WSL2-Linux-Kernel/arch/s390/pci/pci.c

1005 строки
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright IBM Corp. 2012
*
* Author(s):
* Jan Glauber <jang@linux.vnet.ibm.com>
*
* The System z PCI code is a rewrite from a prototype by
* the following people (Kudoz!):
* Alexander Schmidt
* Christoph Raisch
* Hannes Hering
* Hoang-Nam Nguyen
* Jan-Bernd Themann
* Stefan Roscher
* Thomas Klein
*/
#define KMSG_COMPONENT "zpci"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/kernel_stat.h>
#include <linux/seq_file.h>
#include <linux/pci.h>
#include <linux/msi.h>
#include <asm/isc.h>
#include <asm/airq.h>
#include <asm/facility.h>
#include <asm/pci_insn.h>
#include <asm/pci_clp.h>
#include <asm/pci_dma.h>
#define DEBUG /* enable pr_debug */
#define SIC_IRQ_MODE_ALL 0
#define SIC_IRQ_MODE_SINGLE 1
#define ZPCI_NR_DMA_SPACES 1
#define ZPCI_NR_DEVICES CONFIG_PCI_NR_FUNCTIONS
/* list of all detected zpci devices */
static LIST_HEAD(zpci_list);
static DEFINE_SPINLOCK(zpci_list_lock);
static struct irq_chip zpci_irq_chip = {
.name = "zPCI",
.irq_unmask = pci_msi_unmask_irq,
.irq_mask = pci_msi_mask_irq,
};
static DECLARE_BITMAP(zpci_domain, ZPCI_NR_DEVICES);
static DEFINE_SPINLOCK(zpci_domain_lock);
static struct airq_iv *zpci_aisb_iv;
static struct airq_iv *zpci_aibv[ZPCI_NR_DEVICES];
#define ZPCI_IOMAP_ENTRIES \
min(((unsigned long) ZPCI_NR_DEVICES * PCI_BAR_COUNT / 2), \
ZPCI_IOMAP_MAX_ENTRIES)
static DEFINE_SPINLOCK(zpci_iomap_lock);
static unsigned long *zpci_iomap_bitmap;
struct zpci_iomap_entry *zpci_iomap_start;
EXPORT_SYMBOL_GPL(zpci_iomap_start);
static struct kmem_cache *zdev_fmb_cache;
struct zpci_dev *get_zdev_by_fid(u32 fid)
{
struct zpci_dev *tmp, *zdev = NULL;
spin_lock(&zpci_list_lock);
list_for_each_entry(tmp, &zpci_list, entry) {
if (tmp->fid == fid) {
zdev = tmp;
break;
}
}
spin_unlock(&zpci_list_lock);
return zdev;
}
void zpci_remove_reserved_devices(void)
{
struct zpci_dev *tmp, *zdev;
enum zpci_state state;
LIST_HEAD(remove);
spin_lock(&zpci_list_lock);
list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
if (zdev->state == ZPCI_FN_STATE_STANDBY &&
!clp_get_state(zdev->fid, &state) &&
state == ZPCI_FN_STATE_RESERVED)
list_move_tail(&zdev->entry, &remove);
}
spin_unlock(&zpci_list_lock);
list_for_each_entry_safe(zdev, tmp, &remove, entry)
zpci_remove_device(zdev);
}
static struct zpci_dev *get_zdev_by_bus(struct pci_bus *bus)
{
return (bus && bus->sysdata) ? (struct zpci_dev *) bus->sysdata : NULL;
}
int pci_domain_nr(struct pci_bus *bus)
{
return ((struct zpci_dev *) bus->sysdata)->domain;
}
EXPORT_SYMBOL_GPL(pci_domain_nr);
int pci_proc_domain(struct pci_bus *bus)
{
return pci_domain_nr(bus);
}
EXPORT_SYMBOL_GPL(pci_proc_domain);
/* Modify PCI: Register adapter interruptions */
static int zpci_set_airq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
struct zpci_fib fib = {0};
u8 status;
fib.isc = PCI_ISC;
fib.sum = 1; /* enable summary notifications */
fib.noi = airq_iv_end(zdev->aibv);
fib.aibv = (unsigned long) zdev->aibv->vector;
fib.aibvo = 0; /* each zdev has its own interrupt vector */
fib.aisb = (unsigned long) zpci_aisb_iv->vector + (zdev->aisb/64)*8;
fib.aisbo = zdev->aisb & 63;
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
}
/* Modify PCI: Unregister adapter interruptions */
static int zpci_clear_airq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
struct zpci_fib fib = {0};
u8 cc, status;
cc = zpci_mod_fc(req, &fib, &status);
if (cc == 3 || (cc == 1 && status == 24))
/* Function already gone or IRQs already deregistered. */
cc = 0;
return cc ? -EIO : 0;
}
/* Modify PCI: Register I/O address translation parameters */
int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
u64 base, u64 limit, u64 iota)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
struct zpci_fib fib = {0};
u8 status;
WARN_ON_ONCE(iota & 0x3fff);
fib.pba = base;
fib.pal = limit;
fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
}
/* Modify PCI: Unregister I/O address translation parameters */
int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
struct zpci_fib fib = {0};
u8 cc, status;
cc = zpci_mod_fc(req, &fib, &status);
if (cc == 3) /* Function already gone. */
cc = 0;
return cc ? -EIO : 0;
}
/* Modify PCI: Set PCI function measurement parameters */
int zpci_fmb_enable_device(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
struct zpci_fib fib = {0};
u8 cc, status;
if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
return -EINVAL;
zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
if (!zdev->fmb)
return -ENOMEM;
WARN_ON((u64) zdev->fmb & 0xf);
/* reset software counters */
atomic64_set(&zdev->allocated_pages, 0);
atomic64_set(&zdev->mapped_pages, 0);
atomic64_set(&zdev->unmapped_pages, 0);
fib.fmb_addr = virt_to_phys(zdev->fmb);
cc = zpci_mod_fc(req, &fib, &status);
if (cc) {
kmem_cache_free(zdev_fmb_cache, zdev->fmb);
zdev->fmb = NULL;
}
return cc ? -EIO : 0;
}
/* Modify PCI: Disable PCI function measurement */
int zpci_fmb_disable_device(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
struct zpci_fib fib = {0};
u8 cc, status;
if (!zdev->fmb)
return -EINVAL;
/* Function measurement is disabled if fmb address is zero */
cc = zpci_mod_fc(req, &fib, &status);
if (cc == 3) /* Function already gone. */
cc = 0;
if (!cc) {
kmem_cache_free(zdev_fmb_cache, zdev->fmb);
zdev->fmb = NULL;
}
return cc ? -EIO : 0;
}
static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
u64 data;
int rc;
rc = zpci_load(&data, req, offset);
if (!rc) {
data = le64_to_cpu((__force __le64) data);
data >>= (8 - len) * 8;
*val = (u32) data;
} else
*val = 0xffffffff;
return rc;
}
static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
u64 data = val;
int rc;
data <<= (8 - len) * 8;
data = (__force u64) cpu_to_le64(data);
rc = zpci_store(data, req, offset);
return rc;
}
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
resource_size_t size,
resource_size_t align)
{
return 0;
}
/* combine single writes by using store-block insn */
void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
{
zpci_memcpy_toio(to, from, count);
}
/* Create a virtual mapping cookie for a PCI BAR */
void __iomem *pci_iomap_range(struct pci_dev *pdev,
int bar,
unsigned long offset,
unsigned long max)
{
struct zpci_dev *zdev = to_zpci(pdev);
int idx;
if (!pci_resource_len(pdev, bar))
return NULL;
idx = zdev->bars[bar].map_idx;
spin_lock(&zpci_iomap_lock);
/* Detect overrun */
WARN_ON(!++zpci_iomap_start[idx].count);
zpci_iomap_start[idx].fh = zdev->fh;
zpci_iomap_start[idx].bar = bar;
spin_unlock(&zpci_iomap_lock);
return (void __iomem *) ZPCI_ADDR(idx) + offset;
}
EXPORT_SYMBOL(pci_iomap_range);
void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
{
return pci_iomap_range(dev, bar, 0, maxlen);
}
EXPORT_SYMBOL(pci_iomap);
void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
{
unsigned int idx = ZPCI_IDX(addr);
spin_lock(&zpci_iomap_lock);
/* Detect underrun */
WARN_ON(!zpci_iomap_start[idx].count);
if (!--zpci_iomap_start[idx].count) {
zpci_iomap_start[idx].fh = 0;
zpci_iomap_start[idx].bar = 0;
}
spin_unlock(&zpci_iomap_lock);
}
EXPORT_SYMBOL(pci_iounmap);
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *val)
{
struct zpci_dev *zdev = get_zdev_by_bus(bus);
int ret;
if (!zdev || devfn != ZPCI_DEVFN)
ret = -ENODEV;
else
ret = zpci_cfg_load(zdev, where, val, size);
return ret;
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 val)
{
struct zpci_dev *zdev = get_zdev_by_bus(bus);
int ret;
if (!zdev || devfn != ZPCI_DEVFN)
ret = -ENODEV;
else
ret = zpci_cfg_store(zdev, where, val, size);
return ret;
}
static struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
static void zpci_irq_handler(struct airq_struct *airq)
{
unsigned long si, ai;
struct airq_iv *aibv;
int irqs_on = 0;
inc_irq_stat(IRQIO_PCI);
for (si = 0;;) {
/* Scan adapter summary indicator bit vector */
si = airq_iv_scan(zpci_aisb_iv, si, airq_iv_end(zpci_aisb_iv));
if (si == -1UL) {
if (irqs_on++)
/* End of second scan with interrupts on. */
break;
/* First scan complete, reenable interrupts. */
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, NULL, PCI_ISC))
break;
si = 0;
continue;
}
/* Scan the adapter interrupt vector for this device. */
aibv = zpci_aibv[si];
for (ai = 0;;) {
ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
if (ai == -1UL)
break;
inc_irq_stat(IRQIO_MSI);
airq_iv_lock(aibv, ai);
generic_handle_irq(airq_iv_get_data(aibv, ai));
airq_iv_unlock(aibv, ai);
}
}
}
int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
struct zpci_dev *zdev = to_zpci(pdev);
unsigned int hwirq, msi_vecs;
unsigned long aisb;
struct msi_desc *msi;
struct msi_msg msg;
int rc, irq;
zdev->aisb = -1UL;
if (type == PCI_CAP_ID_MSI && nvec > 1)
return 1;
msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
/* Allocate adapter summary indicator bit */
aisb = airq_iv_alloc_bit(zpci_aisb_iv);
if (aisb == -1UL)
return -EIO;
zdev->aisb = aisb;
/* Create adapter interrupt vector */
zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
if (!zdev->aibv)
return -ENOMEM;
/* Wire up shortcut pointer */
zpci_aibv[aisb] = zdev->aibv;
/* Request MSI interrupts */
hwirq = 0;
for_each_pci_msi_entry(msi, pdev) {
rc = -EIO;
irq = irq_alloc_desc(0); /* Alloc irq on node 0 */
if (irq < 0)
return -ENOMEM;
rc = irq_set_msi_desc(irq, msi);
if (rc)
return rc;
irq_set_chip_and_handler(irq, &zpci_irq_chip,
handle_simple_irq);
msg.data = hwirq;
msg.address_lo = zdev->msi_addr & 0xffffffff;
msg.address_hi = zdev->msi_addr >> 32;
pci_write_msi_msg(irq, &msg);
airq_iv_set_data(zdev->aibv, hwirq, irq);
hwirq++;
}
/* Enable adapter interrupts */
rc = zpci_set_airq(zdev);
if (rc)
return rc;
return (msi_vecs == nvec) ? 0 : msi_vecs;
}
void arch_teardown_msi_irqs(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
struct msi_desc *msi;
int rc;
/* Disable adapter interrupts */
rc = zpci_clear_airq(zdev);
if (rc)
return;
/* Release MSI interrupts */
for_each_pci_msi_entry(msi, pdev) {
if (!msi->irq)
continue;
if (msi->msi_attrib.is_msix)
__pci_msix_desc_mask_irq(msi, 1);
else
__pci_msi_desc_mask_irq(msi, 1, 1);
irq_set_msi_desc(msi->irq, NULL);
irq_free_desc(msi->irq);
msi->msg.address_lo = 0;
msi->msg.address_hi = 0;
msi->msg.data = 0;
msi->irq = 0;
}
if (zdev->aisb != -1UL) {
zpci_aibv[zdev->aisb] = NULL;
airq_iv_free_bit(zpci_aisb_iv, zdev->aisb);
zdev->aisb = -1UL;
}
if (zdev->aibv) {
airq_iv_release(zdev->aibv);
zdev->aibv = NULL;
}
}
static void zpci_map_resources(struct pci_dev *pdev)
{
resource_size_t len;
int i;
for (i = 0; i < PCI_BAR_COUNT; i++) {
len = pci_resource_len(pdev, i);
if (!len)
continue;
pdev->resource[i].start =
(resource_size_t __force) pci_iomap(pdev, i, 0);
pdev->resource[i].end = pdev->resource[i].start + len - 1;
}
}
static void zpci_unmap_resources(struct pci_dev *pdev)
{
resource_size_t len;
int i;
for (i = 0; i < PCI_BAR_COUNT; i++) {
len = pci_resource_len(pdev, i);
if (!len)
continue;
pci_iounmap(pdev, (void __iomem __force *)
pdev->resource[i].start);
}
}
static struct airq_struct zpci_airq = {
.handler = zpci_irq_handler,
.isc = PCI_ISC,
};
static int __init zpci_irq_init(void)
{
int rc;
rc = register_adapter_interrupt(&zpci_airq);
if (rc)
goto out;
/* Set summary to 1 to be called every time for the ISC. */
*zpci_airq.lsi_ptr = 1;
rc = -ENOMEM;
zpci_aisb_iv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
if (!zpci_aisb_iv)
goto out_airq;
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, NULL, PCI_ISC);
return 0;
out_airq:
unregister_adapter_interrupt(&zpci_airq);
out:
return rc;
}
static void zpci_irq_exit(void)
{
airq_iv_release(zpci_aisb_iv);
unregister_adapter_interrupt(&zpci_airq);
}
static int zpci_alloc_iomap(struct zpci_dev *zdev)
{
unsigned long entry;
spin_lock(&zpci_iomap_lock);
entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
if (entry == ZPCI_IOMAP_ENTRIES) {
spin_unlock(&zpci_iomap_lock);
return -ENOSPC;
}
set_bit(entry, zpci_iomap_bitmap);
spin_unlock(&zpci_iomap_lock);
return entry;
}
static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
{
spin_lock(&zpci_iomap_lock);
memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
clear_bit(entry, zpci_iomap_bitmap);
spin_unlock(&zpci_iomap_lock);
}
static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
unsigned long size, unsigned long flags)
{
struct resource *r;
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r)
return NULL;
r->start = start;
r->end = r->start + size - 1;
r->flags = flags;
r->name = zdev->res_name;
if (request_resource(&iomem_resource, r)) {
kfree(r);
return NULL;
}
return r;
}
static int zpci_setup_bus_resources(struct zpci_dev *zdev,
struct list_head *resources)
{
unsigned long addr, size, flags;
struct resource *res;
int i, entry;
snprintf(zdev->res_name, sizeof(zdev->res_name),
"PCI Bus %04x:%02x", zdev->domain, ZPCI_BUS_NR);
for (i = 0; i < PCI_BAR_COUNT; i++) {
if (!zdev->bars[i].size)
continue;
entry = zpci_alloc_iomap(zdev);
if (entry < 0)
return entry;
zdev->bars[i].map_idx = entry;
/* only MMIO is supported */
flags = IORESOURCE_MEM;
if (zdev->bars[i].val & 8)
flags |= IORESOURCE_PREFETCH;
if (zdev->bars[i].val & 4)
flags |= IORESOURCE_MEM_64;
addr = ZPCI_ADDR(entry);
size = 1UL << zdev->bars[i].size;
res = __alloc_res(zdev, addr, size, flags);
if (!res) {
zpci_free_iomap(zdev, entry);
return -ENOMEM;
}
zdev->bars[i].res = res;
pci_add_resource(resources, res);
}
return 0;
}
static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
{
int i;
for (i = 0; i < PCI_BAR_COUNT; i++) {
if (!zdev->bars[i].size || !zdev->bars[i].res)
continue;
zpci_free_iomap(zdev, zdev->bars[i].map_idx);
release_resource(zdev->bars[i].res);
kfree(zdev->bars[i].res);
}
}
int pcibios_add_device(struct pci_dev *pdev)
{
struct resource *res;
int i;
pdev->dev.groups = zpci_attr_groups;
pdev->dev.dma_ops = &s390_pci_dma_ops;
zpci_map_resources(pdev);
for (i = 0; i < PCI_BAR_COUNT; i++) {
res = &pdev->resource[i];
if (res->parent || !res->flags)
continue;
pci_claim_resource(pdev, i);
}
return 0;
}
void pcibios_release_device(struct pci_dev *pdev)
{
zpci_unmap_resources(pdev);
}
int pcibios_enable_device(struct pci_dev *pdev, int mask)
{
struct zpci_dev *zdev = to_zpci(pdev);
zpci_debug_init_device(zdev, dev_name(&pdev->dev));
zpci_fmb_enable_device(zdev);
return pci_enable_resources(pdev, mask);
}
void pcibios_disable_device(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
zpci_fmb_disable_device(zdev);
zpci_debug_exit_device(zdev);
}
#ifdef CONFIG_HIBERNATE_CALLBACKS
static int zpci_restore(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct zpci_dev *zdev = to_zpci(pdev);
int ret = 0;
if (zdev->state != ZPCI_FN_STATE_ONLINE)
goto out;
ret = clp_enable_fh(zdev, ZPCI_NR_DMA_SPACES);
if (ret)
goto out;
zpci_map_resources(pdev);
zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
(u64) zdev->dma_table);
out:
return ret;
}
static int zpci_freeze(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct zpci_dev *zdev = to_zpci(pdev);
if (zdev->state != ZPCI_FN_STATE_ONLINE)
return 0;
zpci_unregister_ioat(zdev, 0);
zpci_unmap_resources(pdev);
return clp_disable_fh(zdev);
}
struct dev_pm_ops pcibios_pm_ops = {
.thaw_noirq = zpci_restore,
.freeze_noirq = zpci_freeze,
.restore_noirq = zpci_restore,
.poweroff_noirq = zpci_freeze,
};
#endif /* CONFIG_HIBERNATE_CALLBACKS */
static int zpci_alloc_domain(struct zpci_dev *zdev)
{
if (zpci_unique_uid) {
zdev->domain = (u16) zdev->uid;
if (zdev->domain >= ZPCI_NR_DEVICES)
return 0;
spin_lock(&zpci_domain_lock);
if (test_bit(zdev->domain, zpci_domain)) {
spin_unlock(&zpci_domain_lock);
return -EEXIST;
}
set_bit(zdev->domain, zpci_domain);
spin_unlock(&zpci_domain_lock);
return 0;
}
spin_lock(&zpci_domain_lock);
zdev->domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
if (zdev->domain == ZPCI_NR_DEVICES) {
spin_unlock(&zpci_domain_lock);
return -ENOSPC;
}
set_bit(zdev->domain, zpci_domain);
spin_unlock(&zpci_domain_lock);
return 0;
}
static void zpci_free_domain(struct zpci_dev *zdev)
{
if (zdev->domain >= ZPCI_NR_DEVICES)
return;
spin_lock(&zpci_domain_lock);
clear_bit(zdev->domain, zpci_domain);
spin_unlock(&zpci_domain_lock);
}
void pcibios_remove_bus(struct pci_bus *bus)
{
struct zpci_dev *zdev = get_zdev_by_bus(bus);
zpci_exit_slot(zdev);
zpci_cleanup_bus_resources(zdev);
zpci_destroy_iommu(zdev);
zpci_free_domain(zdev);
spin_lock(&zpci_list_lock);
list_del(&zdev->entry);
spin_unlock(&zpci_list_lock);
zpci_dbg(3, "rem fid:%x\n", zdev->fid);
kfree(zdev);
}
static int zpci_scan_bus(struct zpci_dev *zdev)
{
LIST_HEAD(resources);
int ret;
ret = zpci_setup_bus_resources(zdev, &resources);
if (ret)
goto error;
zdev->bus = pci_scan_root_bus(NULL, ZPCI_BUS_NR, &pci_root_ops,
zdev, &resources);
if (!zdev->bus) {
ret = -EIO;
goto error;
}
zdev->bus->max_bus_speed = zdev->max_bus_speed;
pci_bus_add_devices(zdev->bus);
return 0;
error:
zpci_cleanup_bus_resources(zdev);
pci_free_resource_list(&resources);
return ret;
}
int zpci_enable_device(struct zpci_dev *zdev)
{
int rc;
rc = clp_enable_fh(zdev, ZPCI_NR_DMA_SPACES);
if (rc)
goto out;
rc = zpci_dma_init_device(zdev);
if (rc)
goto out_dma;
zdev->state = ZPCI_FN_STATE_ONLINE;
return 0;
out_dma:
clp_disable_fh(zdev);
out:
return rc;
}
EXPORT_SYMBOL_GPL(zpci_enable_device);
int zpci_disable_device(struct zpci_dev *zdev)
{
zpci_dma_exit_device(zdev);
return clp_disable_fh(zdev);
}
EXPORT_SYMBOL_GPL(zpci_disable_device);
int zpci_create_device(struct zpci_dev *zdev)
{
int rc;
rc = zpci_alloc_domain(zdev);
if (rc)
goto out;
rc = zpci_init_iommu(zdev);
if (rc)
goto out_free;
mutex_init(&zdev->lock);
if (zdev->state == ZPCI_FN_STATE_CONFIGURED) {
rc = zpci_enable_device(zdev);
if (rc)
goto out_destroy_iommu;
}
rc = zpci_scan_bus(zdev);
if (rc)
goto out_disable;
spin_lock(&zpci_list_lock);
list_add_tail(&zdev->entry, &zpci_list);
spin_unlock(&zpci_list_lock);
zpci_init_slot(zdev);
return 0;
out_disable:
if (zdev->state == ZPCI_FN_STATE_ONLINE)
zpci_disable_device(zdev);
out_destroy_iommu:
zpci_destroy_iommu(zdev);
out_free:
zpci_free_domain(zdev);
out:
return rc;
}
void zpci_remove_device(struct zpci_dev *zdev)
{
if (!zdev->bus)
return;
pci_stop_root_bus(zdev->bus);
pci_remove_root_bus(zdev->bus);
}
int zpci_report_error(struct pci_dev *pdev,
struct zpci_report_error_header *report)
{
struct zpci_dev *zdev = to_zpci(pdev);
return sclp_pci_report(report, zdev->fh, zdev->fid);
}
EXPORT_SYMBOL(zpci_report_error);
static int zpci_mem_init(void)
{
BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
__alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
__alignof__(struct zpci_fmb), 0, NULL);
if (!zdev_fmb_cache)
goto error_fmb;
zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
sizeof(*zpci_iomap_start), GFP_KERNEL);
if (!zpci_iomap_start)
goto error_iomap;
zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
if (!zpci_iomap_bitmap)
goto error_iomap_bitmap;
return 0;
error_iomap_bitmap:
kfree(zpci_iomap_start);
error_iomap:
kmem_cache_destroy(zdev_fmb_cache);
error_fmb:
return -ENOMEM;
}
static void zpci_mem_exit(void)
{
kfree(zpci_iomap_bitmap);
kfree(zpci_iomap_start);
kmem_cache_destroy(zdev_fmb_cache);
}
static unsigned int s390_pci_probe = 1;
static unsigned int s390_pci_initialized;
char * __init pcibios_setup(char *str)
{
if (!strcmp(str, "off")) {
s390_pci_probe = 0;
return NULL;
}
return str;
}
bool zpci_is_enabled(void)
{
return s390_pci_initialized;
}
static int __init pci_base_init(void)
{
int rc;
if (!s390_pci_probe)
return 0;
if (!test_facility(69) || !test_facility(71))
return 0;
rc = zpci_debug_init();
if (rc)
goto out;
rc = zpci_mem_init();
if (rc)
goto out_mem;
rc = zpci_irq_init();
if (rc)
goto out_irq;
rc = zpci_dma_init();
if (rc)
goto out_dma;
rc = clp_scan_pci_devices();
if (rc)
goto out_find;
s390_pci_initialized = 1;
return 0;
out_find:
zpci_dma_exit();
out_dma:
zpci_irq_exit();
out_irq:
zpci_mem_exit();
out_mem:
zpci_debug_exit();
out:
return rc;
}
subsys_initcall_sync(pci_base_init);
void zpci_rescan(void)
{
if (zpci_is_enabled())
clp_rescan_pci_devices_simple();
}