WSL2-Linux-Kernel/kernel/futex.c

2104 строки
49 KiB
C

/*
* Fast Userspace Mutexes (which I call "Futexes!").
* (C) Rusty Russell, IBM 2002
*
* Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
* (C) Copyright 2003 Red Hat Inc, All Rights Reserved
*
* Removed page pinning, fix privately mapped COW pages and other cleanups
* (C) Copyright 2003, 2004 Jamie Lokier
*
* Robust futex support started by Ingo Molnar
* (C) Copyright 2006 Red Hat Inc, All Rights Reserved
* Thanks to Thomas Gleixner for suggestions, analysis and fixes.
*
* PI-futex support started by Ingo Molnar and Thomas Gleixner
* Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
*
* PRIVATE futexes by Eric Dumazet
* Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
*
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
* enough at me, Linus for the original (flawed) idea, Matthew
* Kirkwood for proof-of-concept implementation.
*
* "The futexes are also cursed."
* "But they come in a choice of three flavours!"
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/signal.h>
#include <linux/module.h>
#include <asm/futex.h>
#include "rtmutex_common.h"
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
/*
* Priority Inheritance state:
*/
struct futex_pi_state {
/*
* list of 'owned' pi_state instances - these have to be
* cleaned up in do_exit() if the task exits prematurely:
*/
struct list_head list;
/*
* The PI object:
*/
struct rt_mutex pi_mutex;
struct task_struct *owner;
atomic_t refcount;
union futex_key key;
};
/*
* We use this hashed waitqueue instead of a normal wait_queue_t, so
* we can wake only the relevant ones (hashed queues may be shared).
*
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
* The order of wakup is always to make the first condition true, then
* wake up q->waiters, then make the second condition true.
*/
struct futex_q {
struct plist_node list;
wait_queue_head_t waiters;
/* Which hash list lock to use: */
spinlock_t *lock_ptr;
/* Key which the futex is hashed on: */
union futex_key key;
/* For fd, sigio sent using these: */
int fd;
struct file *filp;
/* Optional priority inheritance state: */
struct futex_pi_state *pi_state;
struct task_struct *task;
};
/*
* Split the global futex_lock into every hash list lock.
*/
struct futex_hash_bucket {
spinlock_t lock;
struct plist_head chain;
};
static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
/* Futex-fs vfsmount entry: */
static struct vfsmount *futex_mnt;
/*
* We hash on the keys returned from get_futex_key (see below).
*/
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
u32 hash = jhash2((u32*)&key->both.word,
(sizeof(key->both.word)+sizeof(key->both.ptr))/4,
key->both.offset);
return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}
/*
* Return 1 if two futex_keys are equal, 0 otherwise.
*/
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
return (key1->both.word == key2->both.word
&& key1->both.ptr == key2->both.ptr
&& key1->both.offset == key2->both.offset);
}
/**
* get_futex_key - Get parameters which are the keys for a futex.
* @uaddr: virtual address of the futex
* @shared: NULL for a PROCESS_PRIVATE futex,
* &current->mm->mmap_sem for a PROCESS_SHARED futex
* @key: address where result is stored.
*
* Returns a negative error code or 0
* The key words are stored in *key on success.
*
* For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
* offset_within_page). For private mappings, it's (uaddr, current->mm).
* We can usually work out the index without swapping in the page.
*
* fshared is NULL for PROCESS_PRIVATE futexes
* For other futexes, it points to &current->mm->mmap_sem and
* caller must have taken the reader lock. but NOT any spinlocks.
*/
int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
union futex_key *key)
{
unsigned long address = (unsigned long)uaddr;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
struct page *page;
int err;
/*
* The futex address must be "naturally" aligned.
*/
key->both.offset = address % PAGE_SIZE;
if (unlikely((address % sizeof(u32)) != 0))
return -EINVAL;
address -= key->both.offset;
/*
* PROCESS_PRIVATE futexes are fast.
* As the mm cannot disappear under us and the 'key' only needs
* virtual address, we dont even have to find the underlying vma.
* Note : We do have to check 'uaddr' is a valid user address,
* but access_ok() should be faster than find_vma()
*/
if (!fshared) {
if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
return -EFAULT;
key->private.mm = mm;
key->private.address = address;
return 0;
}
/*
* The futex is hashed differently depending on whether
* it's in a shared or private mapping. So check vma first.
*/
vma = find_extend_vma(mm, address);
if (unlikely(!vma))
return -EFAULT;
/*
* Permissions.
*/
if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
/*
* Private mappings are handled in a simple way.
*
* NOTE: When userspace waits on a MAP_SHARED mapping, even if
* it's a read-only handle, it's expected that futexes attach to
* the object not the particular process. Therefore we use
* VM_MAYSHARE here, not VM_SHARED which is restricted to shared
* mappings of _writable_ handles.
*/
if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
key->private.mm = mm;
key->private.address = address;
return 0;
}
/*
* Linear file mappings are also simple.
*/
key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
+ vma->vm_pgoff);
return 0;
}
/*
* We could walk the page table to read the non-linear
* pte, and get the page index without fetching the page
* from swap. But that's a lot of code to duplicate here
* for a rare case, so we simply fetch the page.
*/
err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
if (err >= 0) {
key->shared.pgoff =
page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
put_page(page);
return 0;
}
return err;
}
EXPORT_SYMBOL_GPL(get_futex_key);
/*
* Take a reference to the resource addressed by a key.
* Can be called while holding spinlocks.
*
*/
inline void get_futex_key_refs(union futex_key *key)
{
if (key->both.ptr == 0)
return;
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
case FUT_OFF_INODE:
atomic_inc(&key->shared.inode->i_count);
break;
case FUT_OFF_MMSHARED:
atomic_inc(&key->private.mm->mm_count);
break;
}
}
EXPORT_SYMBOL_GPL(get_futex_key_refs);
/*
* Drop a reference to the resource addressed by a key.
* The hash bucket spinlock must not be held.
*/
void drop_futex_key_refs(union futex_key *key)
{
if (key->both.ptr == 0)
return;
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
case FUT_OFF_INODE:
iput(key->shared.inode);
break;
case FUT_OFF_MMSHARED:
mmdrop(key->private.mm);
break;
}
}
EXPORT_SYMBOL_GPL(drop_futex_key_refs);
static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
{
int ret;
pagefault_disable();
ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
pagefault_enable();
return ret ? -EFAULT : 0;
}
/*
* Fault handling.
* if fshared is non NULL, current->mm->mmap_sem is already held
*/
static int futex_handle_fault(unsigned long address,
struct rw_semaphore *fshared, int attempt)
{
struct vm_area_struct * vma;
struct mm_struct *mm = current->mm;
int ret = -EFAULT;
if (attempt > 2)
return ret;
if (!fshared)
down_read(&mm->mmap_sem);
vma = find_vma(mm, address);
if (vma && address >= vma->vm_start &&
(vma->vm_flags & VM_WRITE)) {
switch (handle_mm_fault(mm, vma, address, 1)) {
case VM_FAULT_MINOR:
ret = 0;
current->min_flt++;
break;
case VM_FAULT_MAJOR:
ret = 0;
current->maj_flt++;
break;
}
}
if (!fshared)
up_read(&mm->mmap_sem);
return ret;
}
/*
* PI code:
*/
static int refill_pi_state_cache(void)
{
struct futex_pi_state *pi_state;
if (likely(current->pi_state_cache))
return 0;
pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
if (!pi_state)
return -ENOMEM;
INIT_LIST_HEAD(&pi_state->list);
/* pi_mutex gets initialized later */
pi_state->owner = NULL;
atomic_set(&pi_state->refcount, 1);
current->pi_state_cache = pi_state;
return 0;
}
static struct futex_pi_state * alloc_pi_state(void)
{
struct futex_pi_state *pi_state = current->pi_state_cache;
WARN_ON(!pi_state);
current->pi_state_cache = NULL;
return pi_state;
}
static void free_pi_state(struct futex_pi_state *pi_state)
{
if (!atomic_dec_and_test(&pi_state->refcount))
return;
/*
* If pi_state->owner is NULL, the owner is most probably dying
* and has cleaned up the pi_state already
*/
if (pi_state->owner) {
spin_lock_irq(&pi_state->owner->pi_lock);
list_del_init(&pi_state->list);
spin_unlock_irq(&pi_state->owner->pi_lock);
rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
}
if (current->pi_state_cache)
kfree(pi_state);
else {
/*
* pi_state->list is already empty.
* clear pi_state->owner.
* refcount is at 0 - put it back to 1.
*/
pi_state->owner = NULL;
atomic_set(&pi_state->refcount, 1);
current->pi_state_cache = pi_state;
}
}
/*
* Look up the task based on what TID userspace gave us.
* We dont trust it.
*/
static struct task_struct * futex_find_get_task(pid_t pid)
{
struct task_struct *p;
rcu_read_lock();
p = find_task_by_pid(pid);
if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
p = ERR_PTR(-ESRCH);
else
get_task_struct(p);
rcu_read_unlock();
return p;
}
/*
* This task is holding PI mutexes at exit time => bad.
* Kernel cleans up PI-state, but userspace is likely hosed.
* (Robust-futex cleanup is separate and might save the day for userspace.)
*/
void exit_pi_state_list(struct task_struct *curr)
{
struct list_head *next, *head = &curr->pi_state_list;
struct futex_pi_state *pi_state;
struct futex_hash_bucket *hb;
union futex_key key;
/*
* We are a ZOMBIE and nobody can enqueue itself on
* pi_state_list anymore, but we have to be careful
* versus waiters unqueueing themselves:
*/
spin_lock_irq(&curr->pi_lock);
while (!list_empty(head)) {
next = head->next;
pi_state = list_entry(next, struct futex_pi_state, list);
key = pi_state->key;
hb = hash_futex(&key);
spin_unlock_irq(&curr->pi_lock);
spin_lock(&hb->lock);
spin_lock_irq(&curr->pi_lock);
/*
* We dropped the pi-lock, so re-check whether this
* task still owns the PI-state:
*/
if (head->next != next) {
spin_unlock(&hb->lock);
continue;
}
WARN_ON(pi_state->owner != curr);
WARN_ON(list_empty(&pi_state->list));
list_del_init(&pi_state->list);
pi_state->owner = NULL;
spin_unlock_irq(&curr->pi_lock);
rt_mutex_unlock(&pi_state->pi_mutex);
spin_unlock(&hb->lock);
spin_lock_irq(&curr->pi_lock);
}
spin_unlock_irq(&curr->pi_lock);
}
static int
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
union futex_key *key, struct futex_pi_state **ps)
{
struct futex_pi_state *pi_state = NULL;
struct futex_q *this, *next;
struct plist_head *head;
struct task_struct *p;
pid_t pid = uval & FUTEX_TID_MASK;
head = &hb->chain;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex(&this->key, key)) {
/*
* Another waiter already exists - bump up
* the refcount and return its pi_state:
*/
pi_state = this->pi_state;
/*
* Userspace might have messed up non PI and PI futexes
*/
if (unlikely(!pi_state))
return -EINVAL;
WARN_ON(!atomic_read(&pi_state->refcount));
WARN_ON(pid && pi_state->owner &&
pi_state->owner->pid != pid);
atomic_inc(&pi_state->refcount);
*ps = pi_state;
return 0;
}
}
/*
* We are the first waiter - try to look up the real owner and attach
* the new pi_state to it, but bail out when TID = 0
*/
if (!pid)
return -ESRCH;
p = futex_find_get_task(pid);
if (IS_ERR(p))
return PTR_ERR(p);
/*
* We need to look at the task state flags to figure out,
* whether the task is exiting. To protect against the do_exit
* change of the task flags, we do this protected by
* p->pi_lock:
*/
spin_lock_irq(&p->pi_lock);
if (unlikely(p->flags & PF_EXITING)) {
/*
* The task is on the way out. When PF_EXITPIDONE is
* set, we know that the task has finished the
* cleanup:
*/
int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
spin_unlock_irq(&p->pi_lock);
put_task_struct(p);
return ret;
}
pi_state = alloc_pi_state();
/*
* Initialize the pi_mutex in locked state and make 'p'
* the owner of it:
*/
rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
/* Store the key for possible exit cleanups: */
pi_state->key = *key;
WARN_ON(!list_empty(&pi_state->list));
list_add(&pi_state->list, &p->pi_state_list);
pi_state->owner = p;
spin_unlock_irq(&p->pi_lock);
put_task_struct(p);
*ps = pi_state;
return 0;
}
/*
* The hash bucket lock must be held when this is called.
* Afterwards, the futex_q must not be accessed.
*/
static void wake_futex(struct futex_q *q)
{
plist_del(&q->list, &q->list.plist);
if (q->filp)
send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
/*
* The lock in wake_up_all() is a crucial memory barrier after the
* plist_del() and also before assigning to q->lock_ptr.
*/
wake_up_all(&q->waiters);
/*
* The waiting task can free the futex_q as soon as this is written,
* without taking any locks. This must come last.
*
* A memory barrier is required here to prevent the following store
* to lock_ptr from getting ahead of the wakeup. Clearing the lock
* at the end of wake_up_all() does not prevent this store from
* moving.
*/
smp_wmb();
q->lock_ptr = NULL;
}
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
struct task_struct *new_owner;
struct futex_pi_state *pi_state = this->pi_state;
u32 curval, newval;
if (!pi_state)
return -EINVAL;
spin_lock(&pi_state->pi_mutex.wait_lock);
new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
/*
* This happens when we have stolen the lock and the original
* pending owner did not enqueue itself back on the rt_mutex.
* Thats not a tragedy. We know that way, that a lock waiter
* is on the fly. We make the futex_q waiter the pending owner.
*/
if (!new_owner)
new_owner = this->task;
/*
* We pass it to the next owner. (The WAITERS bit is always
* kept enabled while there is PI state around. We must also
* preserve the owner died bit.)
*/
if (!(uval & FUTEX_OWNER_DIED)) {
int ret = 0;
newval = FUTEX_WAITERS | new_owner->pid;
pagefault_disable();
curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
pagefault_enable();
if (curval == -EFAULT)
ret = -EFAULT;
if (curval != uval)
ret = -EINVAL;
if (ret) {
spin_unlock(&pi_state->pi_mutex.wait_lock);
return ret;
}
}
spin_lock_irq(&pi_state->owner->pi_lock);
WARN_ON(list_empty(&pi_state->list));
list_del_init(&pi_state->list);
spin_unlock_irq(&pi_state->owner->pi_lock);
spin_lock_irq(&new_owner->pi_lock);
WARN_ON(!list_empty(&pi_state->list));
list_add(&pi_state->list, &new_owner->pi_state_list);
pi_state->owner = new_owner;
spin_unlock_irq(&new_owner->pi_lock);
spin_unlock(&pi_state->pi_mutex.wait_lock);
rt_mutex_unlock(&pi_state->pi_mutex);
return 0;
}
static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
u32 oldval;
/*
* There is no waiter, so we unlock the futex. The owner died
* bit has not to be preserved here. We are the owner:
*/
pagefault_disable();
oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
pagefault_enable();
if (oldval == -EFAULT)
return oldval;
if (oldval != uval)
return -EAGAIN;
return 0;
}
/*
* Express the locking dependencies for lockdep:
*/
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
if (hb1 <= hb2) {
spin_lock(&hb1->lock);
if (hb1 < hb2)
spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
} else { /* hb1 > hb2 */
spin_lock(&hb2->lock);
spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
}
}
/*
* Wake up all waiters hashed on the physical page that is mapped
* to this virtual address:
*/
static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
int nr_wake)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
struct plist_head *head;
union futex_key key;
int ret;
if (fshared)
down_read(fshared);
ret = get_futex_key(uaddr, fshared, &key);
if (unlikely(ret != 0))
goto out;
hb = hash_futex(&key);
spin_lock(&hb->lock);
head = &hb->chain;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key)) {
if (this->pi_state) {
ret = -EINVAL;
break;
}
wake_futex(this);
if (++ret >= nr_wake)
break;
}
}
spin_unlock(&hb->lock);
out:
if (fshared)
up_read(fshared);
return ret;
}
/*
* Wake up all waiters hashed on the physical page that is mapped
* to this virtual address:
*/
static int
futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
u32 __user *uaddr2,
int nr_wake, int nr_wake2, int op)
{
union futex_key key1, key2;
struct futex_hash_bucket *hb1, *hb2;
struct plist_head *head;
struct futex_q *this, *next;
int ret, op_ret, attempt = 0;
retryfull:
if (fshared)
down_read(fshared);
ret = get_futex_key(uaddr1, fshared, &key1);
if (unlikely(ret != 0))
goto out;
ret = get_futex_key(uaddr2, fshared, &key2);
if (unlikely(ret != 0))
goto out;
hb1 = hash_futex(&key1);
hb2 = hash_futex(&key2);
retry:
double_lock_hb(hb1, hb2);
op_ret = futex_atomic_op_inuser(op, uaddr2);
if (unlikely(op_ret < 0)) {
u32 dummy;
spin_unlock(&hb1->lock);
if (hb1 != hb2)
spin_unlock(&hb2->lock);
#ifndef CONFIG_MMU
/*
* we don't get EFAULT from MMU faults if we don't have an MMU,
* but we might get them from range checking
*/
ret = op_ret;
goto out;
#endif
if (unlikely(op_ret != -EFAULT)) {
ret = op_ret;
goto out;
}
/*
* futex_atomic_op_inuser needs to both read and write
* *(int __user *)uaddr2, but we can't modify it
* non-atomically. Therefore, if get_user below is not
* enough, we need to handle the fault ourselves, while
* still holding the mmap_sem.
*/
if (attempt++) {
ret = futex_handle_fault((unsigned long)uaddr2,
fshared, attempt);
if (ret)
goto out;
goto retry;
}
/*
* If we would have faulted, release mmap_sem,
* fault it in and start all over again.
*/
if (fshared)
up_read(fshared);
ret = get_user(dummy, uaddr2);
if (ret)
return ret;
goto retryfull;
}
head = &hb1->chain;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key1)) {
wake_futex(this);
if (++ret >= nr_wake)
break;
}
}
if (op_ret > 0) {
head = &hb2->chain;
op_ret = 0;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key2)) {
wake_futex(this);
if (++op_ret >= nr_wake2)
break;
}
}
ret += op_ret;
}
spin_unlock(&hb1->lock);
if (hb1 != hb2)
spin_unlock(&hb2->lock);
out:
if (fshared)
up_read(fshared);
return ret;
}
/*
* Requeue all waiters hashed on one physical page to another
* physical page.
*/
static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
u32 __user *uaddr2,
int nr_wake, int nr_requeue, u32 *cmpval)
{
union futex_key key1, key2;
struct futex_hash_bucket *hb1, *hb2;
struct plist_head *head1;
struct futex_q *this, *next;
int ret, drop_count = 0;
retry:
if (fshared)
down_read(fshared);
ret = get_futex_key(uaddr1, fshared, &key1);
if (unlikely(ret != 0))
goto out;
ret = get_futex_key(uaddr2, fshared, &key2);
if (unlikely(ret != 0))
goto out;
hb1 = hash_futex(&key1);
hb2 = hash_futex(&key2);
double_lock_hb(hb1, hb2);
if (likely(cmpval != NULL)) {
u32 curval;
ret = get_futex_value_locked(&curval, uaddr1);
if (unlikely(ret)) {
spin_unlock(&hb1->lock);
if (hb1 != hb2)
spin_unlock(&hb2->lock);
/*
* If we would have faulted, release mmap_sem, fault
* it in and start all over again.
*/
if (fshared)
up_read(fshared);
ret = get_user(curval, uaddr1);
if (!ret)
goto retry;
return ret;
}
if (curval != *cmpval) {
ret = -EAGAIN;
goto out_unlock;
}
}
head1 = &hb1->chain;
plist_for_each_entry_safe(this, next, head1, list) {
if (!match_futex (&this->key, &key1))
continue;
if (++ret <= nr_wake) {
wake_futex(this);
} else {
/*
* If key1 and key2 hash to the same bucket, no need to
* requeue.
*/
if (likely(head1 != &hb2->chain)) {
plist_del(&this->list, &hb1->chain);
plist_add(&this->list, &hb2->chain);
this->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
this->list.plist.lock = &hb2->lock;
#endif
}
this->key = key2;
get_futex_key_refs(&key2);
drop_count++;
if (ret - nr_wake >= nr_requeue)
break;
}
}
out_unlock:
spin_unlock(&hb1->lock);
if (hb1 != hb2)
spin_unlock(&hb2->lock);
/* drop_futex_key_refs() must be called outside the spinlocks. */
while (--drop_count >= 0)
drop_futex_key_refs(&key1);
out:
if (fshared)
up_read(fshared);
return ret;
}
/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *
queue_lock(struct futex_q *q, int fd, struct file *filp)
{
struct futex_hash_bucket *hb;
q->fd = fd;
q->filp = filp;
init_waitqueue_head(&q->waiters);
get_futex_key_refs(&q->key);
hb = hash_futex(&q->key);
q->lock_ptr = &hb->lock;
spin_lock(&hb->lock);
return hb;
}
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
{
int prio;
/*
* The priority used to register this element is
* - either the real thread-priority for the real-time threads
* (i.e. threads with a priority lower than MAX_RT_PRIO)
* - or MAX_RT_PRIO for non-RT threads.
* Thus, all RT-threads are woken first in priority order, and
* the others are woken last, in FIFO order.
*/
prio = min(current->normal_prio, MAX_RT_PRIO);
plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
q->list.plist.lock = &hb->lock;
#endif
plist_add(&q->list, &hb->chain);
q->task = current;
spin_unlock(&hb->lock);
}
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
{
spin_unlock(&hb->lock);
drop_futex_key_refs(&q->key);
}
/*
* queue_me and unqueue_me must be called as a pair, each
* exactly once. They are called with the hashed spinlock held.
*/
/* The key must be already stored in q->key. */
static void queue_me(struct futex_q *q, int fd, struct file *filp)
{
struct futex_hash_bucket *hb;
hb = queue_lock(q, fd, filp);
__queue_me(q, hb);
}
/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
spinlock_t *lock_ptr;
int ret = 0;
/* In the common case we don't take the spinlock, which is nice. */
retry:
lock_ptr = q->lock_ptr;
barrier();
if (lock_ptr != 0) {
spin_lock(lock_ptr);
/*
* q->lock_ptr can change between reading it and
* spin_lock(), causing us to take the wrong lock. This
* corrects the race condition.
*
* Reasoning goes like this: if we have the wrong lock,
* q->lock_ptr must have changed (maybe several times)
* between reading it and the spin_lock(). It can
* change again after the spin_lock() but only if it was
* already changed before the spin_lock(). It cannot,
* however, change back to the original value. Therefore
* we can detect whether we acquired the correct lock.
*/
if (unlikely(lock_ptr != q->lock_ptr)) {
spin_unlock(lock_ptr);
goto retry;
}
WARN_ON(plist_node_empty(&q->list));
plist_del(&q->list, &q->list.plist);
BUG_ON(q->pi_state);
spin_unlock(lock_ptr);
ret = 1;
}
drop_futex_key_refs(&q->key);
return ret;
}
/*
* PI futexes can not be requeued and must remove themself from the
* hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
* and dropped here.
*/
static void unqueue_me_pi(struct futex_q *q)
{
WARN_ON(plist_node_empty(&q->list));
plist_del(&q->list, &q->list.plist);
BUG_ON(!q->pi_state);
free_pi_state(q->pi_state);
q->pi_state = NULL;
spin_unlock(q->lock_ptr);
drop_futex_key_refs(&q->key);
}
/*
* Fixup the pi_state owner with current.
*
* Must be called with hash bucket lock held and mm->sem held for non
* private futexes.
*/
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
struct task_struct *curr)
{
u32 newtid = curr->pid | FUTEX_WAITERS;
struct futex_pi_state *pi_state = q->pi_state;
u32 uval, curval, newval;
int ret;
/* Owner died? */
if (pi_state->owner != NULL) {
spin_lock_irq(&pi_state->owner->pi_lock);
WARN_ON(list_empty(&pi_state->list));
list_del_init(&pi_state->list);
spin_unlock_irq(&pi_state->owner->pi_lock);
} else
newtid |= FUTEX_OWNER_DIED;
pi_state->owner = curr;
spin_lock_irq(&curr->pi_lock);
WARN_ON(!list_empty(&pi_state->list));
list_add(&pi_state->list, &curr->pi_state_list);
spin_unlock_irq(&curr->pi_lock);
/*
* We own it, so we have to replace the pending owner
* TID. This must be atomic as we have preserve the
* owner died bit here.
*/
ret = get_futex_value_locked(&uval, uaddr);
while (!ret) {
newval = (uval & FUTEX_OWNER_DIED) | newtid;
pagefault_disable();
curval = futex_atomic_cmpxchg_inatomic(uaddr,
uval, newval);
pagefault_enable();
if (curval == -EFAULT)
ret = -EFAULT;
if (curval == uval)
break;
uval = curval;
}
return ret;
}
/*
* In case we must use restart_block to restart a futex_wait,
* we encode in the 'arg3' shared capability
*/
#define ARG3_SHARED 1
static long futex_wait_restart(struct restart_block *restart);
static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
u32 val, ktime_t *abs_time)
{
struct task_struct *curr = current;
DECLARE_WAITQUEUE(wait, curr);
struct futex_hash_bucket *hb;
struct futex_q q;
u32 uval;
int ret;
struct hrtimer_sleeper t;
int rem = 0;
q.pi_state = NULL;
retry:
if (fshared)
down_read(fshared);
ret = get_futex_key(uaddr, fshared, &q.key);
if (unlikely(ret != 0))
goto out_release_sem;
hb = queue_lock(&q, -1, NULL);
/*
* Access the page AFTER the futex is queued.
* Order is important:
*
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
*
* The basic logical guarantee of a futex is that it blocks ONLY
* if cond(var) is known to be true at the time of blocking, for
* any cond. If we queued after testing *uaddr, that would open
* a race condition where we could block indefinitely with
* cond(var) false, which would violate the guarantee.
*
* A consequence is that futex_wait() can return zero and absorb
* a wakeup when *uaddr != val on entry to the syscall. This is
* rare, but normal.
*
* for shared futexes, we hold the mmap semaphore, so the mapping
* cannot have changed since we looked it up in get_futex_key.
*/
ret = get_futex_value_locked(&uval, uaddr);
if (unlikely(ret)) {
queue_unlock(&q, hb);
/*
* If we would have faulted, release mmap_sem, fault it in and
* start all over again.
*/
if (fshared)
up_read(fshared);
ret = get_user(uval, uaddr);
if (!ret)
goto retry;
return ret;
}
ret = -EWOULDBLOCK;
if (uval != val)
goto out_unlock_release_sem;
/* Only actually queue if *uaddr contained val. */
__queue_me(&q, hb);
/*
* Now the futex is queued and we have checked the data, we
* don't want to hold mmap_sem while we sleep.
*/
if (fshared)
up_read(fshared);
/*
* There might have been scheduling since the queue_me(), as we
* cannot hold a spinlock across the get_user() in case it
* faults, and we cannot just set TASK_INTERRUPTIBLE state when
* queueing ourselves into the futex hash. This code thus has to
* rely on the futex_wake() code removing us from hash when it
* wakes us up.
*/
/* add_wait_queue is the barrier after __set_current_state. */
__set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&q.waiters, &wait);
/*
* !plist_node_empty() is safe here without any lock.
* q.lock_ptr != 0 is not safe, because of ordering against wakeup.
*/
if (likely(!plist_node_empty(&q.list))) {
if (!abs_time)
schedule();
else {
hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
hrtimer_init_sleeper(&t, current);
t.timer.expires = *abs_time;
hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
/*
* the timer could have already expired, in which
* case current would be flagged for rescheduling.
* Don't bother calling schedule.
*/
if (likely(t.task))
schedule();
hrtimer_cancel(&t.timer);
/* Flag if a timeout occured */
rem = (t.task == NULL);
}
}
__set_current_state(TASK_RUNNING);
/*
* NOTE: we don't remove ourselves from the waitqueue because
* we are the only user of it.
*/
/* If we were woken (and unqueued), we succeeded, whatever. */
if (!unqueue_me(&q))
return 0;
if (rem)
return -ETIMEDOUT;
/*
* We expect signal_pending(current), but another thread may
* have handled it for us already.
*/
if (!abs_time)
return -ERESTARTSYS;
else {
struct restart_block *restart;
restart = &current_thread_info()->restart_block;
restart->fn = futex_wait_restart;
restart->arg0 = (unsigned long)uaddr;
restart->arg1 = (unsigned long)val;
restart->arg2 = (unsigned long)abs_time;
restart->arg3 = 0;
if (fshared)
restart->arg3 |= ARG3_SHARED;
return -ERESTART_RESTARTBLOCK;
}
out_unlock_release_sem:
queue_unlock(&q, hb);
out_release_sem:
if (fshared)
up_read(fshared);
return ret;
}
static long futex_wait_restart(struct restart_block *restart)
{
u32 __user *uaddr = (u32 __user *)restart->arg0;
u32 val = (u32)restart->arg1;
ktime_t *abs_time = (ktime_t *)restart->arg2;
struct rw_semaphore *fshared = NULL;
restart->fn = do_no_restart_syscall;
if (restart->arg3 & ARG3_SHARED)
fshared = &current->mm->mmap_sem;
return (long)futex_wait(uaddr, fshared, val, abs_time);
}
/*
* Userspace tried a 0 -> TID atomic transition of the futex value
* and failed. The kernel side here does the whole locking operation:
* if there are waiters then it will block, it does PI, etc. (Due to
* races the kernel might see a 0 value of the futex too.)
*/
static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
int detect, ktime_t *time, int trylock)
{
struct hrtimer_sleeper timeout, *to = NULL;
struct task_struct *curr = current;
struct futex_hash_bucket *hb;
u32 uval, newval, curval;
struct futex_q q;
int ret, lock_taken, ownerdied = 0, attempt = 0;
if (refill_pi_state_cache())
return -ENOMEM;
if (time) {
to = &timeout;
hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
hrtimer_init_sleeper(to, current);
to->timer.expires = *time;
}
q.pi_state = NULL;
retry:
if (fshared)
down_read(fshared);
ret = get_futex_key(uaddr, fshared, &q.key);
if (unlikely(ret != 0))
goto out_release_sem;
retry_unlocked:
hb = queue_lock(&q, -1, NULL);
retry_locked:
ret = lock_taken = 0;
/*
* To avoid races, we attempt to take the lock here again
* (by doing a 0 -> TID atomic cmpxchg), while holding all
* the locks. It will most likely not succeed.
*/
newval = current->pid;
pagefault_disable();
curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
pagefault_enable();
if (unlikely(curval == -EFAULT))
goto uaddr_faulted;
/*
* Detect deadlocks. In case of REQUEUE_PI this is a valid
* situation and we return success to user space.
*/
if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
ret = -EDEADLK;
goto out_unlock_release_sem;
}
/*
* Surprise - we got the lock. Just return to userspace:
*/
if (unlikely(!curval))
goto out_unlock_release_sem;
uval = curval;
/*
* Set the WAITERS flag, so the owner will know it has someone
* to wake at next unlock
*/
newval = curval | FUTEX_WAITERS;
/*
* There are two cases, where a futex might have no owner (the
* owner TID is 0): OWNER_DIED. We take over the futex in this
* case. We also do an unconditional take over, when the owner
* of the futex died.
*
* This is safe as we are protected by the hash bucket lock !
*/
if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
/* Keep the OWNER_DIED bit */
newval = (curval & ~FUTEX_TID_MASK) | current->pid;
ownerdied = 0;
lock_taken = 1;
}
pagefault_disable();
curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
pagefault_enable();
if (unlikely(curval == -EFAULT))
goto uaddr_faulted;
if (unlikely(curval != uval))
goto retry_locked;
/*
* We took the lock due to owner died take over.
*/
if (unlikely(lock_taken))
goto out_unlock_release_sem;
/*
* We dont have the lock. Look up the PI state (or create it if
* we are the first waiter):
*/
ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
if (unlikely(ret)) {
switch (ret) {
case -EAGAIN:
/*
* Task is exiting and we just wait for the
* exit to complete.
*/
queue_unlock(&q, hb);
if (fshared)
up_read(fshared);
cond_resched();
goto retry;
case -ESRCH:
/*
* No owner found for this futex. Check if the
* OWNER_DIED bit is set to figure out whether
* this is a robust futex or not.
*/
if (get_futex_value_locked(&curval, uaddr))
goto uaddr_faulted;
/*
* We simply start over in case of a robust
* futex. The code above will take the futex
* and return happy.
*/
if (curval & FUTEX_OWNER_DIED) {
ownerdied = 1;
goto retry_locked;
}
default:
goto out_unlock_release_sem;
}
}
/*
* Only actually queue now that the atomic ops are done:
*/
__queue_me(&q, hb);
/*
* Now the futex is queued and we have checked the data, we
* don't want to hold mmap_sem while we sleep.
*/
if (fshared)
up_read(fshared);
WARN_ON(!q.pi_state);
/*
* Block on the PI mutex:
*/
if (!trylock)
ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
else {
ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
/* Fixup the trylock return value: */
ret = ret ? 0 : -EWOULDBLOCK;
}
if (fshared)
down_read(fshared);
spin_lock(q.lock_ptr);
if (!ret) {
/*
* Got the lock. We might not be the anticipated owner
* if we did a lock-steal - fix up the PI-state in
* that case:
*/
if (q.pi_state->owner != curr)
ret = fixup_pi_state_owner(uaddr, &q, curr);
} else {
/*
* Catch the rare case, where the lock was released
* when we were on the way back before we locked the
* hash bucket.
*/
if (q.pi_state->owner == curr &&
rt_mutex_trylock(&q.pi_state->pi_mutex)) {
ret = 0;
} else {
/*
* Paranoia check. If we did not take the lock
* in the trylock above, then we should not be
* the owner of the rtmutex, neither the real
* nor the pending one:
*/
if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
printk(KERN_ERR "futex_lock_pi: ret = %d "
"pi-mutex: %p pi-state %p\n", ret,
q.pi_state->pi_mutex.owner,
q.pi_state->owner);
}
}
/* Unqueue and drop the lock */
unqueue_me_pi(&q);
if (fshared)
up_read(fshared);
return ret != -EINTR ? ret : -ERESTARTNOINTR;
out_unlock_release_sem:
queue_unlock(&q, hb);
out_release_sem:
if (fshared)
up_read(fshared);
return ret;
uaddr_faulted:
/*
* We have to r/w *(int __user *)uaddr, but we can't modify it
* non-atomically. Therefore, if get_user below is not
* enough, we need to handle the fault ourselves, while
* still holding the mmap_sem.
*
* ... and hb->lock. :-) --ANK
*/
queue_unlock(&q, hb);
if (attempt++) {
ret = futex_handle_fault((unsigned long)uaddr, fshared,
attempt);
if (ret)
goto out_release_sem;
goto retry_unlocked;
}
if (fshared)
up_read(fshared);
ret = get_user(uval, uaddr);
if (!ret && (uval != -EFAULT))
goto retry;
return ret;
}
/*
* Userspace attempted a TID -> 0 atomic transition, and failed.
* This is the in-kernel slowpath: we look up the PI state (if any),
* and do the rt-mutex unlock.
*/
static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
u32 uval;
struct plist_head *head;
union futex_key key;
int ret, attempt = 0;
retry:
if (get_user(uval, uaddr))
return -EFAULT;
/*
* We release only a lock we actually own:
*/
if ((uval & FUTEX_TID_MASK) != current->pid)
return -EPERM;
/*
* First take all the futex related locks:
*/
if (fshared)
down_read(fshared);
ret = get_futex_key(uaddr, fshared, &key);
if (unlikely(ret != 0))
goto out;
hb = hash_futex(&key);
retry_unlocked:
spin_lock(&hb->lock);
/*
* To avoid races, try to do the TID -> 0 atomic transition
* again. If it succeeds then we can return without waking
* anyone else up:
*/
if (!(uval & FUTEX_OWNER_DIED)) {
pagefault_disable();
uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
pagefault_enable();
}
if (unlikely(uval == -EFAULT))
goto pi_faulted;
/*
* Rare case: we managed to release the lock atomically,
* no need to wake anyone else up:
*/
if (unlikely(uval == current->pid))
goto out_unlock;
/*
* Ok, other tasks may need to be woken up - check waiters
* and do the wakeup if necessary:
*/
head = &hb->chain;
plist_for_each_entry_safe(this, next, head, list) {
if (!match_futex (&this->key, &key))
continue;
ret = wake_futex_pi(uaddr, uval, this);
/*
* The atomic access to the futex value
* generated a pagefault, so retry the
* user-access and the wakeup:
*/
if (ret == -EFAULT)
goto pi_faulted;
goto out_unlock;
}
/*
* No waiters - kernel unlocks the futex:
*/
if (!(uval & FUTEX_OWNER_DIED)) {
ret = unlock_futex_pi(uaddr, uval);
if (ret == -EFAULT)
goto pi_faulted;
}
out_unlock:
spin_unlock(&hb->lock);
out:
if (fshared)
up_read(fshared);
return ret;
pi_faulted:
/*
* We have to r/w *(int __user *)uaddr, but we can't modify it
* non-atomically. Therefore, if get_user below is not
* enough, we need to handle the fault ourselves, while
* still holding the mmap_sem.
*
* ... and hb->lock. --ANK
*/
spin_unlock(&hb->lock);
if (attempt++) {
ret = futex_handle_fault((unsigned long)uaddr, fshared,
attempt);
if (ret)
goto out;
goto retry_unlocked;
}
if (fshared)
up_read(fshared);
ret = get_user(uval, uaddr);
if (!ret && (uval != -EFAULT))
goto retry;
return ret;
}
static int futex_close(struct inode *inode, struct file *filp)
{
struct futex_q *q = filp->private_data;
unqueue_me(q);
kfree(q);
return 0;
}
/* This is one-shot: once it's gone off you need a new fd */
static unsigned int futex_poll(struct file *filp,
struct poll_table_struct *wait)
{
struct futex_q *q = filp->private_data;
int ret = 0;
poll_wait(filp, &q->waiters, wait);
/*
* plist_node_empty() is safe here without any lock.
* q->lock_ptr != 0 is not safe, because of ordering against wakeup.
*/
if (plist_node_empty(&q->list))
ret = POLLIN | POLLRDNORM;
return ret;
}
static const struct file_operations futex_fops = {
.release = futex_close,
.poll = futex_poll,
};
/*
* Signal allows caller to avoid the race which would occur if they
* set the sigio stuff up afterwards.
*/
static int futex_fd(u32 __user *uaddr, int signal)
{
struct futex_q *q;
struct file *filp;
int ret, err;
struct rw_semaphore *fshared;
static unsigned long printk_interval;
if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
"will be removed from the kernel in June 2007\n",
current->comm);
}
ret = -EINVAL;
if (!valid_signal(signal))
goto out;
ret = get_unused_fd();
if (ret < 0)
goto out;
filp = get_empty_filp();
if (!filp) {
put_unused_fd(ret);
ret = -ENFILE;
goto out;
}
filp->f_op = &futex_fops;
filp->f_path.mnt = mntget(futex_mnt);
filp->f_path.dentry = dget(futex_mnt->mnt_root);
filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
if (signal) {
err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
if (err < 0) {
goto error;
}
filp->f_owner.signum = signal;
}
q = kmalloc(sizeof(*q), GFP_KERNEL);
if (!q) {
err = -ENOMEM;
goto error;
}
q->pi_state = NULL;
fshared = &current->mm->mmap_sem;
down_read(fshared);
err = get_futex_key(uaddr, fshared, &q->key);
if (unlikely(err != 0)) {
up_read(fshared);
kfree(q);
goto error;
}
/*
* queue_me() must be called before releasing mmap_sem, because
* key->shared.inode needs to be referenced while holding it.
*/
filp->private_data = q;
queue_me(q, ret, filp);
up_read(fshared);
/* Now we map fd to filp, so userspace can access it */
fd_install(ret, filp);
out:
return ret;
error:
put_unused_fd(ret);
put_filp(filp);
ret = err;
goto out;
}
/*
* Support for robust futexes: the kernel cleans up held futexes at
* thread exit time.
*
* Implementation: user-space maintains a per-thread list of locks it
* is holding. Upon do_exit(), the kernel carefully walks this list,
* and marks all locks that are owned by this thread with the
* FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
* always manipulated with the lock held, so the list is private and
* per-thread. Userspace also maintains a per-thread 'list_op_pending'
* field, to allow the kernel to clean up if the thread dies after
* acquiring the lock, but just before it could have added itself to
* the list. There can only be one such pending lock.
*/
/**
* sys_set_robust_list - set the robust-futex list head of a task
* @head: pointer to the list-head
* @len: length of the list-head, as userspace expects
*/
asmlinkage long
sys_set_robust_list(struct robust_list_head __user *head,
size_t len)
{
/*
* The kernel knows only one size for now:
*/
if (unlikely(len != sizeof(*head)))
return -EINVAL;
current->robust_list = head;
return 0;
}
/**
* sys_get_robust_list - get the robust-futex list head of a task
* @pid: pid of the process [zero for current task]
* @head_ptr: pointer to a list-head pointer, the kernel fills it in
* @len_ptr: pointer to a length field, the kernel fills in the header size
*/
asmlinkage long
sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
size_t __user *len_ptr)
{
struct robust_list_head __user *head;
unsigned long ret;
if (!pid)
head = current->robust_list;
else {
struct task_struct *p;
ret = -ESRCH;
rcu_read_lock();
p = find_task_by_pid(pid);
if (!p)
goto err_unlock;
ret = -EPERM;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_PTRACE))
goto err_unlock;
head = p->robust_list;
rcu_read_unlock();
}
if (put_user(sizeof(*head), len_ptr))
return -EFAULT;
return put_user(head, head_ptr);
err_unlock:
rcu_read_unlock();
return ret;
}
/*
* Process a futex-list entry, check whether it's owned by the
* dying task, and do notification if so:
*/
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
{
u32 uval, nval, mval;
retry:
if (get_user(uval, uaddr))
return -1;
if ((uval & FUTEX_TID_MASK) == curr->pid) {
/*
* Ok, this dying thread is truly holding a futex
* of interest. Set the OWNER_DIED bit atomically
* via cmpxchg, and if the value had FUTEX_WAITERS
* set, wake up a waiter (if any). (We have to do a
* futex_wake() even if OWNER_DIED is already set -
* to handle the rare but possible case of recursive
* thread-death.) The rest of the cleanup is done in
* userspace.
*/
mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
if (nval == -EFAULT)
return -1;
if (nval != uval)
goto retry;
/*
* Wake robust non-PI futexes here. The wakeup of
* PI futexes happens in exit_pi_state():
*/
if (!pi) {
if (uval & FUTEX_WAITERS)
futex_wake(uaddr, &curr->mm->mmap_sem, 1);
}
}
return 0;
}
/*
* Fetch a robust-list pointer. Bit 0 signals PI futexes:
*/
static inline int fetch_robust_entry(struct robust_list __user **entry,
struct robust_list __user * __user *head,
int *pi)
{
unsigned long uentry;
if (get_user(uentry, (unsigned long __user *)head))
return -EFAULT;
*entry = (void __user *)(uentry & ~1UL);
*pi = uentry & 1;
return 0;
}
/*
* Walk curr->robust_list (very carefully, it's a userspace list!)
* and mark any locks found there dead, and notify any waiters.
*
* We silently return on any sign of list-walking problem.
*/
void exit_robust_list(struct task_struct *curr)
{
struct robust_list_head __user *head = curr->robust_list;
struct robust_list __user *entry, *pending;
unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
unsigned long futex_offset;
/*
* Fetch the list head (which was registered earlier, via
* sys_set_robust_list()):
*/
if (fetch_robust_entry(&entry, &head->list.next, &pi))
return;
/*
* Fetch the relative futex offset:
*/
if (get_user(futex_offset, &head->futex_offset))
return;
/*
* Fetch any possibly pending lock-add first, and handle it
* if it exists:
*/
if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
return;
if (pending)
handle_futex_death((void __user *)pending + futex_offset,
curr, pip);
while (entry != &head->list) {
/*
* A pending lock might already be on the list, so
* don't process it twice:
*/
if (entry != pending)
if (handle_futex_death((void __user *)entry + futex_offset,
curr, pi))
return;
/*
* Fetch the next entry in the list:
*/
if (fetch_robust_entry(&entry, &entry->next, &pi))
return;
/*
* Avoid excessively long or circular lists:
*/
if (!--limit)
break;
cond_resched();
}
}
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
u32 __user *uaddr2, u32 val2, u32 val3)
{
int ret;
int cmd = op & FUTEX_CMD_MASK;
struct rw_semaphore *fshared = NULL;
if (!(op & FUTEX_PRIVATE_FLAG))
fshared = &current->mm->mmap_sem;
switch (cmd) {
case FUTEX_WAIT:
ret = futex_wait(uaddr, fshared, val, timeout);
break;
case FUTEX_WAKE:
ret = futex_wake(uaddr, fshared, val);
break;
case FUTEX_FD:
/* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
ret = futex_fd(uaddr, val);
break;
case FUTEX_REQUEUE:
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
break;
case FUTEX_CMP_REQUEUE:
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
break;
case FUTEX_WAKE_OP:
ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
break;
case FUTEX_LOCK_PI:
ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
break;
case FUTEX_UNLOCK_PI:
ret = futex_unlock_pi(uaddr, fshared);
break;
case FUTEX_TRYLOCK_PI:
ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
break;
default:
ret = -ENOSYS;
}
return ret;
}
asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
struct timespec __user *utime, u32 __user *uaddr2,
u32 val3)
{
struct timespec ts;
ktime_t t, *tp = NULL;
u32 val2 = 0;
int cmd = op & FUTEX_CMD_MASK;
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
return -EFAULT;
if (!timespec_valid(&ts))
return -EINVAL;
t = timespec_to_ktime(ts);
if (cmd == FUTEX_WAIT)
t = ktime_add(ktime_get(), t);
tp = &t;
}
/*
* requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
*/
if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE)
val2 = (u32) (unsigned long) utime;
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
static int futexfs_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data,
struct vfsmount *mnt)
{
return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
}
static struct file_system_type futex_fs_type = {
.name = "futexfs",
.get_sb = futexfs_get_sb,
.kill_sb = kill_anon_super,
};
static int __init init(void)
{
int i = register_filesystem(&futex_fs_type);
if (i)
return i;
futex_mnt = kern_mount(&futex_fs_type);
if (IS_ERR(futex_mnt)) {
unregister_filesystem(&futex_fs_type);
return PTR_ERR(futex_mnt);
}
for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
spin_lock_init(&futex_queues[i].lock);
}
return 0;
}
__initcall(init);