WSL2-Linux-Kernel/arch/powerpc/kernel/traps.c

1845 строки
47 KiB
C

/*
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
* Copyright 2007-2010 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Modified by Cort Dougan (cort@cs.nmt.edu)
* and Paul Mackerras (paulus@samba.org)
*/
/*
* This file handles the architecture-dependent parts of hardware exceptions
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/prctl.h>
#include <linux/delay.h>
#include <linux/kprobes.h>
#include <linux/kexec.h>
#include <linux/backlight.h>
#include <linux/bug.h>
#include <linux/kdebug.h>
#include <linux/debugfs.h>
#include <linux/ratelimit.h>
#include <linux/context_tracking.h>
#include <asm/emulated_ops.h>
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/rtas.h>
#include <asm/pmc.h>
#ifdef CONFIG_PPC32
#include <asm/reg.h>
#endif
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#include <asm/processor.h>
#include <asm/tm.h>
#endif
#include <asm/kexec.h>
#include <asm/ppc-opcode.h>
#include <asm/rio.h>
#include <asm/fadump.h>
#include <asm/switch_to.h>
#include <asm/tm.h>
#include <asm/debug.h>
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
int (*__debugger)(struct pt_regs *regs) __read_mostly;
int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
EXPORT_SYMBOL(__debugger);
EXPORT_SYMBOL(__debugger_ipi);
EXPORT_SYMBOL(__debugger_bpt);
EXPORT_SYMBOL(__debugger_sstep);
EXPORT_SYMBOL(__debugger_iabr_match);
EXPORT_SYMBOL(__debugger_break_match);
EXPORT_SYMBOL(__debugger_fault_handler);
#endif
/* Transactional Memory trap debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif
/*
* Trap & Exception support
*/
#ifdef CONFIG_PMAC_BACKLIGHT
static void pmac_backlight_unblank(void)
{
mutex_lock(&pmac_backlight_mutex);
if (pmac_backlight) {
struct backlight_properties *props;
props = &pmac_backlight->props;
props->brightness = props->max_brightness;
props->power = FB_BLANK_UNBLANK;
backlight_update_status(pmac_backlight);
}
mutex_unlock(&pmac_backlight_mutex);
}
#else
static inline void pmac_backlight_unblank(void) { }
#endif
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
static int die_counter;
static unsigned __kprobes long oops_begin(struct pt_regs *regs)
{
int cpu;
unsigned long flags;
if (debugger(regs))
return 1;
oops_enter();
/* racy, but better than risking deadlock. */
raw_local_irq_save(flags);
cpu = smp_processor_id();
if (!arch_spin_trylock(&die_lock)) {
if (cpu == die_owner)
/* nested oops. should stop eventually */;
else
arch_spin_lock(&die_lock);
}
die_nest_count++;
die_owner = cpu;
console_verbose();
bust_spinlocks(1);
if (machine_is(powermac))
pmac_backlight_unblank();
return flags;
}
static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
int signr)
{
bust_spinlocks(0);
die_owner = -1;
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
die_nest_count--;
oops_exit();
printk("\n");
if (!die_nest_count)
/* Nest count reaches zero, release the lock. */
arch_spin_unlock(&die_lock);
raw_local_irq_restore(flags);
crash_fadump(regs, "die oops");
/*
* A system reset (0x100) is a request to dump, so we always send
* it through the crashdump code.
*/
if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
crash_kexec(regs);
/*
* We aren't the primary crash CPU. We need to send it
* to a holding pattern to avoid it ending up in the panic
* code.
*/
crash_kexec_secondary(regs);
}
if (!signr)
return;
/*
* While our oops output is serialised by a spinlock, output
* from panic() called below can race and corrupt it. If we
* know we are going to panic, delay for 1 second so we have a
* chance to get clean backtraces from all CPUs that are oopsing.
*/
if (in_interrupt() || panic_on_oops || !current->pid ||
is_global_init(current)) {
mdelay(MSEC_PER_SEC);
}
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops)
panic("Fatal exception");
do_exit(signr);
}
static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
#ifdef CONFIG_PREEMPT
printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
printk("SMP NR_CPUS=%d ", NR_CPUS);
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("DEBUG_PAGEALLOC ");
#endif
#ifdef CONFIG_NUMA
printk("NUMA ");
#endif
printk("%s\n", ppc_md.name ? ppc_md.name : "");
if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
return 1;
print_modules();
show_regs(regs);
return 0;
}
void die(const char *str, struct pt_regs *regs, long err)
{
unsigned long flags = oops_begin(regs);
if (__die(str, regs, err))
err = 0;
oops_end(flags, regs, err);
}
void user_single_step_siginfo(struct task_struct *tsk,
struct pt_regs *regs, siginfo_t *info)
{
memset(info, 0, sizeof(*info));
info->si_signo = SIGTRAP;
info->si_code = TRAP_TRACE;
info->si_addr = (void __user *)regs->nip;
}
void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
{
siginfo_t info;
const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
"at %08lx nip %08lx lr %08lx code %x\n";
const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
"at %016lx nip %016lx lr %016lx code %x\n";
if (!user_mode(regs)) {
die("Exception in kernel mode", regs, signr);
return;
}
if (show_unhandled_signals && unhandled_signal(current, signr)) {
printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
current->comm, current->pid, signr,
addr, regs->nip, regs->link, code);
}
if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
local_irq_enable();
current->thread.trap_nr = code;
memset(&info, 0, sizeof(info));
info.si_signo = signr;
info.si_code = code;
info.si_addr = (void __user *) addr;
force_sig_info(signr, &info, current);
}
#ifdef CONFIG_PPC64
void system_reset_exception(struct pt_regs *regs)
{
/* See if any machine dependent calls */
if (ppc_md.system_reset_exception) {
if (ppc_md.system_reset_exception(regs))
return;
}
die("System Reset", regs, SIGABRT);
/* Must die if the interrupt is not recoverable */
if (!(regs->msr & MSR_RI))
panic("Unrecoverable System Reset");
/* What should we do here? We could issue a shutdown or hard reset. */
}
#endif
/*
* I/O accesses can cause machine checks on powermacs.
* Check if the NIP corresponds to the address of a sync
* instruction for which there is an entry in the exception
* table.
* Note that the 601 only takes a machine check on TEA
* (transfer error ack) signal assertion, and does not
* set any of the top 16 bits of SRR1.
* -- paulus.
*/
static inline int check_io_access(struct pt_regs *regs)
{
#ifdef CONFIG_PPC32
unsigned long msr = regs->msr;
const struct exception_table_entry *entry;
unsigned int *nip = (unsigned int *)regs->nip;
if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
&& (entry = search_exception_tables(regs->nip)) != NULL) {
/*
* Check that it's a sync instruction, or somewhere
* in the twi; isync; nop sequence that inb/inw/inl uses.
* As the address is in the exception table
* we should be able to read the instr there.
* For the debug message, we look at the preceding
* load or store.
*/
if (*nip == 0x60000000) /* nop */
nip -= 2;
else if (*nip == 0x4c00012c) /* isync */
--nip;
if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
/* sync or twi */
unsigned int rb;
--nip;
rb = (*nip >> 11) & 0x1f;
printk(KERN_DEBUG "%s bad port %lx at %p\n",
(*nip & 0x100)? "OUT to": "IN from",
regs->gpr[rb] - _IO_BASE, nip);
regs->msr |= MSR_RI;
regs->nip = entry->fixup;
return 1;
}
}
#endif /* CONFIG_PPC32 */
return 0;
}
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/* On 4xx, the reason for the machine check or program exception
is in the ESR. */
#define get_reason(regs) ((regs)->dsisr)
#ifndef CONFIG_FSL_BOOKE
#define get_mc_reason(regs) ((regs)->dsisr)
#else
#define get_mc_reason(regs) (mfspr(SPRN_MCSR))
#endif
#define REASON_FP ESR_FP
#define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
#define REASON_PRIVILEGED ESR_PPR
#define REASON_TRAP ESR_PTR
/* single-step stuff */
#define single_stepping(regs) (current->thread.dbcr0 & DBCR0_IC)
#define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
#else
/* On non-4xx, the reason for the machine check or program
exception is in the MSR. */
#define get_reason(regs) ((regs)->msr)
#define get_mc_reason(regs) ((regs)->msr)
#define REASON_TM 0x200000
#define REASON_FP 0x100000
#define REASON_ILLEGAL 0x80000
#define REASON_PRIVILEGED 0x40000
#define REASON_TRAP 0x20000
#define single_stepping(regs) ((regs)->msr & MSR_SE)
#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
#endif
#if defined(CONFIG_4xx)
int machine_check_4xx(struct pt_regs *regs)
{
unsigned long reason = get_mc_reason(regs);
if (reason & ESR_IMCP) {
printk("Instruction");
mtspr(SPRN_ESR, reason & ~ESR_IMCP);
} else
printk("Data");
printk(" machine check in kernel mode.\n");
return 0;
}
int machine_check_440A(struct pt_regs *regs)
{
unsigned long reason = get_mc_reason(regs);
printk("Machine check in kernel mode.\n");
if (reason & ESR_IMCP){
printk("Instruction Synchronous Machine Check exception\n");
mtspr(SPRN_ESR, reason & ~ESR_IMCP);
}
else {
u32 mcsr = mfspr(SPRN_MCSR);
if (mcsr & MCSR_IB)
printk("Instruction Read PLB Error\n");
if (mcsr & MCSR_DRB)
printk("Data Read PLB Error\n");
if (mcsr & MCSR_DWB)
printk("Data Write PLB Error\n");
if (mcsr & MCSR_TLBP)
printk("TLB Parity Error\n");
if (mcsr & MCSR_ICP){
flush_instruction_cache();
printk("I-Cache Parity Error\n");
}
if (mcsr & MCSR_DCSP)
printk("D-Cache Search Parity Error\n");
if (mcsr & MCSR_DCFP)
printk("D-Cache Flush Parity Error\n");
if (mcsr & MCSR_IMPE)
printk("Machine Check exception is imprecise\n");
/* Clear MCSR */
mtspr(SPRN_MCSR, mcsr);
}
return 0;
}
int machine_check_47x(struct pt_regs *regs)
{
unsigned long reason = get_mc_reason(regs);
u32 mcsr;
printk(KERN_ERR "Machine check in kernel mode.\n");
if (reason & ESR_IMCP) {
printk(KERN_ERR
"Instruction Synchronous Machine Check exception\n");
mtspr(SPRN_ESR, reason & ~ESR_IMCP);
return 0;
}
mcsr = mfspr(SPRN_MCSR);
if (mcsr & MCSR_IB)
printk(KERN_ERR "Instruction Read PLB Error\n");
if (mcsr & MCSR_DRB)
printk(KERN_ERR "Data Read PLB Error\n");
if (mcsr & MCSR_DWB)
printk(KERN_ERR "Data Write PLB Error\n");
if (mcsr & MCSR_TLBP)
printk(KERN_ERR "TLB Parity Error\n");
if (mcsr & MCSR_ICP) {
flush_instruction_cache();
printk(KERN_ERR "I-Cache Parity Error\n");
}
if (mcsr & MCSR_DCSP)
printk(KERN_ERR "D-Cache Search Parity Error\n");
if (mcsr & PPC47x_MCSR_GPR)
printk(KERN_ERR "GPR Parity Error\n");
if (mcsr & PPC47x_MCSR_FPR)
printk(KERN_ERR "FPR Parity Error\n");
if (mcsr & PPC47x_MCSR_IPR)
printk(KERN_ERR "Machine Check exception is imprecise\n");
/* Clear MCSR */
mtspr(SPRN_MCSR, mcsr);
return 0;
}
#elif defined(CONFIG_E500)
int machine_check_e500mc(struct pt_regs *regs)
{
unsigned long mcsr = mfspr(SPRN_MCSR);
unsigned long reason = mcsr;
int recoverable = 1;
if (reason & MCSR_LD) {
recoverable = fsl_rio_mcheck_exception(regs);
if (recoverable == 1)
goto silent_out;
}
printk("Machine check in kernel mode.\n");
printk("Caused by (from MCSR=%lx): ", reason);
if (reason & MCSR_MCP)
printk("Machine Check Signal\n");
if (reason & MCSR_ICPERR) {
printk("Instruction Cache Parity Error\n");
/*
* This is recoverable by invalidating the i-cache.
*/
mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
;
/*
* This will generally be accompanied by an instruction
* fetch error report -- only treat MCSR_IF as fatal
* if it wasn't due to an L1 parity error.
*/
reason &= ~MCSR_IF;
}
if (reason & MCSR_DCPERR_MC) {
printk("Data Cache Parity Error\n");
/*
* In write shadow mode we auto-recover from the error, but it
* may still get logged and cause a machine check. We should
* only treat the non-write shadow case as non-recoverable.
*/
if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
recoverable = 0;
}
if (reason & MCSR_L2MMU_MHIT) {
printk("Hit on multiple TLB entries\n");
recoverable = 0;
}
if (reason & MCSR_NMI)
printk("Non-maskable interrupt\n");
if (reason & MCSR_IF) {
printk("Instruction Fetch Error Report\n");
recoverable = 0;
}
if (reason & MCSR_LD) {
printk("Load Error Report\n");
recoverable = 0;
}
if (reason & MCSR_ST) {
printk("Store Error Report\n");
recoverable = 0;
}
if (reason & MCSR_LDG) {
printk("Guarded Load Error Report\n");
recoverable = 0;
}
if (reason & MCSR_TLBSYNC)
printk("Simultaneous tlbsync operations\n");
if (reason & MCSR_BSL2_ERR) {
printk("Level 2 Cache Error\n");
recoverable = 0;
}
if (reason & MCSR_MAV) {
u64 addr;
addr = mfspr(SPRN_MCAR);
addr |= (u64)mfspr(SPRN_MCARU) << 32;
printk("Machine Check %s Address: %#llx\n",
reason & MCSR_MEA ? "Effective" : "Physical", addr);
}
silent_out:
mtspr(SPRN_MCSR, mcsr);
return mfspr(SPRN_MCSR) == 0 && recoverable;
}
int machine_check_e500(struct pt_regs *regs)
{
unsigned long reason = get_mc_reason(regs);
if (reason & MCSR_BUS_RBERR) {
if (fsl_rio_mcheck_exception(regs))
return 1;
}
printk("Machine check in kernel mode.\n");
printk("Caused by (from MCSR=%lx): ", reason);
if (reason & MCSR_MCP)
printk("Machine Check Signal\n");
if (reason & MCSR_ICPERR)
printk("Instruction Cache Parity Error\n");
if (reason & MCSR_DCP_PERR)
printk("Data Cache Push Parity Error\n");
if (reason & MCSR_DCPERR)
printk("Data Cache Parity Error\n");
if (reason & MCSR_BUS_IAERR)
printk("Bus - Instruction Address Error\n");
if (reason & MCSR_BUS_RAERR)
printk("Bus - Read Address Error\n");
if (reason & MCSR_BUS_WAERR)
printk("Bus - Write Address Error\n");
if (reason & MCSR_BUS_IBERR)
printk("Bus - Instruction Data Error\n");
if (reason & MCSR_BUS_RBERR)
printk("Bus - Read Data Bus Error\n");
if (reason & MCSR_BUS_WBERR)
printk("Bus - Read Data Bus Error\n");
if (reason & MCSR_BUS_IPERR)
printk("Bus - Instruction Parity Error\n");
if (reason & MCSR_BUS_RPERR)
printk("Bus - Read Parity Error\n");
return 0;
}
int machine_check_generic(struct pt_regs *regs)
{
return 0;
}
#elif defined(CONFIG_E200)
int machine_check_e200(struct pt_regs *regs)
{
unsigned long reason = get_mc_reason(regs);
printk("Machine check in kernel mode.\n");
printk("Caused by (from MCSR=%lx): ", reason);
if (reason & MCSR_MCP)
printk("Machine Check Signal\n");
if (reason & MCSR_CP_PERR)
printk("Cache Push Parity Error\n");
if (reason & MCSR_CPERR)
printk("Cache Parity Error\n");
if (reason & MCSR_EXCP_ERR)
printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
if (reason & MCSR_BUS_IRERR)
printk("Bus - Read Bus Error on instruction fetch\n");
if (reason & MCSR_BUS_DRERR)
printk("Bus - Read Bus Error on data load\n");
if (reason & MCSR_BUS_WRERR)
printk("Bus - Write Bus Error on buffered store or cache line push\n");
return 0;
}
#else
int machine_check_generic(struct pt_regs *regs)
{
unsigned long reason = get_mc_reason(regs);
printk("Machine check in kernel mode.\n");
printk("Caused by (from SRR1=%lx): ", reason);
switch (reason & 0x601F0000) {
case 0x80000:
printk("Machine check signal\n");
break;
case 0: /* for 601 */
case 0x40000:
case 0x140000: /* 7450 MSS error and TEA */
printk("Transfer error ack signal\n");
break;
case 0x20000:
printk("Data parity error signal\n");
break;
case 0x10000:
printk("Address parity error signal\n");
break;
case 0x20000000:
printk("L1 Data Cache error\n");
break;
case 0x40000000:
printk("L1 Instruction Cache error\n");
break;
case 0x00100000:
printk("L2 data cache parity error\n");
break;
default:
printk("Unknown values in msr\n");
}
return 0;
}
#endif /* everything else */
void machine_check_exception(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
int recover = 0;
__get_cpu_var(irq_stat).mce_exceptions++;
/* See if any machine dependent calls. In theory, we would want
* to call the CPU first, and call the ppc_md. one if the CPU
* one returns a positive number. However there is existing code
* that assumes the board gets a first chance, so let's keep it
* that way for now and fix things later. --BenH.
*/
if (ppc_md.machine_check_exception)
recover = ppc_md.machine_check_exception(regs);
else if (cur_cpu_spec->machine_check)
recover = cur_cpu_spec->machine_check(regs);
if (recover > 0)
goto bail;
#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
/* the qspan pci read routines can cause machine checks -- Cort
*
* yuck !!! that totally needs to go away ! There are better ways
* to deal with that than having a wart in the mcheck handler.
* -- BenH
*/
bad_page_fault(regs, regs->dar, SIGBUS);
goto bail;
#endif
if (debugger_fault_handler(regs))
goto bail;
if (check_io_access(regs))
goto bail;
die("Machine check", regs, SIGBUS);
/* Must die if the interrupt is not recoverable */
if (!(regs->msr & MSR_RI))
panic("Unrecoverable Machine check");
bail:
exception_exit(prev_state);
}
void SMIException(struct pt_regs *regs)
{
die("System Management Interrupt", regs, SIGABRT);
}
void unknown_exception(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
regs->nip, regs->msr, regs->trap);
_exception(SIGTRAP, regs, 0, 0);
exception_exit(prev_state);
}
void instruction_breakpoint_exception(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
5, SIGTRAP) == NOTIFY_STOP)
goto bail;
if (debugger_iabr_match(regs))
goto bail;
_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
bail:
exception_exit(prev_state);
}
void RunModeException(struct pt_regs *regs)
{
_exception(SIGTRAP, regs, 0, 0);
}
void __kprobes single_step_exception(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
clear_single_step(regs);
if (notify_die(DIE_SSTEP, "single_step", regs, 5,
5, SIGTRAP) == NOTIFY_STOP)
goto bail;
if (debugger_sstep(regs))
goto bail;
_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
bail:
exception_exit(prev_state);
}
/*
* After we have successfully emulated an instruction, we have to
* check if the instruction was being single-stepped, and if so,
* pretend we got a single-step exception. This was pointed out
* by Kumar Gala. -- paulus
*/
static void emulate_single_step(struct pt_regs *regs)
{
if (single_stepping(regs))
single_step_exception(regs);
}
static inline int __parse_fpscr(unsigned long fpscr)
{
int ret = 0;
/* Invalid operation */
if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
ret = FPE_FLTINV;
/* Overflow */
else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
ret = FPE_FLTOVF;
/* Underflow */
else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
ret = FPE_FLTUND;
/* Divide by zero */
else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
ret = FPE_FLTDIV;
/* Inexact result */
else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
ret = FPE_FLTRES;
return ret;
}
static void parse_fpe(struct pt_regs *regs)
{
int code = 0;
flush_fp_to_thread(current);
code = __parse_fpscr(current->thread.fpscr.val);
_exception(SIGFPE, regs, code, regs->nip);
}
/*
* Illegal instruction emulation support. Originally written to
* provide the PVR to user applications using the mfspr rd, PVR.
* Return non-zero if we can't emulate, or -EFAULT if the associated
* memory access caused an access fault. Return zero on success.
*
* There are a couple of ways to do this, either "decode" the instruction
* or directly match lots of bits. In this case, matching lots of
* bits is faster and easier.
*
*/
static int emulate_string_inst(struct pt_regs *regs, u32 instword)
{
u8 rT = (instword >> 21) & 0x1f;
u8 rA = (instword >> 16) & 0x1f;
u8 NB_RB = (instword >> 11) & 0x1f;
u32 num_bytes;
unsigned long EA;
int pos = 0;
/* Early out if we are an invalid form of lswx */
if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
if ((rT == rA) || (rT == NB_RB))
return -EINVAL;
EA = (rA == 0) ? 0 : regs->gpr[rA];
switch (instword & PPC_INST_STRING_MASK) {
case PPC_INST_LSWX:
case PPC_INST_STSWX:
EA += NB_RB;
num_bytes = regs->xer & 0x7f;
break;
case PPC_INST_LSWI:
case PPC_INST_STSWI:
num_bytes = (NB_RB == 0) ? 32 : NB_RB;
break;
default:
return -EINVAL;
}
while (num_bytes != 0)
{
u8 val;
u32 shift = 8 * (3 - (pos & 0x3));
switch ((instword & PPC_INST_STRING_MASK)) {
case PPC_INST_LSWX:
case PPC_INST_LSWI:
if (get_user(val, (u8 __user *)EA))
return -EFAULT;
/* first time updating this reg,
* zero it out */
if (pos == 0)
regs->gpr[rT] = 0;
regs->gpr[rT] |= val << shift;
break;
case PPC_INST_STSWI:
case PPC_INST_STSWX:
val = regs->gpr[rT] >> shift;
if (put_user(val, (u8 __user *)EA))
return -EFAULT;
break;
}
/* move EA to next address */
EA += 1;
num_bytes--;
/* manage our position within the register */
if (++pos == 4) {
pos = 0;
if (++rT == 32)
rT = 0;
}
}
return 0;
}
static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
{
u32 ra,rs;
unsigned long tmp;
ra = (instword >> 16) & 0x1f;
rs = (instword >> 21) & 0x1f;
tmp = regs->gpr[rs];
tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
regs->gpr[ra] = tmp;
return 0;
}
static int emulate_isel(struct pt_regs *regs, u32 instword)
{
u8 rT = (instword >> 21) & 0x1f;
u8 rA = (instword >> 16) & 0x1f;
u8 rB = (instword >> 11) & 0x1f;
u8 BC = (instword >> 6) & 0x1f;
u8 bit;
unsigned long tmp;
tmp = (rA == 0) ? 0 : regs->gpr[rA];
bit = (regs->ccr >> (31 - BC)) & 0x1;
regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
return 0;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline bool tm_abort_check(struct pt_regs *regs, int cause)
{
/* If we're emulating a load/store in an active transaction, we cannot
* emulate it as the kernel operates in transaction suspended context.
* We need to abort the transaction. This creates a persistent TM
* abort so tell the user what caused it with a new code.
*/
if (MSR_TM_TRANSACTIONAL(regs->msr)) {
tm_enable();
tm_abort(cause);
return true;
}
return false;
}
#else
static inline bool tm_abort_check(struct pt_regs *regs, int reason)
{
return false;
}
#endif
static int emulate_instruction(struct pt_regs *regs)
{
u32 instword;
u32 rd;
if (!user_mode(regs) || (regs->msr & MSR_LE))
return -EINVAL;
CHECK_FULL_REGS(regs);
if (get_user(instword, (u32 __user *)(regs->nip)))
return -EFAULT;
/* Emulate the mfspr rD, PVR. */
if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
PPC_WARN_EMULATED(mfpvr, regs);
rd = (instword >> 21) & 0x1f;
regs->gpr[rd] = mfspr(SPRN_PVR);
return 0;
}
/* Emulating the dcba insn is just a no-op. */
if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
PPC_WARN_EMULATED(dcba, regs);
return 0;
}
/* Emulate the mcrxr insn. */
if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
int shift = (instword >> 21) & 0x1c;
unsigned long msk = 0xf0000000UL >> shift;
PPC_WARN_EMULATED(mcrxr, regs);
regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
regs->xer &= ~0xf0000000UL;
return 0;
}
/* Emulate load/store string insn. */
if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
if (tm_abort_check(regs,
TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
return -EINVAL;
PPC_WARN_EMULATED(string, regs);
return emulate_string_inst(regs, instword);
}
/* Emulate the popcntb (Population Count Bytes) instruction. */
if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
PPC_WARN_EMULATED(popcntb, regs);
return emulate_popcntb_inst(regs, instword);
}
/* Emulate isel (Integer Select) instruction */
if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
PPC_WARN_EMULATED(isel, regs);
return emulate_isel(regs, instword);
}
#ifdef CONFIG_PPC64
/* Emulate the mfspr rD, DSCR. */
if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
PPC_INST_MFSPR_DSCR_USER) ||
((instword & PPC_INST_MFSPR_DSCR_MASK) ==
PPC_INST_MFSPR_DSCR)) &&
cpu_has_feature(CPU_FTR_DSCR)) {
PPC_WARN_EMULATED(mfdscr, regs);
rd = (instword >> 21) & 0x1f;
regs->gpr[rd] = mfspr(SPRN_DSCR);
return 0;
}
/* Emulate the mtspr DSCR, rD. */
if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
PPC_INST_MTSPR_DSCR_USER) ||
((instword & PPC_INST_MTSPR_DSCR_MASK) ==
PPC_INST_MTSPR_DSCR)) &&
cpu_has_feature(CPU_FTR_DSCR)) {
PPC_WARN_EMULATED(mtdscr, regs);
rd = (instword >> 21) & 0x1f;
current->thread.dscr = regs->gpr[rd];
current->thread.dscr_inherit = 1;
mtspr(SPRN_DSCR, current->thread.dscr);
return 0;
}
#endif
return -EINVAL;
}
int is_valid_bugaddr(unsigned long addr)
{
return is_kernel_addr(addr);
}
void __kprobes program_check_exception(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
unsigned int reason = get_reason(regs);
extern int do_mathemu(struct pt_regs *regs);
/* We can now get here via a FP Unavailable exception if the core
* has no FPU, in that case the reason flags will be 0 */
if (reason & REASON_FP) {
/* IEEE FP exception */
parse_fpe(regs);
goto bail;
}
if (reason & REASON_TRAP) {
/* Debugger is first in line to stop recursive faults in
* rcu_lock, notify_die, or atomic_notifier_call_chain */
if (debugger_bpt(regs))
goto bail;
/* trap exception */
if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
== NOTIFY_STOP)
goto bail;
if (!(regs->msr & MSR_PR) && /* not user-mode */
report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
regs->nip += 4;
goto bail;
}
_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
goto bail;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
if (reason & REASON_TM) {
/* This is a TM "Bad Thing Exception" program check.
* This occurs when:
* - An rfid/hrfid/mtmsrd attempts to cause an illegal
* transition in TM states.
* - A trechkpt is attempted when transactional.
* - A treclaim is attempted when non transactional.
* - A tend is illegally attempted.
* - writing a TM SPR when transactional.
*/
if (!user_mode(regs) &&
report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
regs->nip += 4;
goto bail;
}
/* If usermode caused this, it's done something illegal and
* gets a SIGILL slap on the wrist. We call it an illegal
* operand to distinguish from the instruction just being bad
* (e.g. executing a 'tend' on a CPU without TM!); it's an
* illegal /placement/ of a valid instruction.
*/
if (user_mode(regs)) {
_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
goto bail;
} else {
printk(KERN_EMERG "Unexpected TM Bad Thing exception "
"at %lx (msr 0x%x)\n", regs->nip, reason);
die("Unrecoverable exception", regs, SIGABRT);
}
}
#endif
/* We restore the interrupt state now */
if (!arch_irq_disabled_regs(regs))
local_irq_enable();
#ifdef CONFIG_MATH_EMULATION
/* (reason & REASON_ILLEGAL) would be the obvious thing here,
* but there seems to be a hardware bug on the 405GP (RevD)
* that means ESR is sometimes set incorrectly - either to
* ESR_DST (!?) or 0. In the process of chasing this with the
* hardware people - not sure if it can happen on any illegal
* instruction or only on FP instructions, whether there is a
* pattern to occurrences etc. -dgibson 31/Mar/2003 */
switch (do_mathemu(regs)) {
case 0:
emulate_single_step(regs);
goto bail;
case 1: {
int code = 0;
code = __parse_fpscr(current->thread.fpscr.val);
_exception(SIGFPE, regs, code, regs->nip);
goto bail;
}
case -EFAULT:
_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
goto bail;
}
/* fall through on any other errors */
#endif /* CONFIG_MATH_EMULATION */
/* Try to emulate it if we should. */
if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
switch (emulate_instruction(regs)) {
case 0:
regs->nip += 4;
emulate_single_step(regs);
goto bail;
case -EFAULT:
_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
goto bail;
}
}
if (reason & REASON_PRIVILEGED)
_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
else
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
bail:
exception_exit(prev_state);
}
void alignment_exception(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
int sig, code, fixed = 0;
/* We restore the interrupt state now */
if (!arch_irq_disabled_regs(regs))
local_irq_enable();
if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
goto bail;
/* we don't implement logging of alignment exceptions */
if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
fixed = fix_alignment(regs);
if (fixed == 1) {
regs->nip += 4; /* skip over emulated instruction */
emulate_single_step(regs);
goto bail;
}
/* Operand address was bad */
if (fixed == -EFAULT) {
sig = SIGSEGV;
code = SEGV_ACCERR;
} else {
sig = SIGBUS;
code = BUS_ADRALN;
}
if (user_mode(regs))
_exception(sig, regs, code, regs->dar);
else
bad_page_fault(regs, regs->dar, sig);
bail:
exception_exit(prev_state);
}
void StackOverflow(struct pt_regs *regs)
{
printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
current, regs->gpr[1]);
debugger(regs);
show_regs(regs);
panic("kernel stack overflow");
}
void nonrecoverable_exception(struct pt_regs *regs)
{
printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
regs->nip, regs->msr);
debugger(regs);
die("nonrecoverable exception", regs, SIGKILL);
}
void trace_syscall(struct pt_regs *regs)
{
printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
}
void kernel_fp_unavailable_exception(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
"%lx at %lx\n", regs->trap, regs->nip);
die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
exception_exit(prev_state);
}
void altivec_unavailable_exception(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
if (user_mode(regs)) {
/* A user program has executed an altivec instruction,
but this kernel doesn't support altivec. */
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
goto bail;
}
printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
"%lx at %lx\n", regs->trap, regs->nip);
die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
bail:
exception_exit(prev_state);
}
void vsx_unavailable_exception(struct pt_regs *regs)
{
if (user_mode(regs)) {
/* A user program has executed an vsx instruction,
but this kernel doesn't support vsx. */
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
return;
}
printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
"%lx at %lx\n", regs->trap, regs->nip);
die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
}
void tm_unavailable_exception(struct pt_regs *regs)
{
/* We restore the interrupt state now */
if (!arch_irq_disabled_regs(regs))
local_irq_enable();
/* Currently we never expect a TMU exception. Catch
* this and kill the process!
*/
printk(KERN_EMERG "Unexpected TM unavailable exception at %lx "
"(msr %lx)\n",
regs->nip, regs->msr);
if (user_mode(regs)) {
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
return;
}
die("Unexpected TM unavailable exception", regs, SIGABRT);
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
extern void do_load_up_fpu(struct pt_regs *regs);
void fp_unavailable_tm(struct pt_regs *regs)
{
/* Note: This does not handle any kind of FP laziness. */
TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
regs->nip, regs->msr);
tm_enable();
/* We can only have got here if the task started using FP after
* beginning the transaction. So, the transactional regs are just a
* copy of the checkpointed ones. But, we still need to recheckpoint
* as we're enabling FP for the process; it will return, abort the
* transaction, and probably retry but now with FP enabled. So the
* checkpointed FP registers need to be loaded.
*/
tm_reclaim(&current->thread, current->thread.regs->msr,
TM_CAUSE_FAC_UNAV);
/* Reclaim didn't save out any FPRs to transact_fprs. */
/* Enable FP for the task: */
regs->msr |= (MSR_FP | current->thread.fpexc_mode);
/* This loads and recheckpoints the FP registers from
* thread.fpr[]. They will remain in registers after the
* checkpoint so we don't need to reload them after.
*/
tm_recheckpoint(&current->thread, regs->msr);
}
#ifdef CONFIG_ALTIVEC
extern void do_load_up_altivec(struct pt_regs *regs);
void altivec_unavailable_tm(struct pt_regs *regs)
{
/* See the comments in fp_unavailable_tm(). This function operates
* the same way.
*/
TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
"MSR=%lx\n",
regs->nip, regs->msr);
tm_enable();
tm_reclaim(&current->thread, current->thread.regs->msr,
TM_CAUSE_FAC_UNAV);
regs->msr |= MSR_VEC;
tm_recheckpoint(&current->thread, regs->msr);
current->thread.used_vr = 1;
}
#endif
#ifdef CONFIG_VSX
void vsx_unavailable_tm(struct pt_regs *regs)
{
/* See the comments in fp_unavailable_tm(). This works similarly,
* though we're loading both FP and VEC registers in here.
*
* If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
* regs. Either way, set MSR_VSX.
*/
TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
"MSR=%lx\n",
regs->nip, regs->msr);
tm_enable();
/* This reclaims FP and/or VR regs if they're already enabled */
tm_reclaim(&current->thread, current->thread.regs->msr,
TM_CAUSE_FAC_UNAV);
regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
MSR_VSX;
/* This loads & recheckpoints FP and VRs. */
tm_recheckpoint(&current->thread, regs->msr);
current->thread.used_vsr = 1;
}
#endif
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
void performance_monitor_exception(struct pt_regs *regs)
{
__get_cpu_var(irq_stat).pmu_irqs++;
perf_irq(regs);
}
#ifdef CONFIG_8xx
void SoftwareEmulation(struct pt_regs *regs)
{
extern int do_mathemu(struct pt_regs *);
extern int Soft_emulate_8xx(struct pt_regs *);
#if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
int errcode;
#endif
CHECK_FULL_REGS(regs);
if (!user_mode(regs)) {
debugger(regs);
die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
}
#ifdef CONFIG_MATH_EMULATION
errcode = do_mathemu(regs);
if (errcode >= 0)
PPC_WARN_EMULATED(math, regs);
switch (errcode) {
case 0:
emulate_single_step(regs);
return;
case 1: {
int code = 0;
code = __parse_fpscr(current->thread.fpscr.val);
_exception(SIGFPE, regs, code, regs->nip);
return;
}
case -EFAULT:
_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
return;
default:
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
return;
}
#elif defined(CONFIG_8XX_MINIMAL_FPEMU)
errcode = Soft_emulate_8xx(regs);
if (errcode >= 0)
PPC_WARN_EMULATED(8xx, regs);
switch (errcode) {
case 0:
emulate_single_step(regs);
return;
case 1:
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
return;
case -EFAULT:
_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
return;
}
#else
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
#endif
}
#endif /* CONFIG_8xx */
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
{
int changed = 0;
/*
* Determine the cause of the debug event, clear the
* event flags and send a trap to the handler. Torez
*/
if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
#endif
do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
5);
changed |= 0x01;
} else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
6);
changed |= 0x01;
} else if (debug_status & DBSR_IAC1) {
current->thread.dbcr0 &= ~DBCR0_IAC1;
dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1);
changed |= 0x01;
} else if (debug_status & DBSR_IAC2) {
current->thread.dbcr0 &= ~DBCR0_IAC2;
do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
2);
changed |= 0x01;
} else if (debug_status & DBSR_IAC3) {
current->thread.dbcr0 &= ~DBCR0_IAC3;
dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
3);
changed |= 0x01;
} else if (debug_status & DBSR_IAC4) {
current->thread.dbcr0 &= ~DBCR0_IAC4;
do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
4);
changed |= 0x01;
}
/*
* At the point this routine was called, the MSR(DE) was turned off.
* Check all other debug flags and see if that bit needs to be turned
* back on or not.
*/
if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
regs->msr |= MSR_DE;
else
/* Make sure the IDM flag is off */
current->thread.dbcr0 &= ~DBCR0_IDM;
if (changed & 0x01)
mtspr(SPRN_DBCR0, current->thread.dbcr0);
}
void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
{
current->thread.dbsr = debug_status;
/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
* on server, it stops on the target of the branch. In order to simulate
* the server behaviour, we thus restart right away with a single step
* instead of stopping here when hitting a BT
*/
if (debug_status & DBSR_BT) {
regs->msr &= ~MSR_DE;
/* Disable BT */
mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
/* Clear the BT event */
mtspr(SPRN_DBSR, DBSR_BT);
/* Do the single step trick only when coming from userspace */
if (user_mode(regs)) {
current->thread.dbcr0 &= ~DBCR0_BT;
current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
regs->msr |= MSR_DE;
return;
}
if (notify_die(DIE_SSTEP, "block_step", regs, 5,
5, SIGTRAP) == NOTIFY_STOP) {
return;
}
if (debugger_sstep(regs))
return;
} else if (debug_status & DBSR_IC) { /* Instruction complete */
regs->msr &= ~MSR_DE;
/* Disable instruction completion */
mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
/* Clear the instruction completion event */
mtspr(SPRN_DBSR, DBSR_IC);
if (notify_die(DIE_SSTEP, "single_step", regs, 5,
5, SIGTRAP) == NOTIFY_STOP) {
return;
}
if (debugger_sstep(regs))
return;
if (user_mode(regs)) {
current->thread.dbcr0 &= ~DBCR0_IC;
if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
current->thread.dbcr1))
regs->msr |= MSR_DE;
else
/* Make sure the IDM bit is off */
current->thread.dbcr0 &= ~DBCR0_IDM;
}
_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
} else
handle_debug(regs, debug_status);
}
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
#if !defined(CONFIG_TAU_INT)
void TAUException(struct pt_regs *regs)
{
printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
regs->nip, regs->msr, regs->trap, print_tainted());
}
#endif /* CONFIG_INT_TAU */
#ifdef CONFIG_ALTIVEC
void altivec_assist_exception(struct pt_regs *regs)
{
int err;
if (!user_mode(regs)) {
printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
" at %lx\n", regs->nip);
die("Kernel VMX/Altivec assist exception", regs, SIGILL);
}
flush_altivec_to_thread(current);
PPC_WARN_EMULATED(altivec, regs);
err = emulate_altivec(regs);
if (err == 0) {
regs->nip += 4; /* skip emulated instruction */
emulate_single_step(regs);
return;
}
if (err == -EFAULT) {
/* got an error reading the instruction */
_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
} else {
/* didn't recognize the instruction */
/* XXX quick hack for now: set the non-Java bit in the VSCR */
printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
"in %s at %lx\n", current->comm, regs->nip);
current->thread.vscr.u[3] |= 0x10000;
}
}
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
void vsx_assist_exception(struct pt_regs *regs)
{
if (!user_mode(regs)) {
printk(KERN_EMERG "VSX assist exception in kernel mode"
" at %lx\n", regs->nip);
die("Kernel VSX assist exception", regs, SIGILL);
}
flush_vsx_to_thread(current);
printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
}
#endif /* CONFIG_VSX */
#ifdef CONFIG_FSL_BOOKE
void CacheLockingException(struct pt_regs *regs, unsigned long address,
unsigned long error_code)
{
/* We treat cache locking instructions from the user
* as priv ops, in the future we could try to do
* something smarter
*/
if (error_code & (ESR_DLK|ESR_ILK))
_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
return;
}
#endif /* CONFIG_FSL_BOOKE */
#ifdef CONFIG_SPE
void SPEFloatingPointException(struct pt_regs *regs)
{
extern int do_spe_mathemu(struct pt_regs *regs);
unsigned long spefscr;
int fpexc_mode;
int code = 0;
int err;
flush_spe_to_thread(current);
spefscr = current->thread.spefscr;
fpexc_mode = current->thread.fpexc_mode;
if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
code = FPE_FLTOVF;
}
else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
code = FPE_FLTUND;
}
else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
code = FPE_FLTDIV;
else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
code = FPE_FLTINV;
}
else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
code = FPE_FLTRES;
err = do_spe_mathemu(regs);
if (err == 0) {
regs->nip += 4; /* skip emulated instruction */
emulate_single_step(regs);
return;
}
if (err == -EFAULT) {
/* got an error reading the instruction */
_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
} else if (err == -EINVAL) {
/* didn't recognize the instruction */
printk(KERN_ERR "unrecognized spe instruction "
"in %s at %lx\n", current->comm, regs->nip);
} else {
_exception(SIGFPE, regs, code, regs->nip);
}
return;
}
void SPEFloatingPointRoundException(struct pt_regs *regs)
{
extern int speround_handler(struct pt_regs *regs);
int err;
preempt_disable();
if (regs->msr & MSR_SPE)
giveup_spe(current);
preempt_enable();
regs->nip -= 4;
err = speround_handler(regs);
if (err == 0) {
regs->nip += 4; /* skip emulated instruction */
emulate_single_step(regs);
return;
}
if (err == -EFAULT) {
/* got an error reading the instruction */
_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
} else if (err == -EINVAL) {
/* didn't recognize the instruction */
printk(KERN_ERR "unrecognized spe instruction "
"in %s at %lx\n", current->comm, regs->nip);
} else {
_exception(SIGFPE, regs, 0, regs->nip);
return;
}
}
#endif
/*
* We enter here if we get an unrecoverable exception, that is, one
* that happened at a point where the RI (recoverable interrupt) bit
* in the MSR is 0. This indicates that SRR0/1 are live, and that
* we therefore lost state by taking this exception.
*/
void unrecoverable_exception(struct pt_regs *regs)
{
printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
regs->trap, regs->nip);
die("Unrecoverable exception", regs, SIGABRT);
}
#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
/*
* Default handler for a Watchdog exception,
* spins until a reboot occurs
*/
void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
{
/* Generic WatchdogHandler, implement your own */
mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
return;
}
void WatchdogException(struct pt_regs *regs)
{
printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
WatchdogHandler(regs);
}
#endif
/*
* We enter here if we discover during exception entry that we are
* running in supervisor mode with a userspace value in the stack pointer.
*/
void kernel_bad_stack(struct pt_regs *regs)
{
printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
regs->gpr[1], regs->nip);
die("Bad kernel stack pointer", regs, SIGABRT);
}
void __init trap_init(void)
{
}
#ifdef CONFIG_PPC_EMULATED_STATS
#define WARN_EMULATED_SETUP(type) .type = { .name = #type }
struct ppc_emulated ppc_emulated = {
#ifdef CONFIG_ALTIVEC
WARN_EMULATED_SETUP(altivec),
#endif
WARN_EMULATED_SETUP(dcba),
WARN_EMULATED_SETUP(dcbz),
WARN_EMULATED_SETUP(fp_pair),
WARN_EMULATED_SETUP(isel),
WARN_EMULATED_SETUP(mcrxr),
WARN_EMULATED_SETUP(mfpvr),
WARN_EMULATED_SETUP(multiple),
WARN_EMULATED_SETUP(popcntb),
WARN_EMULATED_SETUP(spe),
WARN_EMULATED_SETUP(string),
WARN_EMULATED_SETUP(unaligned),
#ifdef CONFIG_MATH_EMULATION
WARN_EMULATED_SETUP(math),
#elif defined(CONFIG_8XX_MINIMAL_FPEMU)
WARN_EMULATED_SETUP(8xx),
#endif
#ifdef CONFIG_VSX
WARN_EMULATED_SETUP(vsx),
#endif
#ifdef CONFIG_PPC64
WARN_EMULATED_SETUP(mfdscr),
WARN_EMULATED_SETUP(mtdscr),
#endif
};
u32 ppc_warn_emulated;
void ppc_warn_emulated_print(const char *type)
{
pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
type);
}
static int __init ppc_warn_emulated_init(void)
{
struct dentry *dir, *d;
unsigned int i;
struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
if (!powerpc_debugfs_root)
return -ENODEV;
dir = debugfs_create_dir("emulated_instructions",
powerpc_debugfs_root);
if (!dir)
return -ENOMEM;
d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
&ppc_warn_emulated);
if (!d)
goto fail;
for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
(u32 *)&entries[i].val.counter);
if (!d)
goto fail;
}
return 0;
fail:
debugfs_remove_recursive(dir);
return -ENOMEM;
}
device_initcall(ppc_warn_emulated_init);
#endif /* CONFIG_PPC_EMULATED_STATS */