, addr);
}
/* Selects the register bank for the serial port */
static inline void
wbcir_select_bank(struct wbcir_data *data, enum wbcir_bank bank)
{
outb(bank, data->sbase + WBCIR_REG_SP3_BSR);
}
static inline void
wbcir_set_irqmask(struct wbcir_data *data, u8 irqmask)
{
if (data->irqmask == irqmask)
return;
wbcir_select_bank(data, WBCIR_BANK_0);
outb(irqmask, data->sbase + WBCIR_REG_SP3_IER);
data->irqmask = irqmask;
}
static enum led_brightness
wbcir_led_brightness_get(struct led_classdev *led_cdev)
{
struct wbcir_data *data = container_of(led_cdev,
struct wbcir_data,
led);
if (inb(data->ebase + WBCIR_REG_ECEIR_CTS) & WBCIR_LED_ENABLE)
return LED_FULL;
else
return LED_OFF;
}
static void
wbcir_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct wbcir_data *data = container_of(led_cdev,
struct wbcir_data,
led);
wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CTS,
brightness == LED_OFF ? 0x00 : WBCIR_LED_ENABLE,
WBCIR_LED_ENABLE);
}
/* Manchester encodes bits to RC6 message cells (see wbcir_shutdown) */
static u8
wbcir_to_rc6cells(u8 val)
{
u8 coded = 0x00;
int i;
val &= 0x0F;
for (i = 0; i < 4; i++) {
if (val & 0x01)
coded |= 0x02 << (i * 2);
else
coded |= 0x01 << (i * 2);
val >>= 1;
}
return coded;
}
/*****************************************************************************
*
* INTERRUPT FUNCTIONS
*
*****************************************************************************/
static void
wbcir_carrier_report(struct wbcir_data *data)
{
unsigned counter = inb(data->ebase + WBCIR_REG_ECEIR_CNT_LO) |
inb(data->ebase + WBCIR_REG_ECEIR_CNT_HI) << 8;
if (counter > 0 && counter < 0xffff) {
DEFINE_IR_RAW_EVENT(ev);
ev.carrier_report = 1;
ev.carrier = DIV_ROUND_CLOSEST(counter * 1000000u,
data->pulse_duration);
ir_raw_event_store(data->dev, &ev);
}
/* reset and restart the counter */
data->pulse_duration = 0;
wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CCTL, WBCIR_CNTR_R,
WBCIR_CNTR_EN | WBCIR_CNTR_R);
wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CCTL, WBCIR_CNTR_EN,
WBCIR_CNTR_EN | WBCIR_CNTR_R);
}
static void
wbcir_idle_rx(struct rc_dev *dev, bool idle)
{
struct wbcir_data *data = dev->priv;
if (!idle && data->rxstate == WBCIR_RXSTATE_INACTIVE)
data->rxstate = WBCIR_RXSTATE_ACTIVE;
if (idle && data->rxstate != WBCIR_RXSTATE_INACTIVE) {
data->rxstate = WBCIR_RXSTATE_INACTIVE;
if (data->carrier_report_enabled)
wbcir_carrier_report(data);
/* Tell hardware to go idle by setting RXINACTIVE */
outb(WBCIR_RX_DISABLE, data->sbase + WBCIR_REG_SP3_ASCR);
}
}
static void
wbcir_irq_rx(struct wbcir_data *data, struct pnp_dev *device)
{
u8 irdata;
DEFINE_IR_RAW_EVENT(rawir);
unsigned duration;
/* Since RXHDLEV is set, at least 8 bytes are in the FIFO */
while (inb(data->sbase + WBCIR_REG_SP3_LSR) & WBCIR_RX_AVAIL) {
irdata = inb(data->sbase + WBCIR_REG_SP3_RXDATA);
if (data->rxstate == WBCIR_RXSTATE_ERROR)
continue;
duration = ((irdata & 0x7F) + 1) *
(data->carrier_report_enabled ? 2 : 10);
rawir.pulse = irdata & 0x80 ? false : true;
rawir.duration = US_TO_NS(duration);
if (rawir.pulse)
data->pulse_duration += duration;
ir_raw_event_store_with_filter(data->dev, &rawir);
}
ir_raw_event_handle(data->dev);
}
static void
wbcir_irq_tx(struct wbcir_data *data)
{
unsigned int space;
unsigned int used;
u8 bytes[16];
u8 byte;
if (!data->txbuf)
return;
switch (data->txstate) {
case WBCIR_TXSTATE_INACTIVE:
/* TX FIFO empty */
space = 16;
break;
case WBCIR_TXSTATE_ACTIVE:
/* TX FIFO low (3 bytes or less) */
space = 13;
break;
case WBCIR_TXSTATE_ERROR:
space = 0;
break;
default:
return;
}
/*
* TX data is run-length coded in bytes: YXXXXXXX
* Y = space (1) or pulse (0)
* X = duration, encoded as (X + 1) * 10us (i.e 10 to 1280 us)
*/
for (used = 0; used < space && data->txoff != data->txlen; used++) {
if (data->txbuf[data->txoff] == 0) {
data->txoff++;
continue;
}
byte = min((u32)0x80, data->txbuf[data->txoff]);
data->txbuf[data->txoff] -= byte;
byte--;
byte |= (data->txoff % 2 ? 0x80 : 0x00); /* pulse/space */
bytes[used] = byte;
}
while (data->txbuf[data->txoff] == 0 && data->txoff != data->txlen)
data->txoff++;
if (used == 0) {
/* Finished */
if (data->txstate == WBCIR_TXSTATE_ERROR)
/* Clear TX underrun bit */
outb(WBCIR_TX_UNDERRUN, data->sbase + WBCIR_REG_SP3_ASCR);
wbcir_set_irqmask(data, WBCIR_IRQ_RX | WBCIR_IRQ_ERR);
kfree(data->txbuf);
data->txbuf = NULL;
data->txstate = WBCIR_TXSTATE_INACTIVE;
} else if (data->txoff == data->txlen) {
/* At the end of transmission, tell the hw before last byte */
outsb(data->sbase + WBCIR_REG_SP3_TXDATA, bytes, used - 1);
outb(WBCIR_TX_EOT, data->sbase + WBCIR_REG_SP3_ASCR);
outb(bytes[used - 1], data->sbase + WBCIR_REG_SP3_TXDATA);
wbcir_set_irqmask(data, WBCIR_IRQ_RX | WBCIR_IRQ_ERR |
WBCIR_IRQ_TX_EMPTY);
} else {
/* More data to follow... */
outsb(data->sbase + WBCIR_REG_SP3_RXDATA, bytes, used);
if (data->txstate == WBCIR_TXSTATE_INACTIVE) {
wbcir_set_irqmask(data, WBCIR_IRQ_RX | WBCIR_IRQ_ERR |
WBCIR_IRQ_TX_LOW);
data->txstate = WBCIR_TXSTATE_ACTIVE;
}
}
}
static irqreturn_t
wbcir_irq_handler(int irqno, void *cookie)
{
struct pnp_dev *device = cookie;
struct wbcir_data *data = pnp_get_drvdata(device);
unsigned long flags;
u8 status;
spin_lock_irqsave(&data->spinlock, flags);
wbcir_select_bank(data, WBCIR_BANK_0);
status = inb(data->sbase + WBCIR_REG_SP3_EIR);
status &= data->irqmask;
if (!status) {
spin_unlock_irqrestore(&data->spinlock, flags);
return IRQ_NONE;
}
if (status & WBCIR_IRQ_ERR) {
/* RX overflow? (read clears bit) */
if (inb(data->sbase + WBCIR_REG_SP3_LSR) & WBCIR_RX_OVERRUN) {
data->rxstate = WBCIR_RXSTATE_ERROR;
ir_raw_event_reset(data->dev);
}
/* TX underflow? */
if (inb(data->sbase + WBCIR_REG_SP3_ASCR) & WBCIR_TX_UNDERRUN)
data->txstate = WBCIR_TXSTATE_ERROR;
}
if (status & WBCIR_IRQ_RX)
wbcir_irq_rx(data, device);
if (status & (WBCIR_IRQ_TX_LOW | WBCIR_IRQ_TX_EMPTY))
wbcir_irq_tx(data);
spin_unlock_irqrestore(&data->spinlock, flags);
return IRQ_HANDLED;
}
/*****************************************************************************
*
* RC-CORE INTERFACE FUNCTIONS
*
*****************************************************************************/
static int
wbcir_set_carrier_report(struct rc_dev *dev, int enable)
{
struct wbcir_data *data = dev->priv;
unsigned long flags;
spin_lock_irqsave(&data->spinlock, flags);
if (data->carrier_report_enabled == enable) {
spin_unlock_irqrestore(&data->spinlock, flags);
return 0;
}
data->pulse_duration = 0;
wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CCTL, WBCIR_CNTR_R,
WBCIR_CNTR_EN | WBCIR_CNTR_R);
if (enable && data->dev->idle)
wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CCTL,
WBCIR_CNTR_EN, WBCIR_CNTR_EN | WBCIR_CNTR_R);
/* Set a higher sampling resolution if carrier reports are enabled */
wbcir_select_bank(data, WBCIR_BANK_2);
data->dev->rx_resolution = US_TO_NS(enable ? 2 : 10);
outb(enable ? 0x03 : 0x0f, data->sbase + WBCIR_REG_SP3_BGDL);
outb(0x00, data->sbase + WBCIR_REG_SP3_BGDH);
/* Enable oversampling if carrier reports are enabled */
wbcir_select_bank(data, WBCIR_BANK_7);
wbcir_set_bits(data->sbase + WBCIR_REG_SP3_RCCFG,
enable ? WBCIR_RX_T_OV : 0, WBCIR_RX_T_OV);
data->carrier_report_enabled = enable;
spin_unlock_irqrestore(&data->spinlock, flags);
return 0;
}
static int
wbcir_txcarrier(struct rc_dev *dev, u32 carrier)
{
struct wbcir_data *data = dev->priv;
unsigned long flags;
u8 val;
u32 freq;
freq = DIV_ROUND_CLOSEST(carrier, 1000);
if (freq < 30 || freq > 60)
return -EINVAL;
switch (freq) {
case 58:
case 59:
case 60:
val = freq - 58;
freq *= 1000;
break;
case 57:
val = freq - 27;
freq = 56900;
break;
default:
val = freq - 27;
freq *= 1000;
break;
}
spin_lock_irqsave(&data->spinlock, flags);
if (data->txstate != WBCIR_TXSTATE_INACTIVE) {
spin_unlock_irqrestore(&data->spinlock, flags);
return -EBUSY;
}
if (data->txcarrier != freq) {
wbcir_select_bank(data, WBCIR_BANK_7);
wbcir_set_bits(data->sbase + WBCIR_REG_SP3_IRTXMC, val, 0x1F);
data->txcarrier = freq;
}
spin_unlock_irqrestore(&data->spinlock, flags);
return 0;
}
static int
wbcir_txmask(struct rc_dev *dev, u32 mask)
{
struct wbcir_data *data = dev->priv;
unsigned long flags;
u8 val;
/* return the number of transmitters */
if (mask > 15)
return 4;
/* Four outputs, only one output can be enabled at a time */
switch (mask) {
case 0x1:
val = 0x0;
break;
case 0x2:
val = 0x1;
break;
case 0x4:
val = 0x2;
break;
case 0x8:
val = 0x3;
break;
default:
return -EINVAL;
}
spin_lock_irqsave(&data->spinlock, flags);
if (data->txstate != WBCIR_TXSTATE_INACTIVE) {
spin_unlock_irqrestore(&data->spinlock, flags);
return -EBUSY;
}
if (data->txmask != mask) {
wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CTS, val, 0x0c);
data->txmask = mask;
}
spin_unlock_irqrestore(&data->spinlock, flags);
return 0;
}
static int
wbcir_tx(struct rc_dev *dev, unsigned *b, unsigned count)
{
struct wbcir_data *data = dev->priv;
unsigned *buf;
unsigned i;
unsigned long flags;
buf = kmalloc_array(count, sizeof(*b), GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Convert values to multiples of 10us */
for (i = 0; i < count; i++)
buf[i] = DIV_ROUND_CLOSEST(b[i], 10);
/* Not sure if this is possible, but better safe than sorry */
spin_lock_irqsave(&data->spinlock, flags);
if (data->txstate != WBCIR_TXSTATE_INACTIVE) {
spin_unlock_irqrestore(&data->spinlock, flags);
kfree(buf);
return -EBUSY;
}
/* Fill the TX fifo once, the irq handler will do the rest */
data->txbuf = buf;
data->txlen = count;
data->txoff = 0;
wbcir_irq_tx(data);
/* We're done */
spin_unlock_irqrestore(&data->spinlock, flags);
return count;
}
/*****************************************************************************
*
* SETUP/INIT/SUSPEND/RESUME FUNCTIONS
*
*****************************************************************************/
static void
wbcir_shutdown(struct pnp_dev *device)
{
struct device *dev = &device->dev;
struct wbcir_data *data = pnp_get_drvdata(device);
struct rc_dev *rc = data->dev;
bool do_wake = true;
u8 match[11];
u8 mask[11];
u8 rc6_csl = 0;
u8 proto;
u32 wake_sc = rc->scancode_wakeup_filter.data;
u32 mask_sc = rc->scancode_wakeup_filter.mask;
int i;
memset(match, 0, sizeof(match));
memset(mask, 0, sizeof(mask));
if (!mask_sc || !device_may_wakeup(dev)) {
do_wake = false;
goto finish;
}
switch (rc->wakeup_protocol) {
case RC_TYPE_RC5:
/* Mask = 13 bits, ex toggle */
mask[0] = (mask_sc & 0x003f);
mask[0] |= (mask_sc & 0x0300) >> 2;
mask[1] = (mask_sc & 0x1c00) >> 10;
if (mask_sc & 0x0040) /* 2nd start bit */
match[1] |= 0x10;
match[0] = (wake_sc & 0x003F); /* 6 command bits */
match[0] |= (wake_sc & 0x0300) >> 2; /* 2 address bits */
match[1] = (wake_sc & 0x1c00) >> 10; /* 3 address bits */
if (!(wake_sc & 0x0040)) /* 2nd start bit */
match[1] |= 0x10;
proto = IR_PROTOCOL_RC5;
break;
case RC_TYPE_NEC:
mask[1] = bitrev8(mask_sc);
mask[0] = mask[1];
mask[3] = bitrev8(mask_sc >> 8);
mask[2] = mask[3];
match[1] = bitrev8(wake_sc);
match[0] = ~match[1];
match[3] = bitrev8(wake_sc >> 8);
match[2] = ~match[3];
proto = IR_PROTOCOL_NEC;
break;
case RC_TYPE_NECX:
mask[1] = bitrev8(mask_sc);
mask[0] = mask[1];
mask[2] = bitrev8(mask_sc >> 8);
mask[3] = bitrev8(mask_sc >> 16);
match[1] = bitrev8(wake_sc);
match[0] = ~match[1];
match[2] = bitrev8(wake_sc >> 8);
match[3] = bitrev8(wake_sc >> 16);
proto = IR_PROTOCOL_NEC;
break;
case RC_TYPE_NEC32:
mask[0] = bitrev8(mask_sc);
mask[1] = bitrev8(mask_sc >> 8);
mask[2] = bitrev8(mask_sc >> 16);
mask[3] = bitrev8(mask_sc >> 24);
match[0] = bitrev8(wake_sc);
match[1] = bitrev8(wake_sc >> 8);
match[2] = bitrev8(wake_sc >> 16);
match[3] = bitrev8(wake_sc >> 24);
proto = IR_PROTOCOL_NEC;
break;
case RC_TYPE_RC6_0:
/* Command */
match[0] = wbcir_to_rc6cells(wake_sc >> 0);
mask[0] = wbcir_to_rc6cells(mask_sc >> 0);
match[1] = wbcir_to_rc6cells(wake_sc >> 4);
mask[1] = wbcir_to_rc6cells(mask_sc >> 4);
/* Address */
match[2] = wbcir_to_rc6cells(wake_sc >> 8);
mask[2] = wbcir_to_rc6cells(mask_sc >> 8);
match[3] = wbcir_to_rc6cells(wake_sc >> 12);
mask[3] = wbcir_to_rc6cells(mask_sc >> 12);
/* Header */
match[4] = 0x50; /* mode1 = mode0 = 0, ignore toggle */
mask[4] = 0xF0;
match[5] = 0x09; /* start bit = 1, mode2 = 0 */
mask[5] = 0x0F;
rc6_csl = 44;
proto = IR_PROTOCOL_RC6;
break;
case RC_TYPE_RC6_6A_24:
case RC_TYPE_RC6_6A_32:
case RC_TYPE_RC6_MCE:
i = 0;
/* Command */
match[i] = wbcir_to_rc6cells(wake_sc >> 0);
mask[i++] = wbcir_to_rc6cells(mask_sc >> 0);
match[i] = wbcir_to_rc6cells(wake_sc >> 4);
mask[i++] = wbcir_to_rc6cells(mask_sc >> 4);
/* Address + Toggle */
match[i] = wbcir_to_rc6cells(wake_sc >> 8);
mask[i++] = wbcir_to_rc6cells(mask_sc >> 8);
match[i] = wbcir_to_rc6cells(wake_sc >> 12);
mask[i++] = wbcir_to_rc6cells(mask_sc >> 12);
/* Customer bits 7 - 0 */
match[i] = wbcir_to_rc6cells(wake_sc >> 16);
mask[i++] = wbcir_to_rc6cells(mask_sc >> 16);
if (rc->wakeup_protocol == RC_TYPE_RC6_6A_20) {
rc6_csl = 52;
} else {
match[i] = wbcir_to_rc6cells(wake_sc >> 20);
mask[i++] = wbcir_to_rc6cells(mask_sc >> 20);
if (rc->wakeup_protocol == RC_TYPE_RC6_6A_24) {
rc6_csl = 60;
} else {
/* Customer range bit and bits 15 - 8 */
match[i] = wbcir_to_rc6cells(wake_sc >> 24);
mask[i++] = wbcir_to_rc6cells(mask_sc >> 24);
match[i] = wbcir_to_rc6cells(wake_sc >> 28);
mask[i++] = wbcir_to_rc6cells(mask_sc >> 28);
rc6_csl = 76;
}
}
/* Header */
match[i] = 0x93; /* mode1 = mode0 = 1, submode = 0 */
mask[i++] = 0xFF;
match[i] = 0x0A; /* start bit = 1, mode2 = 1 */
mask[i++] = 0x0F;
proto = IR_PROTOCOL_RC6;
break;
default:
do_wake = false;
break;
}
finish:
if (do_wake) {
/* Set compare and compare mask */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_INDEX,
WBCIR_REGSEL_COMPARE | WBCIR_REG_ADDR0,
0x3F);
outsb(data->wbase + WBCIR_REG_WCEIR_DATA, match, 11);
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_INDEX,
WBCIR_REGSEL_MASK | WBCIR_REG_ADDR0,
0x3F);
outsb(data->wbase + WBCIR_REG_WCEIR_DATA, mask, 11);
/* RC6 Compare String Len */
outb(rc6_csl, data->wbase + WBCIR_REG_WCEIR_CSL);
/* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17);
/* Clear BUFF_EN, Clear END_EN, Set MATCH_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x01, 0x07);
/* Set CEIR_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL,
(proto << 4) | 0x01, 0x31);
} else {
/* Clear BUFF_EN, Clear END_EN, Clear MATCH_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07);
/* Clear CEIR_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, 0x00, 0x01);
}
/*
* ACPI will set the HW disable bit for SP3 which means that the
* output signals are left in an undefined state which may cause
* spurious interrupts which we need to ignore until the hardware
* is reinitialized.
*/
wbcir_set_irqmask(data, WBCIR_IRQ_NONE);
disable_irq(data->irq);
}
/*
* Wakeup handling is done on shutdown.
*/
static int
wbcir_set_wakeup_filter(struct rc_dev *rc, struct rc_scancode_filter *filter)
{
return 0;
}
static int
wbcir_suspend(struct pnp_dev *device, pm_message_t state)
{
struct wbcir_data *data = pnp_get_drvdata(device);
led_classdev_suspend(&data->led);
wbcir_shutdown(device);
return 0;
}
static void
wbcir_init_hw(struct wbcir_data *data)
{
/* Disable interrupts */
wbcir_set_irqmask(data, WBCIR_IRQ_NONE);
/* Set RX_INV, Clear CEIR_EN (needed for the led) */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, invert ? 8 : 0, 0x09);
/* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17);
/* Clear BUFF_EN, Clear END_EN, Clear MATCH_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07);
/* Set RC5 cell time to correspond to 36 kHz */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CFG1, 0x4A, 0x7F);
/* Set IRTX_INV */
if (invert)
outb(WBCIR_IRTX_INV, data->ebase + WBCIR_REG_ECEIR_CCTL);
else
outb(0x00, data->ebase + WBCIR_REG_ECEIR_CCTL);
/*
* Clear IR LED, set SP3 clock to 24Mhz, set TX mask to IRTX1,
* set SP3_IRRX_SW to binary 01, helpfully not documented
*/
outb(0x10, data->ebase + WBCIR_REG_ECEIR_CTS);
data->txmask = 0x1;
/* Enable extended mode */
wbcir_select_bank(data, WBCIR_BANK_2);
outb(WBCIR_EXT_ENABLE, data->sbase + WBCIR_REG_SP3_EXCR1);
/*
* Configure baud generator, IR data will be sampled at
* a bitrate of: (24Mhz * prescaler) / (divisor * 16).
*
* The ECIR registers include a flag to change the
* 24Mhz clock freq to 48Mhz.
*
* It's not documented in the specs, but fifo levels
* other than 16 seems to be unsupported.
*/
/* prescaler 1.0, tx/rx fifo lvl 16 */
outb(0x30, data->sbase + WBCIR_REG_SP3_EXCR2);
/* Set baud divisor to sample every 10 us */
outb(0x0f, data->sbase + WBCIR_REG_SP3_BGDL);
outb(0x00, data->sbase + WBCIR_REG_SP3_BGDH);
/* Set CEIR mode */
wbcir_select_bank(data, WBCIR_BANK_0);
outb(0xC0, data->sbase + WBCIR_REG_SP3_MCR);
inb(data->sbase + WBCIR_REG_SP3_LSR); /* Clear LSR */
inb(data->sbase + WBCIR_REG_SP3_MSR); /* Clear MSR */
/* Disable RX demod, enable run-length enc/dec, set freq span */
wbcir_select_bank(data, WBCIR_BANK_7);
outb(0x90, data->sbase + WBCIR_REG_SP3_RCCFG);
/* Disable timer */
wbcir_select_bank(data, WBCIR_BANK_4);
outb(0x00, data->sbase + WBCIR_REG_SP3_IRCR1);
/* Disable MSR interrupt, clear AUX_IRX, mask RX during TX? */
wbcir_select_bank(data, WBCIR_BANK_5);
outb(txandrx ? 0x03 : 0x02, data->sbase + WBCIR_REG_SP3_IRCR2);
/* Disable CRC */
wbcir_select_bank(data, WBCIR_BANK_6);
outb(0x20, data->sbase + WBCIR_REG_SP3_IRCR3);
/* Set RX demodulation freq, not really used */
wbcir_select_bank(data, WBCIR_BANK_7);
outb(0xF2, data->sbase + WBCIR_REG_SP3_IRRXDC);
/* Set TX modulation, 36kHz, 7us pulse width */
outb(0x69, data->sbase + WBCIR_REG_SP3_IRTXMC);
data->txcarrier = 36000;
/* Set invert and pin direction */
if (invert)
outb(0x10, data->sbase + WBCIR_REG_SP3_IRCFG4);
else
outb(0x00, data->sbase + WBCIR_REG_SP3_IRCFG4);
/* Set FIFO thresholds (RX = 8, TX = 3), reset RX/TX */
wbcir_select_bank(data, WBCIR_BANK_0);
outb(0x97, data->sbase + WBCIR_REG_SP3_FCR);
/* Clear AUX status bits */
outb(0xE0, data->sbase + WBCIR_REG_SP3_ASCR);
/* Clear RX state */
data->rxstate = WBCIR_RXSTATE_INACTIVE;
ir_raw_event_reset(data->dev);
ir_raw_event_set_idle(data->dev, true);
/* Clear TX state */
if (data->txstate == WBCIR_TXSTATE_ACTIVE) {
kfree(data->txbuf);
data->txbuf = NULL;
data->txstate = WBCIR_TXSTATE_INACTIVE;
}
/* Enable interrupts */
wbcir_set_irqmask(data, WBCIR_IRQ_RX | WBCIR_IRQ_ERR);
}
static int
wbcir_resume(struct pnp_dev *device)
{
struct wbcir_data *data = pnp_get_drvdata(device);
wbcir_init_hw(data);
enable_irq(data->irq);
led_classdev_resume(&data->led);
return 0;
}
static int
wbcir_probe(struct pnp_dev *device, const struct pnp_device_id *dev_id)
{
struct device *dev = &device->dev;
struct wbcir_data *data;
int err;
if (!(pnp_port_len(device, 0) == EHFUNC_IOMEM_LEN &&
pnp_port_len(device, 1) == WAKEUP_IOMEM_LEN &&
pnp_port_len(device, 2) == SP_IOMEM_LEN)) {
dev_err(dev, "Invalid resources\n");
return -ENODEV;
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
pnp_set_drvdata(device, data);
spin_lock_init(&data->spinlock);
data->ebase = pnp_port_start(device, 0);
data->wbase = pnp_port_start(device, 1);
data->sbase = pnp_port_start(device, 2);
data->irq = pnp_irq(device, 0);
if (data->wbase == 0 || data->ebase == 0 ||
data->sbase == 0 || data->irq == 0) {
err = -ENODEV;
dev_err(dev, "Invalid resources\n");
goto exit_free_data;
}
dev_dbg(&device->dev, "Found device (w: 0x%lX, e: 0x%lX, s: 0x%lX, i: %u)\n",
data->wbase, data->ebase, data->sbase, data->irq);
data->led.name = "cir::activity";
data->led.default_trigger = "rc-feedback";
data->led.brightness_set = wbcir_led_brightness_set;
data->led.brightness_get = wbcir_led_brightness_get;
err = led_classdev_register(&device->dev, &data->led);
if (err)
goto exit_free_data;
data->dev = rc_allocate_device(RC_DRIVER_IR_RAW);
if (!data->dev) {
err = -ENOMEM;
goto exit_unregister_led;
}
data->dev->driver_name = DRVNAME;
data->dev->input_name = WBCIR_NAME;
data->dev->input_phys = "wbcir/cir0";
data->dev->input_id.bustype = BUS_HOST;
data->dev->input_id.vendor = PCI_VENDOR_ID_WINBOND;
data->dev->input_id.product = WBCIR_ID_FAMILY;
data->dev->input_id.version = WBCIR_ID_CHIP;
data->dev->map_name = RC_MAP_RC6_MCE;
data->dev->s_idle = wbcir_idle_rx;
data->dev->s_carrier_report = wbcir_set_carrier_report;
data->dev->s_tx_mask = wbcir_txmask;
data->dev->s_tx_carrier = wbcir_txcarrier;
data->dev->tx_ir = wbcir_tx;
data->dev->priv = data;
data->dev->dev.parent = &device->dev;
data->dev->min_timeout = 1;
data->dev->timeout = IR_DEFAULT_TIMEOUT;
data->dev->max_timeout = 10 * IR_DEFAULT_TIMEOUT;
data->dev->rx_resolution = US_TO_NS(2);
data->dev->allowed_protocols = RC_BIT_ALL_IR_DECODER;
data->dev->allowed_wakeup_protocols = RC_BIT_NEC | RC_BIT_NECX |
RC_BIT_NEC32 | RC_BIT_RC5 | RC_BIT_RC6_0 |
RC_BIT_RC6_6A_20 | RC_BIT_RC6_6A_24 |
RC_BIT_RC6_6A_32 | RC_BIT_RC6_MCE;
data->dev->wakeup_protocol = RC_TYPE_RC6_MCE;
data->dev->scancode_wakeup_filter.data = 0x800f040c;
data->dev->scancode_wakeup_filter.mask = 0xffff7fff;
data->dev->s_wakeup_filter = wbcir_set_wakeup_filter;
err = rc_register_device(data->dev);
if (err)
goto exit_free_rc;
if (!request_region(data->wbase, WAKEUP_IOMEM_LEN, DRVNAME)) {
dev_err(dev, "Region 0x%lx-0x%lx already in use!\n",
data->wbase, data->wbase + WAKEUP_IOMEM_LEN - 1);
err = -EBUSY;
goto exit_unregister_device;
}
if (!request_region(data->ebase, EHFUNC_IOMEM_LEN, DRVNAME)) {
dev_err(dev, "Region 0x%lx-0x%lx already in use!\n",
data->ebase, data->ebase + EHFUNC_IOMEM_LEN - 1);
err = -EBUSY;
goto exit_release_wbase;
}
if (!request_region(data->sbase, SP_IOMEM_LEN, DRVNAME)) {
dev_err(dev, "Region 0x%lx-0x%lx already in use!\n",
data->sbase, data->sbase + SP_IOMEM_LEN - 1);
err = -EBUSY;
goto exit_release_ebase;
}
err = request_irq(data->irq, wbcir_irq_handler,
0, DRVNAME, device);
if (err) {
dev_err(dev, "Failed to claim IRQ %u\n", data->irq);
err = -EBUSY;
goto exit_release_sbase;
}
device_init_wakeup(&device->dev, 1);
wbcir_init_hw(data);
return 0;
exit_release_sbase:
release_region(data->sbase, SP_IOMEM_LEN);
exit_release_ebase:
release_region(data->ebase, EHFUNC_IOMEM_LEN);
exit_release_wbase:
release_region(data->wbase, WAKEUP_IOMEM_LEN);
exit_unregister_device:
rc_unregister_device(data->dev);
data->dev = NULL;
exit_free_rc:
rc_free_device(data->dev);
exit_unregister_led:
led_classdev_unregister(&data->led);
exit_free_data:
kfree(data);
pnp_set_drvdata(device, NULL);
exit:
return err;
}
static void
wbcir_remove(struct pnp_dev *device)
{
struct wbcir_data *data = pnp_get_drvdata(device);
/* Disable interrupts */
wbcir_set_irqmask(data, WBCIR_IRQ_NONE);
free_irq(data->irq, device);
/* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17);
/* Clear CEIR_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, 0x00, 0x01);
/* Clear BUFF_EN, END_EN, MATCH_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07);
rc_unregister_device(data->dev);
led_classdev_unregister(&data->led);
/* This is ok since &data->led isn't actually used */
wbcir_led_brightness_set(&data->led, LED_OFF);
release_region(data->wbase, WAKEUP_IOMEM_LEN);
release_region(data->ebase, EHFUNC_IOMEM_LEN);
release_region(data->sbase, SP_IOMEM_LEN);
kfree(data);
pnp_set_drvdata(device, NULL);
}
static const struct pnp_device_id wbcir_ids[] = {
{ "WEC1022", 0 },
{ "", 0 }
};
MODULE_DEVICE_TABLE(pnp, wbcir_ids);
static struct pnp_driver wbcir_driver = {
.name = DRVNAME,
.id_table = wbcir_ids,
.probe = wbcir_probe,
.remove = wbcir_remove,
.suspend = wbcir_suspend,
.resume = wbcir_resume,
.shutdown = wbcir_shutdown
};
static int __init
wbcir_init(void)
{
int ret;
ret = pnp_register_driver(&wbcir_driver);
if (ret)
pr_err("Unable to register driver\n");
return ret;
}
static void __exit
wbcir_exit(void)
{
pnp_unregister_driver(&wbcir_driver);
}
module_init(wbcir_init);
module_exit(wbcir_exit);
MODULE_AUTHOR("David Härdeman <david@hardeman.nu>");
MODULE_DESCRIPTION("Winbond SuperI/O Consumer IR Driver");
MODULE_LICENSE("GPL");