WSL2-Linux-Kernel/kernel/trace/bpf_trace.c

335 строки
8.3 KiB
C

/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/uaccess.h>
#include <linux/ctype.h>
#include "trace.h"
static DEFINE_PER_CPU(int, bpf_prog_active);
/**
* trace_call_bpf - invoke BPF program
* @prog: BPF program
* @ctx: opaque context pointer
*
* kprobe handlers execute BPF programs via this helper.
* Can be used from static tracepoints in the future.
*
* Return: BPF programs always return an integer which is interpreted by
* kprobe handler as:
* 0 - return from kprobe (event is filtered out)
* 1 - store kprobe event into ring buffer
* Other values are reserved and currently alias to 1
*/
unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
{
unsigned int ret;
if (in_nmi()) /* not supported yet */
return 1;
preempt_disable();
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
/*
* since some bpf program is already running on this cpu,
* don't call into another bpf program (same or different)
* and don't send kprobe event into ring-buffer,
* so return zero here
*/
ret = 0;
goto out;
}
rcu_read_lock();
ret = BPF_PROG_RUN(prog, ctx);
rcu_read_unlock();
out:
__this_cpu_dec(bpf_prog_active);
preempt_enable();
return ret;
}
EXPORT_SYMBOL_GPL(trace_call_bpf);
static u64 bpf_probe_read(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
void *dst = (void *) (long) r1;
int size = (int) r2;
void *unsafe_ptr = (void *) (long) r3;
return probe_kernel_read(dst, unsafe_ptr, size);
}
static const struct bpf_func_proto bpf_probe_read_proto = {
.func = bpf_probe_read,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_STACK,
.arg2_type = ARG_CONST_STACK_SIZE,
.arg3_type = ARG_ANYTHING,
};
/*
* limited trace_printk()
* only %d %u %x %ld %lu %lx %lld %llu %llx %p %s conversion specifiers allowed
*/
static u64 bpf_trace_printk(u64 r1, u64 fmt_size, u64 r3, u64 r4, u64 r5)
{
char *fmt = (char *) (long) r1;
bool str_seen = false;
int mod[3] = {};
int fmt_cnt = 0;
u64 unsafe_addr;
char buf[64];
int i;
/*
* bpf_check()->check_func_arg()->check_stack_boundary()
* guarantees that fmt points to bpf program stack,
* fmt_size bytes of it were initialized and fmt_size > 0
*/
if (fmt[--fmt_size] != 0)
return -EINVAL;
/* check format string for allowed specifiers */
for (i = 0; i < fmt_size; i++) {
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
return -EINVAL;
if (fmt[i] != '%')
continue;
if (fmt_cnt >= 3)
return -EINVAL;
/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
i++;
if (fmt[i] == 'l') {
mod[fmt_cnt]++;
i++;
} else if (fmt[i] == 'p' || fmt[i] == 's') {
mod[fmt_cnt]++;
i++;
if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
return -EINVAL;
fmt_cnt++;
if (fmt[i - 1] == 's') {
if (str_seen)
/* allow only one '%s' per fmt string */
return -EINVAL;
str_seen = true;
switch (fmt_cnt) {
case 1:
unsafe_addr = r3;
r3 = (long) buf;
break;
case 2:
unsafe_addr = r4;
r4 = (long) buf;
break;
case 3:
unsafe_addr = r5;
r5 = (long) buf;
break;
}
buf[0] = 0;
strncpy_from_unsafe(buf,
(void *) (long) unsafe_addr,
sizeof(buf));
}
continue;
}
if (fmt[i] == 'l') {
mod[fmt_cnt]++;
i++;
}
if (fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x')
return -EINVAL;
fmt_cnt++;
}
return __trace_printk(1/* fake ip will not be printed */, fmt,
mod[0] == 2 ? r3 : mod[0] == 1 ? (long) r3 : (u32) r3,
mod[1] == 2 ? r4 : mod[1] == 1 ? (long) r4 : (u32) r4,
mod[2] == 2 ? r5 : mod[2] == 1 ? (long) r5 : (u32) r5);
}
static const struct bpf_func_proto bpf_trace_printk_proto = {
.func = bpf_trace_printk,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_STACK,
.arg2_type = ARG_CONST_STACK_SIZE,
};
const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
{
/*
* this program might be calling bpf_trace_printk,
* so allocate per-cpu printk buffers
*/
trace_printk_init_buffers();
return &bpf_trace_printk_proto;
}
static u64 bpf_perf_event_read(u64 r1, u64 index, u64 r3, u64 r4, u64 r5)
{
struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct perf_event *event;
if (unlikely(index >= array->map.max_entries))
return -E2BIG;
event = (struct perf_event *)array->ptrs[index];
if (!event)
return -ENOENT;
/* make sure event is local and doesn't have pmu::count */
if (event->oncpu != smp_processor_id() ||
event->pmu->count)
return -EINVAL;
/*
* we don't know if the function is run successfully by the
* return value. It can be judged in other places, such as
* eBPF programs.
*/
return perf_event_read_local(event);
}
static const struct bpf_func_proto bpf_perf_event_read_proto = {
.func = bpf_perf_event_read,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
static u64 bpf_perf_event_output(u64 r1, u64 r2, u64 index, u64 r4, u64 size)
{
struct pt_regs *regs = (struct pt_regs *) (long) r1;
struct bpf_map *map = (struct bpf_map *) (long) r2;
struct bpf_array *array = container_of(map, struct bpf_array, map);
void *data = (void *) (long) r4;
struct perf_sample_data sample_data;
struct perf_event *event;
struct perf_raw_record raw = {
.size = size,
.data = data,
};
if (unlikely(index >= array->map.max_entries))
return -E2BIG;
event = (struct perf_event *)array->ptrs[index];
if (unlikely(!event))
return -ENOENT;
if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
return -EINVAL;
if (unlikely(event->oncpu != smp_processor_id()))
return -EOPNOTSUPP;
perf_sample_data_init(&sample_data, 0, 0);
sample_data.raw = &raw;
perf_event_output(event, &sample_data, regs);
return 0;
}
static const struct bpf_func_proto bpf_perf_event_output_proto = {
.func = bpf_perf_event_output,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_STACK,
.arg5_type = ARG_CONST_STACK_SIZE,
};
static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
{
switch (func_id) {
case BPF_FUNC_map_lookup_elem:
return &bpf_map_lookup_elem_proto;
case BPF_FUNC_map_update_elem:
return &bpf_map_update_elem_proto;
case BPF_FUNC_map_delete_elem:
return &bpf_map_delete_elem_proto;
case BPF_FUNC_probe_read:
return &bpf_probe_read_proto;
case BPF_FUNC_ktime_get_ns:
return &bpf_ktime_get_ns_proto;
case BPF_FUNC_tail_call:
return &bpf_tail_call_proto;
case BPF_FUNC_get_current_pid_tgid:
return &bpf_get_current_pid_tgid_proto;
case BPF_FUNC_get_current_uid_gid:
return &bpf_get_current_uid_gid_proto;
case BPF_FUNC_get_current_comm:
return &bpf_get_current_comm_proto;
case BPF_FUNC_trace_printk:
return bpf_get_trace_printk_proto();
case BPF_FUNC_get_smp_processor_id:
return &bpf_get_smp_processor_id_proto;
case BPF_FUNC_perf_event_read:
return &bpf_perf_event_read_proto;
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto;
default:
return NULL;
}
}
/* bpf+kprobe programs can access fields of 'struct pt_regs' */
static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type)
{
/* check bounds */
if (off < 0 || off >= sizeof(struct pt_regs))
return false;
/* only read is allowed */
if (type != BPF_READ)
return false;
/* disallow misaligned access */
if (off % size != 0)
return false;
return true;
}
static const struct bpf_verifier_ops kprobe_prog_ops = {
.get_func_proto = kprobe_prog_func_proto,
.is_valid_access = kprobe_prog_is_valid_access,
};
static struct bpf_prog_type_list kprobe_tl = {
.ops = &kprobe_prog_ops,
.type = BPF_PROG_TYPE_KPROBE,
};
static int __init register_kprobe_prog_ops(void)
{
bpf_register_prog_type(&kprobe_tl);
return 0;
}
late_initcall(register_kprobe_prog_ops);