599 строки
16 KiB
C
599 строки
16 KiB
C
/*
|
|
* Device State Control Registers driver
|
|
*
|
|
* Copyright (C) 2011 Texas Instruments Incorporated
|
|
* Author: Mark Salter <msalter@redhat.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
/*
|
|
* The Device State Control Registers (DSCR) provide SoC level control over
|
|
* a number of peripherals. Details vary considerably among the various SoC
|
|
* parts. In general, the DSCR block will provide one or more configuration
|
|
* registers often protected by a lock register. One or more key values must
|
|
* be written to a lock register in order to unlock the configuration register.
|
|
* The configuration register may be used to enable (and disable in some
|
|
* cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
|
|
* In some cases, a configuration register is write once or the individual
|
|
* bits are write once. That is, you may be able to enable a device, but
|
|
* will not be able to disable it.
|
|
*
|
|
* In addition to device configuration, the DSCR block may provide registers
|
|
* which are used to reset SoC peripherals, provide device ID information,
|
|
* provide MAC addresses, and other miscellaneous functions.
|
|
*/
|
|
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/module.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/soc.h>
|
|
#include <asm/dscr.h>
|
|
|
|
#define MAX_DEVSTATE_IDS 32
|
|
#define MAX_DEVCTL_REGS 8
|
|
#define MAX_DEVSTAT_REGS 8
|
|
#define MAX_LOCKED_REGS 4
|
|
#define MAX_SOC_EMACS 2
|
|
|
|
struct rmii_reset_reg {
|
|
u32 reg;
|
|
u32 mask;
|
|
};
|
|
|
|
/*
|
|
* Some registerd may be locked. In order to write to these
|
|
* registers, the key value must first be written to the lockreg.
|
|
*/
|
|
struct locked_reg {
|
|
u32 reg; /* offset from base */
|
|
u32 lockreg; /* offset from base */
|
|
u32 key; /* unlock key */
|
|
};
|
|
|
|
/*
|
|
* This describes a contiguous area of like control bits used to enable/disable
|
|
* SoC devices. Each controllable device is given an ID which is used by the
|
|
* individual device drivers to control the device state. These IDs start at
|
|
* zero and are assigned sequentially to the control bitfield ranges described
|
|
* by this structure.
|
|
*/
|
|
struct devstate_ctl_reg {
|
|
u32 reg; /* register holding the control bits */
|
|
u8 start_id; /* start id of this range */
|
|
u8 num_ids; /* number of devices in this range */
|
|
u8 enable_only; /* bits are write-once to enable only */
|
|
u8 enable; /* value used to enable device */
|
|
u8 disable; /* value used to disable device */
|
|
u8 shift; /* starting (rightmost) bit in range */
|
|
u8 nbits; /* number of bits per device */
|
|
};
|
|
|
|
|
|
/*
|
|
* This describes a region of status bits indicating the state of
|
|
* various devices. This is used internally to wait for status
|
|
* change completion when enabling/disabling a device. Status is
|
|
* optional and not all device controls will have a corresponding
|
|
* status.
|
|
*/
|
|
struct devstate_stat_reg {
|
|
u32 reg; /* register holding the status bits */
|
|
u8 start_id; /* start id of this range */
|
|
u8 num_ids; /* number of devices in this range */
|
|
u8 enable; /* value indicating enabled state */
|
|
u8 disable; /* value indicating disabled state */
|
|
u8 shift; /* starting (rightmost) bit in range */
|
|
u8 nbits; /* number of bits per device */
|
|
};
|
|
|
|
struct devstate_info {
|
|
struct devstate_ctl_reg *ctl;
|
|
struct devstate_stat_reg *stat;
|
|
};
|
|
|
|
/* These are callbacks to SOC-specific code. */
|
|
struct dscr_ops {
|
|
void (*init)(struct device_node *node);
|
|
};
|
|
|
|
struct dscr_regs {
|
|
spinlock_t lock;
|
|
void __iomem *base;
|
|
u32 kick_reg[2];
|
|
u32 kick_key[2];
|
|
struct locked_reg locked[MAX_LOCKED_REGS];
|
|
struct devstate_info devstate_info[MAX_DEVSTATE_IDS];
|
|
struct rmii_reset_reg rmii_resets[MAX_SOC_EMACS];
|
|
struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS];
|
|
struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS];
|
|
};
|
|
|
|
static struct dscr_regs dscr;
|
|
|
|
static struct locked_reg *find_locked_reg(u32 reg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_LOCKED_REGS; i++)
|
|
if (dscr.locked[i].key && reg == dscr.locked[i].reg)
|
|
return &dscr.locked[i];
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Write to a register with one lock
|
|
*/
|
|
static void dscr_write_locked1(u32 reg, u32 val,
|
|
u32 lock, u32 key)
|
|
{
|
|
void __iomem *reg_addr = dscr.base + reg;
|
|
void __iomem *lock_addr = dscr.base + lock;
|
|
|
|
/*
|
|
* For some registers, the lock is relocked after a short number
|
|
* of cycles. We have to put the lock write and register write in
|
|
* the same fetch packet to meet this timing. The .align ensures
|
|
* the two stw instructions are in the same fetch packet.
|
|
*/
|
|
asm volatile ("b .s2 0f\n"
|
|
"nop 5\n"
|
|
" .align 5\n"
|
|
"0:\n"
|
|
"stw .D1T2 %3,*%2\n"
|
|
"stw .D1T2 %1,*%0\n"
|
|
:
|
|
: "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key)
|
|
);
|
|
|
|
/* in case the hw doesn't reset the lock */
|
|
soc_writel(0, lock_addr);
|
|
}
|
|
|
|
/*
|
|
* Write to a register protected by two lock registers
|
|
*/
|
|
static void dscr_write_locked2(u32 reg, u32 val,
|
|
u32 lock0, u32 key0,
|
|
u32 lock1, u32 key1)
|
|
{
|
|
soc_writel(key0, dscr.base + lock0);
|
|
soc_writel(key1, dscr.base + lock1);
|
|
soc_writel(val, dscr.base + reg);
|
|
soc_writel(0, dscr.base + lock0);
|
|
soc_writel(0, dscr.base + lock1);
|
|
}
|
|
|
|
static void dscr_write(u32 reg, u32 val)
|
|
{
|
|
struct locked_reg *lock;
|
|
|
|
lock = find_locked_reg(reg);
|
|
if (lock)
|
|
dscr_write_locked1(reg, val, lock->lockreg, lock->key);
|
|
else if (dscr.kick_key[0])
|
|
dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0],
|
|
dscr.kick_reg[1], dscr.kick_key[1]);
|
|
else
|
|
soc_writel(val, dscr.base + reg);
|
|
}
|
|
|
|
|
|
/*
|
|
* Drivers can use this interface to enable/disable SoC IP blocks.
|
|
*/
|
|
void dscr_set_devstate(int id, enum dscr_devstate_t state)
|
|
{
|
|
struct devstate_ctl_reg *ctl;
|
|
struct devstate_stat_reg *stat;
|
|
struct devstate_info *info;
|
|
u32 ctl_val, val;
|
|
int ctl_shift, ctl_mask;
|
|
unsigned long flags;
|
|
|
|
if (!dscr.base)
|
|
return;
|
|
|
|
if (id < 0 || id >= MAX_DEVSTATE_IDS)
|
|
return;
|
|
|
|
info = &dscr.devstate_info[id];
|
|
ctl = info->ctl;
|
|
stat = info->stat;
|
|
|
|
if (ctl == NULL)
|
|
return;
|
|
|
|
ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id);
|
|
ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift;
|
|
|
|
switch (state) {
|
|
case DSCR_DEVSTATE_ENABLED:
|
|
ctl_val = ctl->enable << ctl_shift;
|
|
break;
|
|
case DSCR_DEVSTATE_DISABLED:
|
|
if (ctl->enable_only)
|
|
return;
|
|
ctl_val = ctl->disable << ctl_shift;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&dscr.lock, flags);
|
|
|
|
val = soc_readl(dscr.base + ctl->reg);
|
|
val &= ~ctl_mask;
|
|
val |= ctl_val;
|
|
|
|
dscr_write(ctl->reg, val);
|
|
|
|
spin_unlock_irqrestore(&dscr.lock, flags);
|
|
|
|
if (!stat)
|
|
return;
|
|
|
|
ctl_shift = stat->shift + stat->nbits * (id - stat->start_id);
|
|
|
|
if (state == DSCR_DEVSTATE_ENABLED)
|
|
ctl_val = stat->enable;
|
|
else
|
|
ctl_val = stat->disable;
|
|
|
|
do {
|
|
val = soc_readl(dscr.base + stat->reg);
|
|
val >>= ctl_shift;
|
|
val &= ((1 << stat->nbits) - 1);
|
|
} while (val != ctl_val);
|
|
}
|
|
EXPORT_SYMBOL(dscr_set_devstate);
|
|
|
|
/*
|
|
* Drivers can use this to reset RMII module.
|
|
*/
|
|
void dscr_rmii_reset(int id, int assert)
|
|
{
|
|
struct rmii_reset_reg *r;
|
|
unsigned long flags;
|
|
u32 val;
|
|
|
|
if (id < 0 || id >= MAX_SOC_EMACS)
|
|
return;
|
|
|
|
r = &dscr.rmii_resets[id];
|
|
if (r->mask == 0)
|
|
return;
|
|
|
|
spin_lock_irqsave(&dscr.lock, flags);
|
|
|
|
val = soc_readl(dscr.base + r->reg);
|
|
if (assert)
|
|
dscr_write(r->reg, val | r->mask);
|
|
else
|
|
dscr_write(r->reg, val & ~(r->mask));
|
|
|
|
spin_unlock_irqrestore(&dscr.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(dscr_rmii_reset);
|
|
|
|
static void __init dscr_parse_devstat(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
u32 val;
|
|
int err;
|
|
|
|
err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1);
|
|
if (!err)
|
|
c6x_devstat = soc_readl(base + val);
|
|
printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat);
|
|
}
|
|
|
|
static void __init dscr_parse_silicon_rev(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
u32 vals[3];
|
|
int err;
|
|
|
|
err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3);
|
|
if (!err) {
|
|
c6x_silicon_rev = soc_readl(base + vals[0]);
|
|
c6x_silicon_rev >>= vals[1];
|
|
c6x_silicon_rev &= vals[2];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some SoCs will have a pair of fuse registers which hold
|
|
* an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
|
|
* property is a mapping from fuse register bytes to MAC
|
|
* address bytes. The expected format is:
|
|
*
|
|
* ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
|
|
* reg1 b3 b2 b1 b0>
|
|
*
|
|
* reg0 and reg1 are the offsets of the two fuse registers.
|
|
* b3-b0 positionally represent bytes within the fuse register.
|
|
* b3 is the most significant byte and b0 is the least.
|
|
* Allowable values for b3-b0 are:
|
|
*
|
|
* 0 = fuse register byte not used in MAC address
|
|
* 1-6 = index+1 into c6x_fuse_mac[]
|
|
*/
|
|
static void __init dscr_parse_mac_fuse(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
u32 vals[10], fuse;
|
|
int f, i, j, err;
|
|
|
|
err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs",
|
|
vals, 10);
|
|
if (err)
|
|
return;
|
|
|
|
for (f = 0; f < 2; f++) {
|
|
fuse = soc_readl(base + vals[f * 5]);
|
|
for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++)
|
|
if (vals[j] && vals[j] <= 6)
|
|
c6x_fuse_mac[vals[j] - 1] = fuse >> i;
|
|
}
|
|
}
|
|
|
|
static void __init dscr_parse_rmii_resets(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
const __be32 *p;
|
|
int i, size;
|
|
|
|
/* look for RMII reset registers */
|
|
p = of_get_property(node, "ti,dscr-rmii-resets", &size);
|
|
if (p) {
|
|
/* parse all the reg/mask pairs we can handle */
|
|
size /= (sizeof(*p) * 2);
|
|
if (size > MAX_SOC_EMACS)
|
|
size = MAX_SOC_EMACS;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
dscr.rmii_resets[i].reg = be32_to_cpup(p++);
|
|
dscr.rmii_resets[i].mask = be32_to_cpup(p++);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void __init dscr_parse_privperm(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
u32 vals[2];
|
|
int err;
|
|
|
|
err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2);
|
|
if (err)
|
|
return;
|
|
dscr_write(vals[0], vals[1]);
|
|
}
|
|
|
|
/*
|
|
* SoCs may have "locked" DSCR registers which can only be written
|
|
* to only after writing a key value to a lock registers. These
|
|
* regisers can be described with the "ti,dscr-locked-regs" property.
|
|
* This property provides a list of register descriptions with each
|
|
* description consisting of three values.
|
|
*
|
|
* ti,dscr-locked-regs = <reg0 lockreg0 key0
|
|
* ...
|
|
* regN lockregN keyN>;
|
|
*
|
|
* reg is the offset of the locked register
|
|
* lockreg is the offset of the lock register
|
|
* key is the unlock key written to lockreg
|
|
*
|
|
*/
|
|
static void __init dscr_parse_locked_regs(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
struct locked_reg *r;
|
|
const __be32 *p;
|
|
int i, size;
|
|
|
|
p = of_get_property(node, "ti,dscr-locked-regs", &size);
|
|
if (p) {
|
|
/* parse all the register descriptions we can handle */
|
|
size /= (sizeof(*p) * 3);
|
|
if (size > MAX_LOCKED_REGS)
|
|
size = MAX_LOCKED_REGS;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
r = &dscr.locked[i];
|
|
|
|
r->reg = be32_to_cpup(p++);
|
|
r->lockreg = be32_to_cpup(p++);
|
|
r->key = be32_to_cpup(p++);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SoCs may have DSCR registers which are only write enabled after
|
|
* writing specific key values to two registers. The two key registers
|
|
* and the key values can be parsed from a "ti,dscr-kick-regs"
|
|
* propety with the following layout:
|
|
*
|
|
* ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
|
|
*
|
|
* kickreg is the offset of the "kick" register
|
|
* key is the value which unlocks writing for protected regs
|
|
*/
|
|
static void __init dscr_parse_kick_regs(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
u32 vals[4];
|
|
int err;
|
|
|
|
err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4);
|
|
if (!err) {
|
|
dscr.kick_reg[0] = vals[0];
|
|
dscr.kick_key[0] = vals[1];
|
|
dscr.kick_reg[1] = vals[2];
|
|
dscr.kick_key[1] = vals[3];
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* SoCs may provide controls to enable/disable individual IP blocks. These
|
|
* controls in the DSCR usually control pin drivers but also may control
|
|
* clocking and or resets. The device tree is used to describe the bitfields
|
|
* in registers used to control device state. The number of bits and their
|
|
* values may vary even within the same register.
|
|
*
|
|
* The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
|
|
* property. This property is a list where each element describes a contiguous
|
|
* range of control fields with like properties. Each element of the list
|
|
* consists of 7 cells with the following values:
|
|
*
|
|
* start_id num_ids reg enable disable start_bit nbits
|
|
*
|
|
* start_id is device id for the first device control in the range
|
|
* num_ids is the number of device controls in the range
|
|
* reg is the offset of the register holding the control bits
|
|
* enable is the value to enable a device
|
|
* disable is the value to disable a device (0xffffffff if cannot disable)
|
|
* start_bit is the bit number of the first bit in the range
|
|
* nbits is the number of bits per device control
|
|
*/
|
|
static void __init dscr_parse_devstate_ctl_regs(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
struct devstate_ctl_reg *r;
|
|
const __be32 *p;
|
|
int i, j, size;
|
|
|
|
p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size);
|
|
if (p) {
|
|
/* parse all the ranges we can handle */
|
|
size /= (sizeof(*p) * 7);
|
|
if (size > MAX_DEVCTL_REGS)
|
|
size = MAX_DEVCTL_REGS;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
r = &dscr.devctl[i];
|
|
|
|
r->start_id = be32_to_cpup(p++);
|
|
r->num_ids = be32_to_cpup(p++);
|
|
r->reg = be32_to_cpup(p++);
|
|
r->enable = be32_to_cpup(p++);
|
|
r->disable = be32_to_cpup(p++);
|
|
if (r->disable == 0xffffffff)
|
|
r->enable_only = 1;
|
|
r->shift = be32_to_cpup(p++);
|
|
r->nbits = be32_to_cpup(p++);
|
|
|
|
for (j = r->start_id;
|
|
j < (r->start_id + r->num_ids);
|
|
j++)
|
|
dscr.devstate_info[j].ctl = r;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SoCs may provide status registers indicating the state (enabled/disabled) of
|
|
* devices on the SoC. The device tree is used to describe the bitfields in
|
|
* registers used to provide device status. The number of bits and their
|
|
* values used to provide status may vary even within the same register.
|
|
*
|
|
* The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
|
|
* property. This property is a list where each element describes a contiguous
|
|
* range of status fields with like properties. Each element of the list
|
|
* consists of 7 cells with the following values:
|
|
*
|
|
* start_id num_ids reg enable disable start_bit nbits
|
|
*
|
|
* start_id is device id for the first device status in the range
|
|
* num_ids is the number of devices covered by the range
|
|
* reg is the offset of the register holding the status bits
|
|
* enable is the value indicating device is enabled
|
|
* disable is the value indicating device is disabled
|
|
* start_bit is the bit number of the first bit in the range
|
|
* nbits is the number of bits per device status
|
|
*/
|
|
static void __init dscr_parse_devstate_stat_regs(struct device_node *node,
|
|
void __iomem *base)
|
|
{
|
|
struct devstate_stat_reg *r;
|
|
const __be32 *p;
|
|
int i, j, size;
|
|
|
|
p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size);
|
|
if (p) {
|
|
/* parse all the ranges we can handle */
|
|
size /= (sizeof(*p) * 7);
|
|
if (size > MAX_DEVSTAT_REGS)
|
|
size = MAX_DEVSTAT_REGS;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
r = &dscr.devstat[i];
|
|
|
|
r->start_id = be32_to_cpup(p++);
|
|
r->num_ids = be32_to_cpup(p++);
|
|
r->reg = be32_to_cpup(p++);
|
|
r->enable = be32_to_cpup(p++);
|
|
r->disable = be32_to_cpup(p++);
|
|
r->shift = be32_to_cpup(p++);
|
|
r->nbits = be32_to_cpup(p++);
|
|
|
|
for (j = r->start_id;
|
|
j < (r->start_id + r->num_ids);
|
|
j++)
|
|
dscr.devstate_info[j].stat = r;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct of_device_id dscr_ids[] __initdata = {
|
|
{ .compatible = "ti,c64x+dscr" },
|
|
{}
|
|
};
|
|
|
|
/*
|
|
* Probe for DSCR area.
|
|
*
|
|
* This has to be done early on in case timer or interrupt controller
|
|
* needs something. e.g. On C6455 SoC, timer must be enabled through
|
|
* DSCR before it is functional.
|
|
*/
|
|
void __init dscr_probe(void)
|
|
{
|
|
struct device_node *node;
|
|
void __iomem *base;
|
|
|
|
spin_lock_init(&dscr.lock);
|
|
|
|
node = of_find_matching_node(NULL, dscr_ids);
|
|
if (!node)
|
|
return;
|
|
|
|
base = of_iomap(node, 0);
|
|
if (!base) {
|
|
of_node_put(node);
|
|
return;
|
|
}
|
|
|
|
dscr.base = base;
|
|
|
|
dscr_parse_devstat(node, base);
|
|
dscr_parse_silicon_rev(node, base);
|
|
dscr_parse_mac_fuse(node, base);
|
|
dscr_parse_rmii_resets(node, base);
|
|
dscr_parse_locked_regs(node, base);
|
|
dscr_parse_kick_regs(node, base);
|
|
dscr_parse_devstate_ctl_regs(node, base);
|
|
dscr_parse_devstate_stat_regs(node, base);
|
|
dscr_parse_privperm(node, base);
|
|
}
|