1136 строки
28 KiB
C
1136 строки
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/slab.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/key.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/coredump.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/module.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/tsacct_kern.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/path.h>
|
|
#include <linux/timekeeping.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/exec.h>
|
|
|
|
#include <trace/events/task.h>
|
|
#include "internal.h"
|
|
|
|
#include <trace/events/sched.h>
|
|
|
|
int core_uses_pid;
|
|
unsigned int core_pipe_limit;
|
|
char core_pattern[CORENAME_MAX_SIZE] = "core";
|
|
static int core_name_size = CORENAME_MAX_SIZE;
|
|
|
|
struct core_name {
|
|
char *corename;
|
|
int used, size;
|
|
};
|
|
|
|
/* The maximal length of core_pattern is also specified in sysctl.c */
|
|
|
|
static int expand_corename(struct core_name *cn, int size)
|
|
{
|
|
char *corename = krealloc(cn->corename, size, GFP_KERNEL);
|
|
|
|
if (!corename)
|
|
return -ENOMEM;
|
|
|
|
if (size > core_name_size) /* racy but harmless */
|
|
core_name_size = size;
|
|
|
|
cn->size = ksize(corename);
|
|
cn->corename = corename;
|
|
return 0;
|
|
}
|
|
|
|
static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
|
|
va_list arg)
|
|
{
|
|
int free, need;
|
|
va_list arg_copy;
|
|
|
|
again:
|
|
free = cn->size - cn->used;
|
|
|
|
va_copy(arg_copy, arg);
|
|
need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
|
|
va_end(arg_copy);
|
|
|
|
if (need < free) {
|
|
cn->used += need;
|
|
return 0;
|
|
}
|
|
|
|
if (!expand_corename(cn, cn->size + need - free + 1))
|
|
goto again;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
|
|
{
|
|
va_list arg;
|
|
int ret;
|
|
|
|
va_start(arg, fmt);
|
|
ret = cn_vprintf(cn, fmt, arg);
|
|
va_end(arg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __printf(2, 3)
|
|
int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
|
|
{
|
|
int cur = cn->used;
|
|
va_list arg;
|
|
int ret;
|
|
|
|
va_start(arg, fmt);
|
|
ret = cn_vprintf(cn, fmt, arg);
|
|
va_end(arg);
|
|
|
|
if (ret == 0) {
|
|
/*
|
|
* Ensure that this coredump name component can't cause the
|
|
* resulting corefile path to consist of a ".." or ".".
|
|
*/
|
|
if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
|
|
(cn->used - cur == 2 && cn->corename[cur] == '.'
|
|
&& cn->corename[cur+1] == '.'))
|
|
cn->corename[cur] = '!';
|
|
|
|
/*
|
|
* Empty names are fishy and could be used to create a "//" in a
|
|
* corefile name, causing the coredump to happen one directory
|
|
* level too high. Enforce that all components of the core
|
|
* pattern are at least one character long.
|
|
*/
|
|
if (cn->used == cur)
|
|
ret = cn_printf(cn, "!");
|
|
}
|
|
|
|
for (; cur < cn->used; ++cur) {
|
|
if (cn->corename[cur] == '/')
|
|
cn->corename[cur] = '!';
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int cn_print_exe_file(struct core_name *cn, bool name_only)
|
|
{
|
|
struct file *exe_file;
|
|
char *pathbuf, *path, *ptr;
|
|
int ret;
|
|
|
|
exe_file = get_mm_exe_file(current->mm);
|
|
if (!exe_file)
|
|
return cn_esc_printf(cn, "%s (path unknown)", current->comm);
|
|
|
|
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
|
|
if (!pathbuf) {
|
|
ret = -ENOMEM;
|
|
goto put_exe_file;
|
|
}
|
|
|
|
path = file_path(exe_file, pathbuf, PATH_MAX);
|
|
if (IS_ERR(path)) {
|
|
ret = PTR_ERR(path);
|
|
goto free_buf;
|
|
}
|
|
|
|
if (name_only) {
|
|
ptr = strrchr(path, '/');
|
|
if (ptr)
|
|
path = ptr + 1;
|
|
}
|
|
ret = cn_esc_printf(cn, "%s", path);
|
|
|
|
free_buf:
|
|
kfree(pathbuf);
|
|
put_exe_file:
|
|
fput(exe_file);
|
|
return ret;
|
|
}
|
|
|
|
/* format_corename will inspect the pattern parameter, and output a
|
|
* name into corename, which must have space for at least
|
|
* CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
|
|
*/
|
|
static int format_corename(struct core_name *cn, struct coredump_params *cprm,
|
|
size_t **argv, int *argc)
|
|
{
|
|
const struct cred *cred = current_cred();
|
|
const char *pat_ptr = core_pattern;
|
|
int ispipe = (*pat_ptr == '|');
|
|
bool was_space = false;
|
|
int pid_in_pattern = 0;
|
|
int err = 0;
|
|
|
|
cn->used = 0;
|
|
cn->corename = NULL;
|
|
if (expand_corename(cn, core_name_size))
|
|
return -ENOMEM;
|
|
cn->corename[0] = '\0';
|
|
|
|
if (ispipe) {
|
|
int argvs = sizeof(core_pattern) / 2;
|
|
(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
|
|
if (!(*argv))
|
|
return -ENOMEM;
|
|
(*argv)[(*argc)++] = 0;
|
|
++pat_ptr;
|
|
if (!(*pat_ptr))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Repeat as long as we have more pattern to process and more output
|
|
space */
|
|
while (*pat_ptr) {
|
|
/*
|
|
* Split on spaces before doing template expansion so that
|
|
* %e and %E don't get split if they have spaces in them
|
|
*/
|
|
if (ispipe) {
|
|
if (isspace(*pat_ptr)) {
|
|
if (cn->used != 0)
|
|
was_space = true;
|
|
pat_ptr++;
|
|
continue;
|
|
} else if (was_space) {
|
|
was_space = false;
|
|
err = cn_printf(cn, "%c", '\0');
|
|
if (err)
|
|
return err;
|
|
(*argv)[(*argc)++] = cn->used;
|
|
}
|
|
}
|
|
if (*pat_ptr != '%') {
|
|
err = cn_printf(cn, "%c", *pat_ptr++);
|
|
} else {
|
|
switch (*++pat_ptr) {
|
|
/* single % at the end, drop that */
|
|
case 0:
|
|
goto out;
|
|
/* Double percent, output one percent */
|
|
case '%':
|
|
err = cn_printf(cn, "%c", '%');
|
|
break;
|
|
/* pid */
|
|
case 'p':
|
|
pid_in_pattern = 1;
|
|
err = cn_printf(cn, "%d",
|
|
task_tgid_vnr(current));
|
|
break;
|
|
/* global pid */
|
|
case 'P':
|
|
err = cn_printf(cn, "%d",
|
|
task_tgid_nr(current));
|
|
break;
|
|
case 'i':
|
|
err = cn_printf(cn, "%d",
|
|
task_pid_vnr(current));
|
|
break;
|
|
case 'I':
|
|
err = cn_printf(cn, "%d",
|
|
task_pid_nr(current));
|
|
break;
|
|
/* uid */
|
|
case 'u':
|
|
err = cn_printf(cn, "%u",
|
|
from_kuid(&init_user_ns,
|
|
cred->uid));
|
|
break;
|
|
/* gid */
|
|
case 'g':
|
|
err = cn_printf(cn, "%u",
|
|
from_kgid(&init_user_ns,
|
|
cred->gid));
|
|
break;
|
|
case 'd':
|
|
err = cn_printf(cn, "%d",
|
|
__get_dumpable(cprm->mm_flags));
|
|
break;
|
|
/* signal that caused the coredump */
|
|
case 's':
|
|
err = cn_printf(cn, "%d",
|
|
cprm->siginfo->si_signo);
|
|
break;
|
|
/* UNIX time of coredump */
|
|
case 't': {
|
|
time64_t time;
|
|
|
|
time = ktime_get_real_seconds();
|
|
err = cn_printf(cn, "%lld", time);
|
|
break;
|
|
}
|
|
/* hostname */
|
|
case 'h':
|
|
down_read(&uts_sem);
|
|
err = cn_esc_printf(cn, "%s",
|
|
utsname()->nodename);
|
|
up_read(&uts_sem);
|
|
break;
|
|
/* executable, could be changed by prctl PR_SET_NAME etc */
|
|
case 'e':
|
|
err = cn_esc_printf(cn, "%s", current->comm);
|
|
break;
|
|
/* file name of executable */
|
|
case 'f':
|
|
err = cn_print_exe_file(cn, true);
|
|
break;
|
|
case 'E':
|
|
err = cn_print_exe_file(cn, false);
|
|
break;
|
|
/* core limit size */
|
|
case 'c':
|
|
err = cn_printf(cn, "%lu",
|
|
rlimit(RLIMIT_CORE));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
++pat_ptr;
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
out:
|
|
/* Backward compatibility with core_uses_pid:
|
|
*
|
|
* If core_pattern does not include a %p (as is the default)
|
|
* and core_uses_pid is set, then .%pid will be appended to
|
|
* the filename. Do not do this for piped commands. */
|
|
if (!ispipe && !pid_in_pattern && core_uses_pid) {
|
|
err = cn_printf(cn, ".%d", task_tgid_vnr(current));
|
|
if (err)
|
|
return err;
|
|
}
|
|
return ispipe;
|
|
}
|
|
|
|
static int zap_process(struct task_struct *start, int exit_code, int flags)
|
|
{
|
|
struct task_struct *t;
|
|
int nr = 0;
|
|
|
|
/* ignore all signals except SIGKILL, see prepare_signal() */
|
|
start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
|
|
start->signal->group_exit_code = exit_code;
|
|
start->signal->group_stop_count = 0;
|
|
|
|
for_each_thread(start, t) {
|
|
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
|
|
if (t != current && t->mm) {
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
nr++;
|
|
}
|
|
}
|
|
|
|
return nr;
|
|
}
|
|
|
|
static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
|
|
struct core_state *core_state, int exit_code)
|
|
{
|
|
struct task_struct *g, *p;
|
|
unsigned long flags;
|
|
int nr = -EAGAIN;
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
if (!signal_group_exit(tsk->signal)) {
|
|
mm->core_state = core_state;
|
|
tsk->signal->group_exit_task = tsk;
|
|
nr = zap_process(tsk, exit_code, 0);
|
|
clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
|
|
}
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
if (unlikely(nr < 0))
|
|
return nr;
|
|
|
|
tsk->flags |= PF_DUMPCORE;
|
|
if (atomic_read(&mm->mm_users) == nr + 1)
|
|
goto done;
|
|
/*
|
|
* We should find and kill all tasks which use this mm, and we should
|
|
* count them correctly into ->nr_threads. We don't take tasklist
|
|
* lock, but this is safe wrt:
|
|
*
|
|
* fork:
|
|
* None of sub-threads can fork after zap_process(leader). All
|
|
* processes which were created before this point should be
|
|
* visible to zap_threads() because copy_process() adds the new
|
|
* process to the tail of init_task.tasks list, and lock/unlock
|
|
* of ->siglock provides a memory barrier.
|
|
*
|
|
* do_exit:
|
|
* The caller holds mm->mmap_lock. This means that the task which
|
|
* uses this mm can't pass exit_mm(), so it can't exit or clear
|
|
* its ->mm.
|
|
*
|
|
* de_thread:
|
|
* It does list_replace_rcu(&leader->tasks, ¤t->tasks),
|
|
* we must see either old or new leader, this does not matter.
|
|
* However, it can change p->sighand, so lock_task_sighand(p)
|
|
* must be used. Since p->mm != NULL and we hold ->mmap_lock
|
|
* it can't fail.
|
|
*
|
|
* Note also that "g" can be the old leader with ->mm == NULL
|
|
* and already unhashed and thus removed from ->thread_group.
|
|
* This is OK, __unhash_process()->list_del_rcu() does not
|
|
* clear the ->next pointer, we will find the new leader via
|
|
* next_thread().
|
|
*/
|
|
rcu_read_lock();
|
|
for_each_process(g) {
|
|
if (g == tsk->group_leader)
|
|
continue;
|
|
if (g->flags & PF_KTHREAD)
|
|
continue;
|
|
|
|
for_each_thread(g, p) {
|
|
if (unlikely(!p->mm))
|
|
continue;
|
|
if (unlikely(p->mm == mm)) {
|
|
lock_task_sighand(p, &flags);
|
|
nr += zap_process(p, exit_code,
|
|
SIGNAL_GROUP_EXIT);
|
|
unlock_task_sighand(p, &flags);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
done:
|
|
atomic_set(&core_state->nr_threads, nr);
|
|
return nr;
|
|
}
|
|
|
|
static int coredump_wait(int exit_code, struct core_state *core_state)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct mm_struct *mm = tsk->mm;
|
|
int core_waiters = -EBUSY;
|
|
|
|
init_completion(&core_state->startup);
|
|
core_state->dumper.task = tsk;
|
|
core_state->dumper.next = NULL;
|
|
|
|
if (mmap_write_lock_killable(mm))
|
|
return -EINTR;
|
|
|
|
if (!mm->core_state)
|
|
core_waiters = zap_threads(tsk, mm, core_state, exit_code);
|
|
mmap_write_unlock(mm);
|
|
|
|
if (core_waiters > 0) {
|
|
struct core_thread *ptr;
|
|
|
|
freezer_do_not_count();
|
|
wait_for_completion(&core_state->startup);
|
|
freezer_count();
|
|
/*
|
|
* Wait for all the threads to become inactive, so that
|
|
* all the thread context (extended register state, like
|
|
* fpu etc) gets copied to the memory.
|
|
*/
|
|
ptr = core_state->dumper.next;
|
|
while (ptr != NULL) {
|
|
wait_task_inactive(ptr->task, 0);
|
|
ptr = ptr->next;
|
|
}
|
|
}
|
|
|
|
return core_waiters;
|
|
}
|
|
|
|
static void coredump_finish(struct mm_struct *mm, bool core_dumped)
|
|
{
|
|
struct core_thread *curr, *next;
|
|
struct task_struct *task;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
if (core_dumped && !__fatal_signal_pending(current))
|
|
current->signal->group_exit_code |= 0x80;
|
|
current->signal->group_exit_task = NULL;
|
|
current->signal->flags = SIGNAL_GROUP_EXIT;
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
next = mm->core_state->dumper.next;
|
|
while ((curr = next) != NULL) {
|
|
next = curr->next;
|
|
task = curr->task;
|
|
/*
|
|
* see exit_mm(), curr->task must not see
|
|
* ->task == NULL before we read ->next.
|
|
*/
|
|
smp_mb();
|
|
curr->task = NULL;
|
|
wake_up_process(task);
|
|
}
|
|
|
|
mm->core_state = NULL;
|
|
}
|
|
|
|
static bool dump_interrupted(void)
|
|
{
|
|
/*
|
|
* SIGKILL or freezing() interrupt the coredumping. Perhaps we
|
|
* can do try_to_freeze() and check __fatal_signal_pending(),
|
|
* but then we need to teach dump_write() to restart and clear
|
|
* TIF_SIGPENDING.
|
|
*/
|
|
return signal_pending(current);
|
|
}
|
|
|
|
static void wait_for_dump_helpers(struct file *file)
|
|
{
|
|
struct pipe_inode_info *pipe = file->private_data;
|
|
|
|
pipe_lock(pipe);
|
|
pipe->readers++;
|
|
pipe->writers--;
|
|
wake_up_interruptible_sync(&pipe->rd_wait);
|
|
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
|
|
pipe_unlock(pipe);
|
|
|
|
/*
|
|
* We actually want wait_event_freezable() but then we need
|
|
* to clear TIF_SIGPENDING and improve dump_interrupted().
|
|
*/
|
|
wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
|
|
|
|
pipe_lock(pipe);
|
|
pipe->readers--;
|
|
pipe->writers++;
|
|
pipe_unlock(pipe);
|
|
}
|
|
|
|
/*
|
|
* umh_pipe_setup
|
|
* helper function to customize the process used
|
|
* to collect the core in userspace. Specifically
|
|
* it sets up a pipe and installs it as fd 0 (stdin)
|
|
* for the process. Returns 0 on success, or
|
|
* PTR_ERR on failure.
|
|
* Note that it also sets the core limit to 1. This
|
|
* is a special value that we use to trap recursive
|
|
* core dumps
|
|
*/
|
|
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
|
|
{
|
|
struct file *files[2];
|
|
struct coredump_params *cp = (struct coredump_params *)info->data;
|
|
int err = create_pipe_files(files, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
cp->file = files[1];
|
|
|
|
err = replace_fd(0, files[0], 0);
|
|
fput(files[0]);
|
|
/* and disallow core files too */
|
|
current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
|
|
|
|
return err;
|
|
}
|
|
|
|
void do_coredump(const kernel_siginfo_t *siginfo)
|
|
{
|
|
struct core_state core_state;
|
|
struct core_name cn;
|
|
struct mm_struct *mm = current->mm;
|
|
struct linux_binfmt * binfmt;
|
|
const struct cred *old_cred;
|
|
struct cred *cred;
|
|
int retval = 0;
|
|
int ispipe;
|
|
size_t *argv = NULL;
|
|
int argc = 0;
|
|
/* require nonrelative corefile path and be extra careful */
|
|
bool need_suid_safe = false;
|
|
bool core_dumped = false;
|
|
static atomic_t core_dump_count = ATOMIC_INIT(0);
|
|
struct coredump_params cprm = {
|
|
.siginfo = siginfo,
|
|
.regs = signal_pt_regs(),
|
|
.limit = rlimit(RLIMIT_CORE),
|
|
/*
|
|
* We must use the same mm->flags while dumping core to avoid
|
|
* inconsistency of bit flags, since this flag is not protected
|
|
* by any locks.
|
|
*/
|
|
.mm_flags = mm->flags,
|
|
};
|
|
|
|
audit_core_dumps(siginfo->si_signo);
|
|
|
|
binfmt = mm->binfmt;
|
|
if (!binfmt || !binfmt->core_dump)
|
|
goto fail;
|
|
if (!__get_dumpable(cprm.mm_flags))
|
|
goto fail;
|
|
|
|
cred = prepare_creds();
|
|
if (!cred)
|
|
goto fail;
|
|
/*
|
|
* We cannot trust fsuid as being the "true" uid of the process
|
|
* nor do we know its entire history. We only know it was tainted
|
|
* so we dump it as root in mode 2, and only into a controlled
|
|
* environment (pipe handler or fully qualified path).
|
|
*/
|
|
if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
|
|
/* Setuid core dump mode */
|
|
cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
|
|
need_suid_safe = true;
|
|
}
|
|
|
|
retval = coredump_wait(siginfo->si_signo, &core_state);
|
|
if (retval < 0)
|
|
goto fail_creds;
|
|
|
|
old_cred = override_creds(cred);
|
|
|
|
ispipe = format_corename(&cn, &cprm, &argv, &argc);
|
|
|
|
if (ispipe) {
|
|
int argi;
|
|
int dump_count;
|
|
char **helper_argv;
|
|
struct subprocess_info *sub_info;
|
|
|
|
if (ispipe < 0) {
|
|
printk(KERN_WARNING "format_corename failed\n");
|
|
printk(KERN_WARNING "Aborting core\n");
|
|
goto fail_unlock;
|
|
}
|
|
|
|
if (cprm.limit == 1) {
|
|
/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
|
|
*
|
|
* Normally core limits are irrelevant to pipes, since
|
|
* we're not writing to the file system, but we use
|
|
* cprm.limit of 1 here as a special value, this is a
|
|
* consistent way to catch recursive crashes.
|
|
* We can still crash if the core_pattern binary sets
|
|
* RLIM_CORE = !1, but it runs as root, and can do
|
|
* lots of stupid things.
|
|
*
|
|
* Note that we use task_tgid_vnr here to grab the pid
|
|
* of the process group leader. That way we get the
|
|
* right pid if a thread in a multi-threaded
|
|
* core_pattern process dies.
|
|
*/
|
|
printk(KERN_WARNING
|
|
"Process %d(%s) has RLIMIT_CORE set to 1\n",
|
|
task_tgid_vnr(current), current->comm);
|
|
printk(KERN_WARNING "Aborting core\n");
|
|
goto fail_unlock;
|
|
}
|
|
cprm.limit = RLIM_INFINITY;
|
|
|
|
dump_count = atomic_inc_return(&core_dump_count);
|
|
if (core_pipe_limit && (core_pipe_limit < dump_count)) {
|
|
printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
|
|
task_tgid_vnr(current), current->comm);
|
|
printk(KERN_WARNING "Skipping core dump\n");
|
|
goto fail_dropcount;
|
|
}
|
|
|
|
helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
|
|
GFP_KERNEL);
|
|
if (!helper_argv) {
|
|
printk(KERN_WARNING "%s failed to allocate memory\n",
|
|
__func__);
|
|
goto fail_dropcount;
|
|
}
|
|
for (argi = 0; argi < argc; argi++)
|
|
helper_argv[argi] = cn.corename + argv[argi];
|
|
helper_argv[argi] = NULL;
|
|
|
|
retval = -ENOMEM;
|
|
sub_info = call_usermodehelper_setup(helper_argv[0],
|
|
helper_argv, NULL, GFP_KERNEL,
|
|
umh_pipe_setup, NULL, &cprm);
|
|
if (sub_info)
|
|
retval = call_usermodehelper_exec(sub_info,
|
|
UMH_WAIT_EXEC);
|
|
|
|
kfree(helper_argv);
|
|
if (retval) {
|
|
printk(KERN_INFO "Core dump to |%s pipe failed\n",
|
|
cn.corename);
|
|
goto close_fail;
|
|
}
|
|
} else {
|
|
struct user_namespace *mnt_userns;
|
|
struct inode *inode;
|
|
int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
|
|
O_LARGEFILE | O_EXCL;
|
|
|
|
if (cprm.limit < binfmt->min_coredump)
|
|
goto fail_unlock;
|
|
|
|
if (need_suid_safe && cn.corename[0] != '/') {
|
|
printk(KERN_WARNING "Pid %d(%s) can only dump core "\
|
|
"to fully qualified path!\n",
|
|
task_tgid_vnr(current), current->comm);
|
|
printk(KERN_WARNING "Skipping core dump\n");
|
|
goto fail_unlock;
|
|
}
|
|
|
|
/*
|
|
* Unlink the file if it exists unless this is a SUID
|
|
* binary - in that case, we're running around with root
|
|
* privs and don't want to unlink another user's coredump.
|
|
*/
|
|
if (!need_suid_safe) {
|
|
/*
|
|
* If it doesn't exist, that's fine. If there's some
|
|
* other problem, we'll catch it at the filp_open().
|
|
*/
|
|
do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
|
|
}
|
|
|
|
/*
|
|
* There is a race between unlinking and creating the
|
|
* file, but if that causes an EEXIST here, that's
|
|
* fine - another process raced with us while creating
|
|
* the corefile, and the other process won. To userspace,
|
|
* what matters is that at least one of the two processes
|
|
* writes its coredump successfully, not which one.
|
|
*/
|
|
if (need_suid_safe) {
|
|
/*
|
|
* Using user namespaces, normal user tasks can change
|
|
* their current->fs->root to point to arbitrary
|
|
* directories. Since the intention of the "only dump
|
|
* with a fully qualified path" rule is to control where
|
|
* coredumps may be placed using root privileges,
|
|
* current->fs->root must not be used. Instead, use the
|
|
* root directory of init_task.
|
|
*/
|
|
struct path root;
|
|
|
|
task_lock(&init_task);
|
|
get_fs_root(init_task.fs, &root);
|
|
task_unlock(&init_task);
|
|
cprm.file = file_open_root(root.dentry, root.mnt,
|
|
cn.corename, open_flags, 0600);
|
|
path_put(&root);
|
|
} else {
|
|
cprm.file = filp_open(cn.corename, open_flags, 0600);
|
|
}
|
|
if (IS_ERR(cprm.file))
|
|
goto fail_unlock;
|
|
|
|
inode = file_inode(cprm.file);
|
|
if (inode->i_nlink > 1)
|
|
goto close_fail;
|
|
if (d_unhashed(cprm.file->f_path.dentry))
|
|
goto close_fail;
|
|
/*
|
|
* AK: actually i see no reason to not allow this for named
|
|
* pipes etc, but keep the previous behaviour for now.
|
|
*/
|
|
if (!S_ISREG(inode->i_mode))
|
|
goto close_fail;
|
|
/*
|
|
* Don't dump core if the filesystem changed owner or mode
|
|
* of the file during file creation. This is an issue when
|
|
* a process dumps core while its cwd is e.g. on a vfat
|
|
* filesystem.
|
|
*/
|
|
mnt_userns = file_mnt_user_ns(cprm.file);
|
|
if (!uid_eq(i_uid_into_mnt(mnt_userns, inode), current_fsuid()))
|
|
goto close_fail;
|
|
if ((inode->i_mode & 0677) != 0600)
|
|
goto close_fail;
|
|
if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
|
|
goto close_fail;
|
|
if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
|
|
0, 0, cprm.file))
|
|
goto close_fail;
|
|
}
|
|
|
|
/* get us an unshared descriptor table; almost always a no-op */
|
|
/* The cell spufs coredump code reads the file descriptor tables */
|
|
retval = unshare_files();
|
|
if (retval)
|
|
goto close_fail;
|
|
if (!dump_interrupted()) {
|
|
/*
|
|
* umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
|
|
* have this set to NULL.
|
|
*/
|
|
if (!cprm.file) {
|
|
pr_info("Core dump to |%s disabled\n", cn.corename);
|
|
goto close_fail;
|
|
}
|
|
file_start_write(cprm.file);
|
|
core_dumped = binfmt->core_dump(&cprm);
|
|
/*
|
|
* Ensures that file size is big enough to contain the current
|
|
* file postion. This prevents gdb from complaining about
|
|
* a truncated file if the last "write" to the file was
|
|
* dump_skip.
|
|
*/
|
|
if (cprm.to_skip) {
|
|
cprm.to_skip--;
|
|
dump_emit(&cprm, "", 1);
|
|
}
|
|
file_end_write(cprm.file);
|
|
}
|
|
if (ispipe && core_pipe_limit)
|
|
wait_for_dump_helpers(cprm.file);
|
|
close_fail:
|
|
if (cprm.file)
|
|
filp_close(cprm.file, NULL);
|
|
fail_dropcount:
|
|
if (ispipe)
|
|
atomic_dec(&core_dump_count);
|
|
fail_unlock:
|
|
kfree(argv);
|
|
kfree(cn.corename);
|
|
coredump_finish(mm, core_dumped);
|
|
revert_creds(old_cred);
|
|
fail_creds:
|
|
put_cred(cred);
|
|
fail:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Core dumping helper functions. These are the only things you should
|
|
* do on a core-file: use only these functions to write out all the
|
|
* necessary info.
|
|
*/
|
|
static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
|
|
{
|
|
struct file *file = cprm->file;
|
|
loff_t pos = file->f_pos;
|
|
ssize_t n;
|
|
if (cprm->written + nr > cprm->limit)
|
|
return 0;
|
|
|
|
|
|
if (dump_interrupted())
|
|
return 0;
|
|
n = __kernel_write(file, addr, nr, &pos);
|
|
if (n != nr)
|
|
return 0;
|
|
file->f_pos = pos;
|
|
cprm->written += n;
|
|
cprm->pos += n;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __dump_skip(struct coredump_params *cprm, size_t nr)
|
|
{
|
|
static char zeroes[PAGE_SIZE];
|
|
struct file *file = cprm->file;
|
|
if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
|
|
if (dump_interrupted() ||
|
|
file->f_op->llseek(file, nr, SEEK_CUR) < 0)
|
|
return 0;
|
|
cprm->pos += nr;
|
|
return 1;
|
|
} else {
|
|
while (nr > PAGE_SIZE) {
|
|
if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
|
|
return 0;
|
|
nr -= PAGE_SIZE;
|
|
}
|
|
return __dump_emit(cprm, zeroes, nr);
|
|
}
|
|
}
|
|
|
|
int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
|
|
{
|
|
if (cprm->to_skip) {
|
|
if (!__dump_skip(cprm, cprm->to_skip))
|
|
return 0;
|
|
cprm->to_skip = 0;
|
|
}
|
|
return __dump_emit(cprm, addr, nr);
|
|
}
|
|
EXPORT_SYMBOL(dump_emit);
|
|
|
|
void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
|
|
{
|
|
cprm->to_skip = pos - cprm->pos;
|
|
}
|
|
EXPORT_SYMBOL(dump_skip_to);
|
|
|
|
void dump_skip(struct coredump_params *cprm, size_t nr)
|
|
{
|
|
cprm->to_skip += nr;
|
|
}
|
|
EXPORT_SYMBOL(dump_skip);
|
|
|
|
#ifdef CONFIG_ELF_CORE
|
|
int dump_user_range(struct coredump_params *cprm, unsigned long start,
|
|
unsigned long len)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = start; addr < start + len; addr += PAGE_SIZE) {
|
|
struct page *page;
|
|
int stop;
|
|
|
|
/*
|
|
* To avoid having to allocate page tables for virtual address
|
|
* ranges that have never been used yet, and also to make it
|
|
* easy to generate sparse core files, use a helper that returns
|
|
* NULL when encountering an empty page table entry that would
|
|
* otherwise have been filled with the zero page.
|
|
*/
|
|
page = get_dump_page(addr);
|
|
if (page) {
|
|
void *kaddr = kmap_local_page(page);
|
|
|
|
stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
|
|
kunmap_local(kaddr);
|
|
put_page(page);
|
|
if (stop)
|
|
return 0;
|
|
} else {
|
|
dump_skip(cprm, PAGE_SIZE);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
int dump_align(struct coredump_params *cprm, int align)
|
|
{
|
|
unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
|
|
if (align & (align - 1))
|
|
return 0;
|
|
if (mod)
|
|
cprm->to_skip += align - mod;
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(dump_align);
|
|
|
|
/*
|
|
* The purpose of always_dump_vma() is to make sure that special kernel mappings
|
|
* that are useful for post-mortem analysis are included in every core dump.
|
|
* In that way we ensure that the core dump is fully interpretable later
|
|
* without matching up the same kernel and hardware config to see what PC values
|
|
* meant. These special mappings include - vDSO, vsyscall, and other
|
|
* architecture specific mappings
|
|
*/
|
|
static bool always_dump_vma(struct vm_area_struct *vma)
|
|
{
|
|
/* Any vsyscall mappings? */
|
|
if (vma == get_gate_vma(vma->vm_mm))
|
|
return true;
|
|
|
|
/*
|
|
* Assume that all vmas with a .name op should always be dumped.
|
|
* If this changes, a new vm_ops field can easily be added.
|
|
*/
|
|
if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
|
|
return true;
|
|
|
|
/*
|
|
* arch_vma_name() returns non-NULL for special architecture mappings,
|
|
* such as vDSO sections.
|
|
*/
|
|
if (arch_vma_name(vma))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Decide how much of @vma's contents should be included in a core dump.
|
|
*/
|
|
static unsigned long vma_dump_size(struct vm_area_struct *vma,
|
|
unsigned long mm_flags)
|
|
{
|
|
#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
|
|
|
|
/* always dump the vdso and vsyscall sections */
|
|
if (always_dump_vma(vma))
|
|
goto whole;
|
|
|
|
if (vma->vm_flags & VM_DONTDUMP)
|
|
return 0;
|
|
|
|
/* support for DAX */
|
|
if (vma_is_dax(vma)) {
|
|
if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
|
|
goto whole;
|
|
if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
|
|
goto whole;
|
|
return 0;
|
|
}
|
|
|
|
/* Hugetlb memory check */
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
|
|
goto whole;
|
|
if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
|
|
goto whole;
|
|
return 0;
|
|
}
|
|
|
|
/* Do not dump I/O mapped devices or special mappings */
|
|
if (vma->vm_flags & VM_IO)
|
|
return 0;
|
|
|
|
/* By default, dump shared memory if mapped from an anonymous file. */
|
|
if (vma->vm_flags & VM_SHARED) {
|
|
if (file_inode(vma->vm_file)->i_nlink == 0 ?
|
|
FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
|
|
goto whole;
|
|
return 0;
|
|
}
|
|
|
|
/* Dump segments that have been written to. */
|
|
if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
|
|
goto whole;
|
|
if (vma->vm_file == NULL)
|
|
return 0;
|
|
|
|
if (FILTER(MAPPED_PRIVATE))
|
|
goto whole;
|
|
|
|
/*
|
|
* If this is the beginning of an executable file mapping,
|
|
* dump the first page to aid in determining what was mapped here.
|
|
*/
|
|
if (FILTER(ELF_HEADERS) &&
|
|
vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
|
|
(READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
|
|
return PAGE_SIZE;
|
|
|
|
#undef FILTER
|
|
|
|
return 0;
|
|
|
|
whole:
|
|
return vma->vm_end - vma->vm_start;
|
|
}
|
|
|
|
static struct vm_area_struct *first_vma(struct task_struct *tsk,
|
|
struct vm_area_struct *gate_vma)
|
|
{
|
|
struct vm_area_struct *ret = tsk->mm->mmap;
|
|
|
|
if (ret)
|
|
return ret;
|
|
return gate_vma;
|
|
}
|
|
|
|
/*
|
|
* Helper function for iterating across a vma list. It ensures that the caller
|
|
* will visit `gate_vma' prior to terminating the search.
|
|
*/
|
|
static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
|
|
struct vm_area_struct *gate_vma)
|
|
{
|
|
struct vm_area_struct *ret;
|
|
|
|
ret = this_vma->vm_next;
|
|
if (ret)
|
|
return ret;
|
|
if (this_vma == gate_vma)
|
|
return NULL;
|
|
return gate_vma;
|
|
}
|
|
|
|
/*
|
|
* Under the mmap_lock, take a snapshot of relevant information about the task's
|
|
* VMAs.
|
|
*/
|
|
int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
|
|
struct core_vma_metadata **vma_meta,
|
|
size_t *vma_data_size_ptr)
|
|
{
|
|
struct vm_area_struct *vma, *gate_vma;
|
|
struct mm_struct *mm = current->mm;
|
|
int i;
|
|
size_t vma_data_size = 0;
|
|
|
|
/*
|
|
* Once the stack expansion code is fixed to not change VMA bounds
|
|
* under mmap_lock in read mode, this can be changed to take the
|
|
* mmap_lock in read mode.
|
|
*/
|
|
if (mmap_write_lock_killable(mm))
|
|
return -EINTR;
|
|
|
|
gate_vma = get_gate_vma(mm);
|
|
*vma_count = mm->map_count + (gate_vma ? 1 : 0);
|
|
|
|
*vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
|
|
if (!*vma_meta) {
|
|
mmap_write_unlock(mm);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
|
|
vma = next_vma(vma, gate_vma), i++) {
|
|
struct core_vma_metadata *m = (*vma_meta) + i;
|
|
|
|
m->start = vma->vm_start;
|
|
m->end = vma->vm_end;
|
|
m->flags = vma->vm_flags;
|
|
m->dump_size = vma_dump_size(vma, cprm->mm_flags);
|
|
|
|
vma_data_size += m->dump_size;
|
|
}
|
|
|
|
mmap_write_unlock(mm);
|
|
|
|
if (WARN_ON(i != *vma_count))
|
|
return -EFAULT;
|
|
|
|
*vma_data_size_ptr = vma_data_size;
|
|
return 0;
|
|
}
|