WSL2-Linux-Kernel/fs/f2fs/recovery.c

630 строки
15 KiB
C

/*
* fs/f2fs/recovery.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
/*
* Roll forward recovery scenarios.
*
* [Term] F: fsync_mark, D: dentry_mark
*
* 1. inode(x) | CP | inode(x) | dnode(F)
* -> Update the latest inode(x).
*
* 2. inode(x) | CP | inode(F) | dnode(F)
* -> No problem.
*
* 3. inode(x) | CP | dnode(F) | inode(x)
* -> Recover to the latest dnode(F), and drop the last inode(x)
*
* 4. inode(x) | CP | dnode(F) | inode(F)
* -> No problem.
*
* 5. CP | inode(x) | dnode(F)
* -> The inode(DF) was missing. Should drop this dnode(F).
*
* 6. CP | inode(DF) | dnode(F)
* -> No problem.
*
* 7. CP | dnode(F) | inode(DF)
* -> If f2fs_iget fails, then goto next to find inode(DF).
*
* 8. CP | dnode(F) | inode(x)
* -> If f2fs_iget fails, then goto next to find inode(DF).
* But it will fail due to no inode(DF).
*/
static struct kmem_cache *fsync_entry_slab;
bool space_for_roll_forward(struct f2fs_sb_info *sbi)
{
if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
> sbi->user_block_count)
return false;
return true;
}
static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
nid_t ino)
{
struct fsync_inode_entry *entry;
list_for_each_entry(entry, head, list)
if (entry->inode->i_ino == ino)
return entry;
return NULL;
}
static int recover_dentry(struct inode *inode, struct page *ipage)
{
struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
nid_t pino = le32_to_cpu(raw_inode->i_pino);
struct f2fs_dir_entry *de;
struct qstr name;
struct page *page;
struct inode *dir, *einode;
int err = 0;
dir = f2fs_iget(inode->i_sb, pino);
if (IS_ERR(dir)) {
err = PTR_ERR(dir);
goto out;
}
if (file_enc_name(inode)) {
iput(dir);
return 0;
}
name.len = le32_to_cpu(raw_inode->i_namelen);
name.name = raw_inode->i_name;
if (unlikely(name.len > F2FS_NAME_LEN)) {
WARN_ON(1);
err = -ENAMETOOLONG;
goto out_err;
}
retry:
de = f2fs_find_entry(dir, &name, &page);
if (de && inode->i_ino == le32_to_cpu(de->ino))
goto out_unmap_put;
if (de) {
einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
if (IS_ERR(einode)) {
WARN_ON(1);
err = PTR_ERR(einode);
if (err == -ENOENT)
err = -EEXIST;
goto out_unmap_put;
}
err = acquire_orphan_inode(F2FS_I_SB(inode));
if (err) {
iput(einode);
goto out_unmap_put;
}
f2fs_delete_entry(de, page, dir, einode);
iput(einode);
goto retry;
}
err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
if (err)
goto out_err;
if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
iput(dir);
} else {
add_dirty_dir_inode(dir);
set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
}
goto out;
out_unmap_put:
f2fs_dentry_kunmap(dir, page);
f2fs_put_page(page, 0);
out_err:
iput(dir);
out:
f2fs_msg(inode->i_sb, KERN_NOTICE,
"%s: ino = %x, name = %s, dir = %lx, err = %d",
__func__, ino_of_node(ipage), raw_inode->i_name,
IS_ERR(dir) ? 0 : dir->i_ino, err);
return err;
}
static void recover_inode(struct inode *inode, struct page *page)
{
struct f2fs_inode *raw = F2FS_INODE(page);
char *name;
inode->i_mode = le16_to_cpu(raw->i_mode);
i_size_write(inode, le64_to_cpu(raw->i_size));
inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
if (file_enc_name(inode))
name = "<encrypted>";
else
name = F2FS_INODE(page)->i_name;
f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
ino_of_node(page), name);
}
static bool is_same_inode(struct inode *inode, struct page *ipage)
{
struct f2fs_inode *ri = F2FS_INODE(ipage);
struct timespec disk;
if (!IS_INODE(ipage))
return true;
disk.tv_sec = le64_to_cpu(ri->i_ctime);
disk.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
if (timespec_compare(&inode->i_ctime, &disk) > 0)
return false;
disk.tv_sec = le64_to_cpu(ri->i_atime);
disk.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
if (timespec_compare(&inode->i_atime, &disk) > 0)
return false;
disk.tv_sec = le64_to_cpu(ri->i_mtime);
disk.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
if (timespec_compare(&inode->i_mtime, &disk) > 0)
return false;
return true;
}
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
{
unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
struct curseg_info *curseg;
struct page *page = NULL;
block_t blkaddr;
int err = 0;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
ra_meta_pages(sbi, blkaddr, 1, META_POR, true);
while (1) {
struct fsync_inode_entry *entry;
if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
return 0;
page = get_tmp_page(sbi, blkaddr);
if (cp_ver != cpver_of_node(page))
break;
if (!is_fsync_dnode(page))
goto next;
entry = get_fsync_inode(head, ino_of_node(page));
if (entry) {
if (!is_same_inode(entry->inode, page))
goto next;
} else {
if (IS_INODE(page) && is_dent_dnode(page)) {
err = recover_inode_page(sbi, page);
if (err)
break;
}
/* add this fsync inode to the list */
entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
if (!entry) {
err = -ENOMEM;
break;
}
/*
* CP | dnode(F) | inode(DF)
* For this case, we should not give up now.
*/
entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
if (IS_ERR(entry->inode)) {
err = PTR_ERR(entry->inode);
kmem_cache_free(fsync_entry_slab, entry);
if (err == -ENOENT) {
err = 0;
goto next;
}
break;
}
list_add_tail(&entry->list, head);
}
entry->blkaddr = blkaddr;
if (IS_INODE(page)) {
entry->last_inode = blkaddr;
if (is_dent_dnode(page))
entry->last_dentry = blkaddr;
}
next:
/* check next segment */
blkaddr = next_blkaddr_of_node(page);
f2fs_put_page(page, 1);
ra_meta_pages_cond(sbi, blkaddr);
}
f2fs_put_page(page, 1);
return err;
}
static void destroy_fsync_dnodes(struct list_head *head)
{
struct fsync_inode_entry *entry, *tmp;
list_for_each_entry_safe(entry, tmp, head, list) {
iput(entry->inode);
list_del(&entry->list);
kmem_cache_free(fsync_entry_slab, entry);
}
}
static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
block_t blkaddr, struct dnode_of_data *dn)
{
struct seg_entry *sentry;
unsigned int segno = GET_SEGNO(sbi, blkaddr);
unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
struct f2fs_summary_block *sum_node;
struct f2fs_summary sum;
struct page *sum_page, *node_page;
struct dnode_of_data tdn = *dn;
nid_t ino, nid;
struct inode *inode;
unsigned int offset;
block_t bidx;
int i;
sentry = get_seg_entry(sbi, segno);
if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
return 0;
/* Get the previous summary */
for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
if (curseg->segno == segno) {
sum = curseg->sum_blk->entries[blkoff];
goto got_it;
}
}
sum_page = get_sum_page(sbi, segno);
sum_node = (struct f2fs_summary_block *)page_address(sum_page);
sum = sum_node->entries[blkoff];
f2fs_put_page(sum_page, 1);
got_it:
/* Use the locked dnode page and inode */
nid = le32_to_cpu(sum.nid);
if (dn->inode->i_ino == nid) {
tdn.nid = nid;
if (!dn->inode_page_locked)
lock_page(dn->inode_page);
tdn.node_page = dn->inode_page;
tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
goto truncate_out;
} else if (dn->nid == nid) {
tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
goto truncate_out;
}
/* Get the node page */
node_page = get_node_page(sbi, nid);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
offset = ofs_of_node(node_page);
ino = ino_of_node(node_page);
f2fs_put_page(node_page, 1);
if (ino != dn->inode->i_ino) {
/* Deallocate previous index in the node page */
inode = f2fs_iget(sbi->sb, ino);
if (IS_ERR(inode))
return PTR_ERR(inode);
} else {
inode = dn->inode;
}
bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node);
/*
* if inode page is locked, unlock temporarily, but its reference
* count keeps alive.
*/
if (ino == dn->inode->i_ino && dn->inode_page_locked)
unlock_page(dn->inode_page);
set_new_dnode(&tdn, inode, NULL, NULL, 0);
if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
goto out;
if (tdn.data_blkaddr == blkaddr)
truncate_data_blocks_range(&tdn, 1);
f2fs_put_dnode(&tdn);
out:
if (ino != dn->inode->i_ino)
iput(inode);
else if (dn->inode_page_locked)
lock_page(dn->inode_page);
return 0;
truncate_out:
if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
truncate_data_blocks_range(&tdn, 1);
if (dn->inode->i_ino == nid && !dn->inode_page_locked)
unlock_page(dn->inode_page);
return 0;
}
static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
struct page *page, block_t blkaddr)
{
struct dnode_of_data dn;
struct node_info ni;
unsigned int start, end;
int err = 0, recovered = 0;
/* step 1: recover xattr */
if (IS_INODE(page)) {
recover_inline_xattr(inode, page);
} else if (f2fs_has_xattr_block(ofs_of_node(page))) {
/*
* Deprecated; xattr blocks should be found from cold log.
* But, we should remain this for backward compatibility.
*/
recover_xattr_data(inode, page, blkaddr);
goto out;
}
/* step 2: recover inline data */
if (recover_inline_data(inode, page))
goto out;
/* step 3: recover data indices */
start = start_bidx_of_node(ofs_of_node(page), inode);
end = start + ADDRS_PER_PAGE(page, inode);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, start, ALLOC_NODE);
if (err)
goto out;
f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
get_node_info(sbi, dn.nid, &ni);
f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
for (; start < end; start++, dn.ofs_in_node++) {
block_t src, dest;
src = datablock_addr(dn.node_page, dn.ofs_in_node);
dest = datablock_addr(page, dn.ofs_in_node);
/* skip recovering if dest is the same as src */
if (src == dest)
continue;
/* dest is invalid, just invalidate src block */
if (dest == NULL_ADDR) {
truncate_data_blocks_range(&dn, 1);
continue;
}
/*
* dest is reserved block, invalidate src block
* and then reserve one new block in dnode page.
*/
if (dest == NEW_ADDR) {
truncate_data_blocks_range(&dn, 1);
err = reserve_new_block(&dn);
f2fs_bug_on(sbi, err);
continue;
}
/* dest is valid block, try to recover from src to dest */
if (is_valid_blkaddr(sbi, dest, META_POR)) {
if (src == NULL_ADDR) {
err = reserve_new_block(&dn);
/* We should not get -ENOSPC */
f2fs_bug_on(sbi, err);
}
/* Check the previous node page having this index */
err = check_index_in_prev_nodes(sbi, dest, &dn);
if (err)
goto err;
/* write dummy data page */
f2fs_replace_block(sbi, &dn, src, dest,
ni.version, false, false);
recovered++;
}
}
if (IS_INODE(dn.node_page))
sync_inode_page(&dn);
copy_node_footer(dn.node_page, page);
fill_node_footer(dn.node_page, dn.nid, ni.ino,
ofs_of_node(page), false);
set_page_dirty(dn.node_page);
err:
f2fs_put_dnode(&dn);
out:
f2fs_msg(sbi->sb, KERN_NOTICE,
"recover_data: ino = %lx, recovered = %d blocks, err = %d",
inode->i_ino, recovered, err);
return err;
}
static int recover_data(struct f2fs_sb_info *sbi, struct list_head *head)
{
unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
struct curseg_info *curseg;
struct page *page = NULL;
int err = 0;
block_t blkaddr;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
while (1) {
struct fsync_inode_entry *entry;
if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
break;
ra_meta_pages_cond(sbi, blkaddr);
page = get_tmp_page(sbi, blkaddr);
if (cp_ver != cpver_of_node(page)) {
f2fs_put_page(page, 1);
break;
}
entry = get_fsync_inode(head, ino_of_node(page));
if (!entry)
goto next;
/*
* inode(x) | CP | inode(x) | dnode(F)
* In this case, we can lose the latest inode(x).
* So, call recover_inode for the inode update.
*/
if (entry->last_inode == blkaddr)
recover_inode(entry->inode, page);
if (entry->last_dentry == blkaddr) {
err = recover_dentry(entry->inode, page);
if (err) {
f2fs_put_page(page, 1);
break;
}
}
err = do_recover_data(sbi, entry->inode, page, blkaddr);
if (err) {
f2fs_put_page(page, 1);
break;
}
if (entry->blkaddr == blkaddr) {
iput(entry->inode);
list_del(&entry->list);
kmem_cache_free(fsync_entry_slab, entry);
}
next:
/* check next segment */
blkaddr = next_blkaddr_of_node(page);
f2fs_put_page(page, 1);
}
if (!err)
allocate_new_segments(sbi);
return err;
}
int recover_fsync_data(struct f2fs_sb_info *sbi)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
struct list_head inode_list;
block_t blkaddr;
int err;
bool need_writecp = false;
fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
sizeof(struct fsync_inode_entry));
if (!fsync_entry_slab)
return -ENOMEM;
INIT_LIST_HEAD(&inode_list);
/* prevent checkpoint */
mutex_lock(&sbi->cp_mutex);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
/* step #1: find fsynced inode numbers */
err = find_fsync_dnodes(sbi, &inode_list);
if (err)
goto out;
if (list_empty(&inode_list))
goto out;
need_writecp = true;
/* step #2: recover data */
err = recover_data(sbi, &inode_list);
if (!err)
f2fs_bug_on(sbi, !list_empty(&inode_list));
out:
destroy_fsync_dnodes(&inode_list);
kmem_cache_destroy(fsync_entry_slab);
/* truncate meta pages to be used by the recovery */
truncate_inode_pages_range(META_MAPPING(sbi),
(loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
if (err) {
truncate_inode_pages_final(NODE_MAPPING(sbi));
truncate_inode_pages_final(META_MAPPING(sbi));
}
clear_sbi_flag(sbi, SBI_POR_DOING);
if (err) {
bool invalidate = false;
if (discard_next_dnode(sbi, blkaddr))
invalidate = true;
/* Flush all the NAT/SIT pages */
while (get_pages(sbi, F2FS_DIRTY_META))
sync_meta_pages(sbi, META, LONG_MAX);
/* invalidate temporary meta page */
if (invalidate)
invalidate_mapping_pages(META_MAPPING(sbi),
blkaddr, blkaddr);
set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
mutex_unlock(&sbi->cp_mutex);
} else if (need_writecp) {
struct cp_control cpc = {
.reason = CP_RECOVERY,
};
mutex_unlock(&sbi->cp_mutex);
err = write_checkpoint(sbi, &cpc);
} else {
mutex_unlock(&sbi->cp_mutex);
}
return err;
}