WSL2-Linux-Kernel/drivers/scsi/ufs/ufshcd.c

1979 строки
51 KiB
C

/*
* Universal Flash Storage Host controller driver
*
* This code is based on drivers/scsi/ufs/ufshcd.c
* Copyright (C) 2011-2012 Samsung India Software Operations
*
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_eh.h>
#include "ufs.h"
#include "ufshci.h"
#define UFSHCD "ufshcd"
#define UFSHCD_DRIVER_VERSION "0.1"
enum {
UFSHCD_MAX_CHANNEL = 0,
UFSHCD_MAX_ID = 1,
UFSHCD_MAX_LUNS = 8,
UFSHCD_CMD_PER_LUN = 32,
UFSHCD_CAN_QUEUE = 32,
};
/* UFSHCD states */
enum {
UFSHCD_STATE_OPERATIONAL,
UFSHCD_STATE_RESET,
UFSHCD_STATE_ERROR,
};
/* Interrupt configuration options */
enum {
UFSHCD_INT_DISABLE,
UFSHCD_INT_ENABLE,
UFSHCD_INT_CLEAR,
};
/* Interrupt aggregation options */
enum {
INT_AGGR_RESET,
INT_AGGR_CONFIG,
};
/**
* struct uic_command - UIC command structure
* @command: UIC command
* @argument1: UIC command argument 1
* @argument2: UIC command argument 2
* @argument3: UIC command argument 3
* @cmd_active: Indicate if UIC command is outstanding
* @result: UIC command result
*/
struct uic_command {
u32 command;
u32 argument1;
u32 argument2;
u32 argument3;
int cmd_active;
int result;
};
/**
* struct ufs_hba - per adapter private structure
* @mmio_base: UFSHCI base register address
* @ucdl_base_addr: UFS Command Descriptor base address
* @utrdl_base_addr: UTP Transfer Request Descriptor base address
* @utmrdl_base_addr: UTP Task Management Descriptor base address
* @ucdl_dma_addr: UFS Command Descriptor DMA address
* @utrdl_dma_addr: UTRDL DMA address
* @utmrdl_dma_addr: UTMRDL DMA address
* @host: Scsi_Host instance of the driver
* @pdev: PCI device handle
* @lrb: local reference block
* @outstanding_tasks: Bits representing outstanding task requests
* @outstanding_reqs: Bits representing outstanding transfer requests
* @capabilities: UFS Controller Capabilities
* @nutrs: Transfer Request Queue depth supported by controller
* @nutmrs: Task Management Queue depth supported by controller
* @active_uic_cmd: handle of active UIC command
* @ufshcd_tm_wait_queue: wait queue for task management
* @tm_condition: condition variable for task management
* @ufshcd_state: UFSHCD states
* @int_enable_mask: Interrupt Mask Bits
* @uic_workq: Work queue for UIC completion handling
* @feh_workq: Work queue for fatal controller error handling
* @errors: HBA errors
*/
struct ufs_hba {
void __iomem *mmio_base;
/* Virtual memory reference */
struct utp_transfer_cmd_desc *ucdl_base_addr;
struct utp_transfer_req_desc *utrdl_base_addr;
struct utp_task_req_desc *utmrdl_base_addr;
/* DMA memory reference */
dma_addr_t ucdl_dma_addr;
dma_addr_t utrdl_dma_addr;
dma_addr_t utmrdl_dma_addr;
struct Scsi_Host *host;
struct pci_dev *pdev;
struct ufshcd_lrb *lrb;
unsigned long outstanding_tasks;
unsigned long outstanding_reqs;
u32 capabilities;
int nutrs;
int nutmrs;
u32 ufs_version;
struct uic_command active_uic_cmd;
wait_queue_head_t ufshcd_tm_wait_queue;
unsigned long tm_condition;
u32 ufshcd_state;
u32 int_enable_mask;
/* Work Queues */
struct work_struct uic_workq;
struct work_struct feh_workq;
/* HBA Errors */
u32 errors;
};
/**
* struct ufshcd_lrb - local reference block
* @utr_descriptor_ptr: UTRD address of the command
* @ucd_cmd_ptr: UCD address of the command
* @ucd_rsp_ptr: Response UPIU address for this command
* @ucd_prdt_ptr: PRDT address of the command
* @cmd: pointer to SCSI command
* @sense_buffer: pointer to sense buffer address of the SCSI command
* @sense_bufflen: Length of the sense buffer
* @scsi_status: SCSI status of the command
* @command_type: SCSI, UFS, Query.
* @task_tag: Task tag of the command
* @lun: LUN of the command
*/
struct ufshcd_lrb {
struct utp_transfer_req_desc *utr_descriptor_ptr;
struct utp_upiu_cmd *ucd_cmd_ptr;
struct utp_upiu_rsp *ucd_rsp_ptr;
struct ufshcd_sg_entry *ucd_prdt_ptr;
struct scsi_cmnd *cmd;
u8 *sense_buffer;
unsigned int sense_bufflen;
int scsi_status;
int command_type;
int task_tag;
unsigned int lun;
};
/**
* ufshcd_get_ufs_version - Get the UFS version supported by the HBA
* @hba - Pointer to adapter instance
*
* Returns UFSHCI version supported by the controller
*/
static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
{
return readl(hba->mmio_base + REG_UFS_VERSION);
}
/**
* ufshcd_is_device_present - Check if any device connected to
* the host controller
* @reg_hcs - host controller status register value
*
* Returns 0 if device present, non-zero if no device detected
*/
static inline int ufshcd_is_device_present(u32 reg_hcs)
{
return (DEVICE_PRESENT & reg_hcs) ? 0 : -1;
}
/**
* ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
* @lrb: pointer to local command reference block
*
* This function is used to get the OCS field from UTRD
* Returns the OCS field in the UTRD
*/
static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
{
return lrbp->utr_descriptor_ptr->header.dword_2 & MASK_OCS;
}
/**
* ufshcd_get_tmr_ocs - Get the UTMRD Overall Command Status
* @task_req_descp: pointer to utp_task_req_desc structure
*
* This function is used to get the OCS field from UTMRD
* Returns the OCS field in the UTMRD
*/
static inline int
ufshcd_get_tmr_ocs(struct utp_task_req_desc *task_req_descp)
{
return task_req_descp->header.dword_2 & MASK_OCS;
}
/**
* ufshcd_get_tm_free_slot - get a free slot for task management request
* @hba: per adapter instance
*
* Returns maximum number of task management request slots in case of
* task management queue full or returns the free slot number
*/
static inline int ufshcd_get_tm_free_slot(struct ufs_hba *hba)
{
return find_first_zero_bit(&hba->outstanding_tasks, hba->nutmrs);
}
/**
* ufshcd_utrl_clear - Clear a bit in UTRLCLR register
* @hba: per adapter instance
* @pos: position of the bit to be cleared
*/
static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
{
writel(~(1 << pos),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_CLEAR));
}
/**
* ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
* @reg: Register value of host controller status
*
* Returns integer, 0 on Success and positive value if failed
*/
static inline int ufshcd_get_lists_status(u32 reg)
{
/*
* The mask 0xFF is for the following HCS register bits
* Bit Description
* 0 Device Present
* 1 UTRLRDY
* 2 UTMRLRDY
* 3 UCRDY
* 4 HEI
* 5 DEI
* 6-7 reserved
*/
return (((reg) & (0xFF)) >> 1) ^ (0x07);
}
/**
* ufshcd_get_uic_cmd_result - Get the UIC command result
* @hba: Pointer to adapter instance
*
* This function gets the result of UIC command completion
* Returns 0 on success, non zero value on error
*/
static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
{
return readl(hba->mmio_base + REG_UIC_COMMAND_ARG_2) &
MASK_UIC_COMMAND_RESULT;
}
/**
* ufshcd_free_hba_memory - Free allocated memory for LRB, request
* and task lists
* @hba: Pointer to adapter instance
*/
static inline void ufshcd_free_hba_memory(struct ufs_hba *hba)
{
size_t utmrdl_size, utrdl_size, ucdl_size;
kfree(hba->lrb);
if (hba->utmrdl_base_addr) {
utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
dma_free_coherent(&hba->pdev->dev, utmrdl_size,
hba->utmrdl_base_addr, hba->utmrdl_dma_addr);
}
if (hba->utrdl_base_addr) {
utrdl_size =
(sizeof(struct utp_transfer_req_desc) * hba->nutrs);
dma_free_coherent(&hba->pdev->dev, utrdl_size,
hba->utrdl_base_addr, hba->utrdl_dma_addr);
}
if (hba->ucdl_base_addr) {
ucdl_size =
(sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
dma_free_coherent(&hba->pdev->dev, ucdl_size,
hba->ucdl_base_addr, hba->ucdl_dma_addr);
}
}
/**
* ufshcd_is_valid_req_rsp - checks if controller TR response is valid
* @ucd_rsp_ptr: pointer to response UPIU
*
* This function checks the response UPIU for valid transaction type in
* response field
* Returns 0 on success, non-zero on failure
*/
static inline int
ufshcd_is_valid_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return ((be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24) ==
UPIU_TRANSACTION_RESPONSE) ? 0 : DID_ERROR << 16;
}
/**
* ufshcd_get_rsp_upiu_result - Get the result from response UPIU
* @ucd_rsp_ptr: pointer to response UPIU
*
* This function gets the response status and scsi_status from response UPIU
* Returns the response result code.
*/
static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
}
/**
* ufshcd_config_int_aggr - Configure interrupt aggregation values.
* Currently there is no use case where we want to configure
* interrupt aggregation dynamically. So to configure interrupt
* aggregation, #define INT_AGGR_COUNTER_THRESHOLD_VALUE and
* INT_AGGR_TIMEOUT_VALUE are used.
* @hba: per adapter instance
* @option: Interrupt aggregation option
*/
static inline void
ufshcd_config_int_aggr(struct ufs_hba *hba, int option)
{
switch (option) {
case INT_AGGR_RESET:
writel((INT_AGGR_ENABLE |
INT_AGGR_COUNTER_AND_TIMER_RESET),
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL));
break;
case INT_AGGR_CONFIG:
writel((INT_AGGR_ENABLE |
INT_AGGR_PARAM_WRITE |
INT_AGGR_COUNTER_THRESHOLD_VALUE |
INT_AGGR_TIMEOUT_VALUE),
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL));
break;
}
}
/**
* ufshcd_enable_run_stop_reg - Enable run-stop registers,
* When run-stop registers are set to 1, it indicates the
* host controller that it can process the requests
* @hba: per adapter instance
*/
static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
{
writel(UTP_TASK_REQ_LIST_RUN_STOP_BIT,
(hba->mmio_base +
REG_UTP_TASK_REQ_LIST_RUN_STOP));
writel(UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_LIST_RUN_STOP));
}
/**
* ufshcd_hba_stop - Send controller to reset state
* @hba: per adapter instance
*/
static inline void ufshcd_hba_stop(struct ufs_hba *hba)
{
writel(CONTROLLER_DISABLE, (hba->mmio_base + REG_CONTROLLER_ENABLE));
}
/**
* ufshcd_hba_start - Start controller initialization sequence
* @hba: per adapter instance
*/
static inline void ufshcd_hba_start(struct ufs_hba *hba)
{
writel(CONTROLLER_ENABLE , (hba->mmio_base + REG_CONTROLLER_ENABLE));
}
/**
* ufshcd_is_hba_active - Get controller state
* @hba: per adapter instance
*
* Returns zero if controller is active, 1 otherwise
*/
static inline int ufshcd_is_hba_active(struct ufs_hba *hba)
{
return (readl(hba->mmio_base + REG_CONTROLLER_ENABLE) & 0x1) ? 0 : 1;
}
/**
* ufshcd_send_command - Send SCSI or device management commands
* @hba: per adapter instance
* @task_tag: Task tag of the command
*/
static inline
void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
{
__set_bit(task_tag, &hba->outstanding_reqs);
writel((1 << task_tag),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_DOOR_BELL));
}
/**
* ufshcd_copy_sense_data - Copy sense data in case of check condition
* @lrb - pointer to local reference block
*/
static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
{
int len;
if (lrbp->sense_buffer) {
len = be16_to_cpu(lrbp->ucd_rsp_ptr->sense_data_len);
memcpy(lrbp->sense_buffer,
lrbp->ucd_rsp_ptr->sense_data,
min_t(int, len, SCSI_SENSE_BUFFERSIZE));
}
}
/**
* ufshcd_hba_capabilities - Read controller capabilities
* @hba: per adapter instance
*/
static inline void ufshcd_hba_capabilities(struct ufs_hba *hba)
{
hba->capabilities =
readl(hba->mmio_base + REG_CONTROLLER_CAPABILITIES);
/* nutrs and nutmrs are 0 based values */
hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
hba->nutmrs =
((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
}
/**
* ufshcd_send_uic_command - Send UIC commands to unipro layers
* @hba: per adapter instance
* @uic_command: UIC command
*/
static inline void
ufshcd_send_uic_command(struct ufs_hba *hba, struct uic_command *uic_cmnd)
{
/* Write Args */
writel(uic_cmnd->argument1,
(hba->mmio_base + REG_UIC_COMMAND_ARG_1));
writel(uic_cmnd->argument2,
(hba->mmio_base + REG_UIC_COMMAND_ARG_2));
writel(uic_cmnd->argument3,
(hba->mmio_base + REG_UIC_COMMAND_ARG_3));
/* Write UIC Cmd */
writel((uic_cmnd->command & COMMAND_OPCODE_MASK),
(hba->mmio_base + REG_UIC_COMMAND));
}
/**
* ufshcd_map_sg - Map scatter-gather list to prdt
* @lrbp - pointer to local reference block
*
* Returns 0 in case of success, non-zero value in case of failure
*/
static int ufshcd_map_sg(struct ufshcd_lrb *lrbp)
{
struct ufshcd_sg_entry *prd_table;
struct scatterlist *sg;
struct scsi_cmnd *cmd;
int sg_segments;
int i;
cmd = lrbp->cmd;
sg_segments = scsi_dma_map(cmd);
if (sg_segments < 0)
return sg_segments;
if (sg_segments) {
lrbp->utr_descriptor_ptr->prd_table_length =
cpu_to_le16((u16) (sg_segments));
prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
scsi_for_each_sg(cmd, sg, sg_segments, i) {
prd_table[i].size =
cpu_to_le32(((u32) sg_dma_len(sg))-1);
prd_table[i].base_addr =
cpu_to_le32(lower_32_bits(sg->dma_address));
prd_table[i].upper_addr =
cpu_to_le32(upper_32_bits(sg->dma_address));
}
} else {
lrbp->utr_descriptor_ptr->prd_table_length = 0;
}
return 0;
}
/**
* ufshcd_int_config - enable/disable interrupts
* @hba: per adapter instance
* @option: interrupt option
*/
static void ufshcd_int_config(struct ufs_hba *hba, u32 option)
{
switch (option) {
case UFSHCD_INT_ENABLE:
writel(hba->int_enable_mask,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
break;
case UFSHCD_INT_DISABLE:
if (hba->ufs_version == UFSHCI_VERSION_10)
writel(INTERRUPT_DISABLE_MASK_10,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
else
writel(INTERRUPT_DISABLE_MASK_11,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
break;
}
}
/**
* ufshcd_compose_upiu - form UFS Protocol Information Unit(UPIU)
* @lrb - pointer to local reference block
*/
static void ufshcd_compose_upiu(struct ufshcd_lrb *lrbp)
{
struct utp_transfer_req_desc *req_desc;
struct utp_upiu_cmd *ucd_cmd_ptr;
u32 data_direction;
u32 upiu_flags;
ucd_cmd_ptr = lrbp->ucd_cmd_ptr;
req_desc = lrbp->utr_descriptor_ptr;
switch (lrbp->command_type) {
case UTP_CMD_TYPE_SCSI:
if (lrbp->cmd->sc_data_direction == DMA_FROM_DEVICE) {
data_direction = UTP_DEVICE_TO_HOST;
upiu_flags = UPIU_CMD_FLAGS_READ;
} else if (lrbp->cmd->sc_data_direction == DMA_TO_DEVICE) {
data_direction = UTP_HOST_TO_DEVICE;
upiu_flags = UPIU_CMD_FLAGS_WRITE;
} else {
data_direction = UTP_NO_DATA_TRANSFER;
upiu_flags = UPIU_CMD_FLAGS_NONE;
}
/* Transfer request descriptor header fields */
req_desc->header.dword_0 =
cpu_to_le32(data_direction | UTP_SCSI_COMMAND);
/*
* assigning invalid value for command status. Controller
* updates OCS on command completion, with the command
* status
*/
req_desc->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
/* command descriptor fields */
ucd_cmd_ptr->header.dword_0 =
cpu_to_be32(UPIU_HEADER_DWORD(UPIU_TRANSACTION_COMMAND,
upiu_flags,
lrbp->lun,
lrbp->task_tag));
ucd_cmd_ptr->header.dword_1 =
cpu_to_be32(
UPIU_HEADER_DWORD(UPIU_COMMAND_SET_TYPE_SCSI,
0,
0,
0));
/* Total EHS length and Data segment length will be zero */
ucd_cmd_ptr->header.dword_2 = 0;
ucd_cmd_ptr->exp_data_transfer_len =
cpu_to_be32(lrbp->cmd->transfersize);
memcpy(ucd_cmd_ptr->cdb,
lrbp->cmd->cmnd,
(min_t(unsigned short,
lrbp->cmd->cmd_len,
MAX_CDB_SIZE)));
break;
case UTP_CMD_TYPE_DEV_MANAGE:
/* For query function implementation */
break;
case UTP_CMD_TYPE_UFS:
/* For UFS native command implementation */
break;
} /* end of switch */
}
/**
* ufshcd_queuecommand - main entry point for SCSI requests
* @cmd: command from SCSI Midlayer
* @done: call back function
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
{
struct ufshcd_lrb *lrbp;
struct ufs_hba *hba;
unsigned long flags;
int tag;
int err = 0;
hba = shost_priv(host);
tag = cmd->request->tag;
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
lrbp = &hba->lrb[tag];
lrbp->cmd = cmd;
lrbp->sense_bufflen = SCSI_SENSE_BUFFERSIZE;
lrbp->sense_buffer = cmd->sense_buffer;
lrbp->task_tag = tag;
lrbp->lun = cmd->device->lun;
lrbp->command_type = UTP_CMD_TYPE_SCSI;
/* form UPIU before issuing the command */
ufshcd_compose_upiu(lrbp);
err = ufshcd_map_sg(lrbp);
if (err)
goto out;
/* issue command to the controller */
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_send_command(hba, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
return err;
}
/**
* ufshcd_memory_alloc - allocate memory for host memory space data structures
* @hba: per adapter instance
*
* 1. Allocate DMA memory for Command Descriptor array
* Each command descriptor consist of Command UPIU, Response UPIU and PRDT
* 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
* 3. Allocate DMA memory for UTP Task Management Request Descriptor List
* (UTMRDL)
* 4. Allocate memory for local reference block(lrb).
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_memory_alloc(struct ufs_hba *hba)
{
size_t utmrdl_size, utrdl_size, ucdl_size;
/* Allocate memory for UTP command descriptors */
ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
hba->ucdl_base_addr = dma_alloc_coherent(&hba->pdev->dev,
ucdl_size,
&hba->ucdl_dma_addr,
GFP_KERNEL);
/*
* UFSHCI requires UTP command descriptor to be 128 byte aligned.
* make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
* if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
* be aligned to 128 bytes as well
*/
if (!hba->ucdl_base_addr ||
WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(&hba->pdev->dev,
"Command Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Transfer descriptors
* UFSHCI requires 1024 byte alignment of UTRD
*/
utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
hba->utrdl_base_addr = dma_alloc_coherent(&hba->pdev->dev,
utrdl_size,
&hba->utrdl_dma_addr,
GFP_KERNEL);
if (!hba->utrdl_base_addr ||
WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(&hba->pdev->dev,
"Transfer Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Task Management descriptors
* UFSHCI requires 1024 byte alignment of UTMRD
*/
utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
hba->utmrdl_base_addr = dma_alloc_coherent(&hba->pdev->dev,
utmrdl_size,
&hba->utmrdl_dma_addr,
GFP_KERNEL);
if (!hba->utmrdl_base_addr ||
WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(&hba->pdev->dev,
"Task Management Descriptor Memory allocation failed\n");
goto out;
}
/* Allocate memory for local reference block */
hba->lrb = kcalloc(hba->nutrs, sizeof(struct ufshcd_lrb), GFP_KERNEL);
if (!hba->lrb) {
dev_err(&hba->pdev->dev, "LRB Memory allocation failed\n");
goto out;
}
return 0;
out:
ufshcd_free_hba_memory(hba);
return -ENOMEM;
}
/**
* ufshcd_host_memory_configure - configure local reference block with
* memory offsets
* @hba: per adapter instance
*
* Configure Host memory space
* 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
* address.
* 2. Update each UTRD with Response UPIU offset, Response UPIU length
* and PRDT offset.
* 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
* into local reference block.
*/
static void ufshcd_host_memory_configure(struct ufs_hba *hba)
{
struct utp_transfer_cmd_desc *cmd_descp;
struct utp_transfer_req_desc *utrdlp;
dma_addr_t cmd_desc_dma_addr;
dma_addr_t cmd_desc_element_addr;
u16 response_offset;
u16 prdt_offset;
int cmd_desc_size;
int i;
utrdlp = hba->utrdl_base_addr;
cmd_descp = hba->ucdl_base_addr;
response_offset =
offsetof(struct utp_transfer_cmd_desc, response_upiu);
prdt_offset =
offsetof(struct utp_transfer_cmd_desc, prd_table);
cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
cmd_desc_dma_addr = hba->ucdl_dma_addr;
for (i = 0; i < hba->nutrs; i++) {
/* Configure UTRD with command descriptor base address */
cmd_desc_element_addr =
(cmd_desc_dma_addr + (cmd_desc_size * i));
utrdlp[i].command_desc_base_addr_lo =
cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
utrdlp[i].command_desc_base_addr_hi =
cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
/* Response upiu and prdt offset should be in double words */
utrdlp[i].response_upiu_offset =
cpu_to_le16((response_offset >> 2));
utrdlp[i].prd_table_offset =
cpu_to_le16((prdt_offset >> 2));
utrdlp[i].response_upiu_length =
cpu_to_le16(ALIGNED_UPIU_SIZE);
hba->lrb[i].utr_descriptor_ptr = (utrdlp + i);
hba->lrb[i].ucd_cmd_ptr =
(struct utp_upiu_cmd *)(cmd_descp + i);
hba->lrb[i].ucd_rsp_ptr =
(struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
hba->lrb[i].ucd_prdt_ptr =
(struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
}
}
/**
* ufshcd_dme_link_startup - Notify Unipro to perform link startup
* @hba: per adapter instance
*
* UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
* in order to initialize the Unipro link startup procedure.
* Once the Unipro links are up, the device connected to the controller
* is detected.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_dme_link_startup(struct ufs_hba *hba)
{
struct uic_command *uic_cmd;
unsigned long flags;
/* check if controller is ready to accept UIC commands */
if (((readl(hba->mmio_base + REG_CONTROLLER_STATUS)) &
UIC_COMMAND_READY) == 0x0) {
dev_err(&hba->pdev->dev,
"Controller not ready"
" to accept UIC commands\n");
return -EIO;
}
spin_lock_irqsave(hba->host->host_lock, flags);
/* form UIC command */
uic_cmd = &hba->active_uic_cmd;
uic_cmd->command = UIC_CMD_DME_LINK_STARTUP;
uic_cmd->argument1 = 0;
uic_cmd->argument2 = 0;
uic_cmd->argument3 = 0;
/* enable UIC related interrupts */
hba->int_enable_mask |= UIC_COMMAND_COMPL;
ufshcd_int_config(hba, UFSHCD_INT_ENABLE);
/* sending UIC commands to controller */
ufshcd_send_uic_command(hba, uic_cmd);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return 0;
}
/**
* ufshcd_make_hba_operational - Make UFS controller operational
* @hba: per adapter instance
*
* To bring UFS host controller to operational state,
* 1. Check if device is present
* 2. Configure run-stop-registers
* 3. Enable required interrupts
* 4. Configure interrupt aggregation
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_make_hba_operational(struct ufs_hba *hba)
{
int err = 0;
u32 reg;
/* check if device present */
reg = readl((hba->mmio_base + REG_CONTROLLER_STATUS));
if (ufshcd_is_device_present(reg)) {
dev_err(&hba->pdev->dev, "cc: Device not present\n");
err = -ENXIO;
goto out;
}
/*
* UCRDY, UTMRLDY and UTRLRDY bits must be 1
* DEI, HEI bits must be 0
*/
if (!(ufshcd_get_lists_status(reg))) {
ufshcd_enable_run_stop_reg(hba);
} else {
dev_err(&hba->pdev->dev,
"Host controller not ready to process requests");
err = -EIO;
goto out;
}
/* Enable required interrupts */
hba->int_enable_mask |= (UTP_TRANSFER_REQ_COMPL |
UIC_ERROR |
UTP_TASK_REQ_COMPL |
DEVICE_FATAL_ERROR |
CONTROLLER_FATAL_ERROR |
SYSTEM_BUS_FATAL_ERROR);
ufshcd_int_config(hba, UFSHCD_INT_ENABLE);
/* Configure interrupt aggregation */
ufshcd_config_int_aggr(hba, INT_AGGR_CONFIG);
if (hba->ufshcd_state == UFSHCD_STATE_RESET)
scsi_unblock_requests(hba->host);
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
scsi_scan_host(hba->host);
out:
return err;
}
/**
* ufshcd_hba_enable - initialize the controller
* @hba: per adapter instance
*
* The controller resets itself and controller firmware initialization
* sequence kicks off. When controller is ready it will set
* the Host Controller Enable bit to 1.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_hba_enable(struct ufs_hba *hba)
{
int retry;
/*
* msleep of 1 and 5 used in this function might result in msleep(20),
* but it was necessary to send the UFS FPGA to reset mode during
* development and testing of this driver. msleep can be changed to
* mdelay and retry count can be reduced based on the controller.
*/
if (!ufshcd_is_hba_active(hba)) {
/* change controller state to "reset state" */
ufshcd_hba_stop(hba);
/*
* This delay is based on the testing done with UFS host
* controller FPGA. The delay can be changed based on the
* host controller used.
*/
msleep(5);
}
/* start controller initialization sequence */
ufshcd_hba_start(hba);
/*
* To initialize a UFS host controller HCE bit must be set to 1.
* During initialization the HCE bit value changes from 1->0->1.
* When the host controller completes initialization sequence
* it sets the value of HCE bit to 1. The same HCE bit is read back
* to check if the controller has completed initialization sequence.
* So without this delay the value HCE = 1, set in the previous
* instruction might be read back.
* This delay can be changed based on the controller.
*/
msleep(1);
/* wait for the host controller to complete initialization */
retry = 10;
while (ufshcd_is_hba_active(hba)) {
if (retry) {
retry--;
} else {
dev_err(&hba->pdev->dev,
"Controller enable failed\n");
return -EIO;
}
msleep(5);
}
return 0;
}
/**
* ufshcd_initialize_hba - start the initialization process
* @hba: per adapter instance
*
* 1. Enable the controller via ufshcd_hba_enable.
* 2. Program the Transfer Request List Address with the starting address of
* UTRDL.
* 3. Program the Task Management Request List Address with starting address
* of UTMRDL.
*
* Returns 0 on success, non-zero value on failure.
*/
static int ufshcd_initialize_hba(struct ufs_hba *hba)
{
if (ufshcd_hba_enable(hba))
return -EIO;
/* Configure UTRL and UTMRL base address registers */
writel(hba->utrdl_dma_addr,
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_BASE_L));
writel(lower_32_bits(hba->utrdl_dma_addr),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_BASE_H));
writel(hba->utmrdl_dma_addr,
(hba->mmio_base + REG_UTP_TASK_REQ_LIST_BASE_L));
writel(upper_32_bits(hba->utmrdl_dma_addr),
(hba->mmio_base + REG_UTP_TASK_REQ_LIST_BASE_H));
/* Initialize unipro link startup procedure */
return ufshcd_dme_link_startup(hba);
}
/**
* ufshcd_do_reset - reset the host controller
* @hba: per adapter instance
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_do_reset(struct ufs_hba *hba)
{
struct ufshcd_lrb *lrbp;
unsigned long flags;
int tag;
/* block commands from midlayer */
scsi_block_requests(hba->host);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->ufshcd_state = UFSHCD_STATE_RESET;
/* send controller to reset state */
ufshcd_hba_stop(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* abort outstanding commands */
for (tag = 0; tag < hba->nutrs; tag++) {
if (test_bit(tag, &hba->outstanding_reqs)) {
lrbp = &hba->lrb[tag];
scsi_dma_unmap(lrbp->cmd);
lrbp->cmd->result = DID_RESET << 16;
lrbp->cmd->scsi_done(lrbp->cmd);
lrbp->cmd = NULL;
}
}
/* clear outstanding request/task bit maps */
hba->outstanding_reqs = 0;
hba->outstanding_tasks = 0;
/* start the initialization process */
if (ufshcd_initialize_hba(hba)) {
dev_err(&hba->pdev->dev,
"Reset: Controller initialization failed\n");
return FAILED;
}
return SUCCESS;
}
/**
* ufshcd_slave_alloc - handle initial SCSI device configurations
* @sdev: pointer to SCSI device
*
* Returns success
*/
static int ufshcd_slave_alloc(struct scsi_device *sdev)
{
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
sdev->tagged_supported = 1;
/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
sdev->use_10_for_ms = 1;
scsi_set_tag_type(sdev, MSG_SIMPLE_TAG);
/*
* Inform SCSI Midlayer that the LUN queue depth is same as the
* controller queue depth. If a LUN queue depth is less than the
* controller queue depth and if the LUN reports
* SAM_STAT_TASK_SET_FULL, the LUN queue depth will be adjusted
* with scsi_adjust_queue_depth.
*/
scsi_activate_tcq(sdev, hba->nutrs);
return 0;
}
/**
* ufshcd_slave_destroy - remove SCSI device configurations
* @sdev: pointer to SCSI device
*/
static void ufshcd_slave_destroy(struct scsi_device *sdev)
{
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
scsi_deactivate_tcq(sdev, hba->nutrs);
}
/**
* ufshcd_task_req_compl - handle task management request completion
* @hba: per adapter instance
* @index: index of the completed request
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_task_req_compl(struct ufs_hba *hba, u32 index)
{
struct utp_task_req_desc *task_req_descp;
struct utp_upiu_task_rsp *task_rsp_upiup;
unsigned long flags;
int ocs_value;
int task_result;
spin_lock_irqsave(hba->host->host_lock, flags);
/* Clear completed tasks from outstanding_tasks */
__clear_bit(index, &hba->outstanding_tasks);
task_req_descp = hba->utmrdl_base_addr;
ocs_value = ufshcd_get_tmr_ocs(&task_req_descp[index]);
if (ocs_value == OCS_SUCCESS) {
task_rsp_upiup = (struct utp_upiu_task_rsp *)
task_req_descp[index].task_rsp_upiu;
task_result = be32_to_cpu(task_rsp_upiup->header.dword_1);
task_result = ((task_result & MASK_TASK_RESPONSE) >> 8);
if (task_result != UPIU_TASK_MANAGEMENT_FUNC_COMPL ||
task_result != UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED)
task_result = FAILED;
} else {
task_result = FAILED;
dev_err(&hba->pdev->dev,
"trc: Invalid ocs = %x\n", ocs_value);
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return task_result;
}
/**
* ufshcd_adjust_lun_qdepth - Update LUN queue depth if device responds with
* SAM_STAT_TASK_SET_FULL SCSI command status.
* @cmd: pointer to SCSI command
*/
static void ufshcd_adjust_lun_qdepth(struct scsi_cmnd *cmd)
{
struct ufs_hba *hba;
int i;
int lun_qdepth = 0;
hba = shost_priv(cmd->device->host);
/*
* LUN queue depth can be obtained by counting outstanding commands
* on the LUN.
*/
for (i = 0; i < hba->nutrs; i++) {
if (test_bit(i, &hba->outstanding_reqs)) {
/*
* Check if the outstanding command belongs
* to the LUN which reported SAM_STAT_TASK_SET_FULL.
*/
if (cmd->device->lun == hba->lrb[i].lun)
lun_qdepth++;
}
}
/*
* LUN queue depth will be total outstanding commands, except the
* command for which the LUN reported SAM_STAT_TASK_SET_FULL.
*/
scsi_adjust_queue_depth(cmd->device, MSG_SIMPLE_TAG, lun_qdepth - 1);
}
/**
* ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
* @lrb: pointer to local reference block of completed command
* @scsi_status: SCSI command status
*
* Returns value base on SCSI command status
*/
static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
{
int result = 0;
switch (scsi_status) {
case SAM_STAT_GOOD:
result |= DID_OK << 16 |
COMMAND_COMPLETE << 8 |
SAM_STAT_GOOD;
break;
case SAM_STAT_CHECK_CONDITION:
result |= DID_OK << 16 |
COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
ufshcd_copy_sense_data(lrbp);
break;
case SAM_STAT_BUSY:
result |= SAM_STAT_BUSY;
break;
case SAM_STAT_TASK_SET_FULL:
/*
* If a LUN reports SAM_STAT_TASK_SET_FULL, then the LUN queue
* depth needs to be adjusted to the exact number of
* outstanding commands the LUN can handle at any given time.
*/
ufshcd_adjust_lun_qdepth(lrbp->cmd);
result |= SAM_STAT_TASK_SET_FULL;
break;
case SAM_STAT_TASK_ABORTED:
result |= SAM_STAT_TASK_ABORTED;
break;
default:
result |= DID_ERROR << 16;
break;
} /* end of switch */
return result;
}
/**
* ufshcd_transfer_rsp_status - Get overall status of the response
* @hba: per adapter instance
* @lrb: pointer to local reference block of completed command
*
* Returns result of the command to notify SCSI midlayer
*/
static inline int
ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int result = 0;
int scsi_status;
int ocs;
/* overall command status of utrd */
ocs = ufshcd_get_tr_ocs(lrbp);
switch (ocs) {
case OCS_SUCCESS:
/* check if the returned transfer response is valid */
result = ufshcd_is_valid_req_rsp(lrbp->ucd_rsp_ptr);
if (result) {
dev_err(&hba->pdev->dev,
"Invalid response = %x\n", result);
break;
}
/*
* get the response UPIU result to extract
* the SCSI command status
*/
result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
/*
* get the result based on SCSI status response
* to notify the SCSI midlayer of the command status
*/
scsi_status = result & MASK_SCSI_STATUS;
result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
break;
case OCS_ABORTED:
result |= DID_ABORT << 16;
break;
case OCS_INVALID_CMD_TABLE_ATTR:
case OCS_INVALID_PRDT_ATTR:
case OCS_MISMATCH_DATA_BUF_SIZE:
case OCS_MISMATCH_RESP_UPIU_SIZE:
case OCS_PEER_COMM_FAILURE:
case OCS_FATAL_ERROR:
default:
result |= DID_ERROR << 16;
dev_err(&hba->pdev->dev,
"OCS error from controller = %x\n", ocs);
break;
} /* end of switch */
return result;
}
/**
* ufshcd_transfer_req_compl - handle SCSI and query command completion
* @hba: per adapter instance
*/
static void ufshcd_transfer_req_compl(struct ufs_hba *hba)
{
struct ufshcd_lrb *lrb;
unsigned long completed_reqs;
u32 tr_doorbell;
int result;
int index;
lrb = hba->lrb;
tr_doorbell =
readl(hba->mmio_base + REG_UTP_TRANSFER_REQ_DOOR_BELL);
completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
for (index = 0; index < hba->nutrs; index++) {
if (test_bit(index, &completed_reqs)) {
result = ufshcd_transfer_rsp_status(hba, &lrb[index]);
if (lrb[index].cmd) {
scsi_dma_unmap(lrb[index].cmd);
lrb[index].cmd->result = result;
lrb[index].cmd->scsi_done(lrb[index].cmd);
/* Mark completed command as NULL in LRB */
lrb[index].cmd = NULL;
}
} /* end of if */
} /* end of for */
/* clear corresponding bits of completed commands */
hba->outstanding_reqs ^= completed_reqs;
/* Reset interrupt aggregation counters */
ufshcd_config_int_aggr(hba, INT_AGGR_RESET);
}
/**
* ufshcd_uic_cc_handler - handle UIC command completion
* @work: pointer to a work queue structure
*
* Returns 0 on success, non-zero value on failure
*/
static void ufshcd_uic_cc_handler (struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(work, struct ufs_hba, uic_workq);
if ((hba->active_uic_cmd.command == UIC_CMD_DME_LINK_STARTUP) &&
!(ufshcd_get_uic_cmd_result(hba))) {
if (ufshcd_make_hba_operational(hba))
dev_err(&hba->pdev->dev,
"cc: hba not operational state\n");
return;
}
}
/**
* ufshcd_fatal_err_handler - handle fatal errors
* @hba: per adapter instance
*/
static void ufshcd_fatal_err_handler(struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(work, struct ufs_hba, feh_workq);
/* check if reset is already in progress */
if (hba->ufshcd_state != UFSHCD_STATE_RESET)
ufshcd_do_reset(hba);
}
/**
* ufshcd_err_handler - Check for fatal errors
* @work: pointer to a work queue structure
*/
static void ufshcd_err_handler(struct ufs_hba *hba)
{
u32 reg;
if (hba->errors & INT_FATAL_ERRORS)
goto fatal_eh;
if (hba->errors & UIC_ERROR) {
reg = readl(hba->mmio_base +
REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
goto fatal_eh;
}
return;
fatal_eh:
hba->ufshcd_state = UFSHCD_STATE_ERROR;
schedule_work(&hba->feh_workq);
}
/**
* ufshcd_tmc_handler - handle task management function completion
* @hba: per adapter instance
*/
static void ufshcd_tmc_handler(struct ufs_hba *hba)
{
u32 tm_doorbell;
tm_doorbell = readl(hba->mmio_base + REG_UTP_TASK_REQ_DOOR_BELL);
hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks;
wake_up_interruptible(&hba->ufshcd_tm_wait_queue);
}
/**
* ufshcd_sl_intr - Interrupt service routine
* @hba: per adapter instance
* @intr_status: contains interrupts generated by the controller
*/
static void ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
{
hba->errors = UFSHCD_ERROR_MASK & intr_status;
if (hba->errors)
ufshcd_err_handler(hba);
if (intr_status & UIC_COMMAND_COMPL)
schedule_work(&hba->uic_workq);
if (intr_status & UTP_TASK_REQ_COMPL)
ufshcd_tmc_handler(hba);
if (intr_status & UTP_TRANSFER_REQ_COMPL)
ufshcd_transfer_req_compl(hba);
}
/**
* ufshcd_intr - Main interrupt service routine
* @irq: irq number
* @__hba: pointer to adapter instance
*
* Returns IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_intr(int irq, void *__hba)
{
u32 intr_status;
irqreturn_t retval = IRQ_NONE;
struct ufs_hba *hba = __hba;
spin_lock(hba->host->host_lock);
intr_status = readl(hba->mmio_base + REG_INTERRUPT_STATUS);
if (intr_status) {
ufshcd_sl_intr(hba, intr_status);
/* If UFSHCI 1.0 then clear interrupt status register */
if (hba->ufs_version == UFSHCI_VERSION_10)
writel(intr_status,
(hba->mmio_base + REG_INTERRUPT_STATUS));
retval = IRQ_HANDLED;
}
spin_unlock(hba->host->host_lock);
return retval;
}
/**
* ufshcd_issue_tm_cmd - issues task management commands to controller
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*
* Returns SUCCESS/FAILED
*/
static int
ufshcd_issue_tm_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp,
u8 tm_function)
{
struct utp_task_req_desc *task_req_descp;
struct utp_upiu_task_req *task_req_upiup;
struct Scsi_Host *host;
unsigned long flags;
int free_slot = 0;
int err;
host = hba->host;
spin_lock_irqsave(host->host_lock, flags);
/* If task management queue is full */
free_slot = ufshcd_get_tm_free_slot(hba);
if (free_slot >= hba->nutmrs) {
spin_unlock_irqrestore(host->host_lock, flags);
dev_err(&hba->pdev->dev, "Task management queue full\n");
err = FAILED;
goto out;
}
task_req_descp = hba->utmrdl_base_addr;
task_req_descp += free_slot;
/* Configure task request descriptor */
task_req_descp->header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
task_req_descp->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
/* Configure task request UPIU */
task_req_upiup =
(struct utp_upiu_task_req *) task_req_descp->task_req_upiu;
task_req_upiup->header.dword_0 =
cpu_to_be32(UPIU_HEADER_DWORD(UPIU_TRANSACTION_TASK_REQ, 0,
lrbp->lun, lrbp->task_tag));
task_req_upiup->header.dword_1 =
cpu_to_be32(UPIU_HEADER_DWORD(0, tm_function, 0, 0));
task_req_upiup->input_param1 = lrbp->lun;
task_req_upiup->input_param1 =
cpu_to_be32(task_req_upiup->input_param1);
task_req_upiup->input_param2 = lrbp->task_tag;
task_req_upiup->input_param2 =
cpu_to_be32(task_req_upiup->input_param2);
/* send command to the controller */
__set_bit(free_slot, &hba->outstanding_tasks);
writel((1 << free_slot),
(hba->mmio_base + REG_UTP_TASK_REQ_DOOR_BELL));
spin_unlock_irqrestore(host->host_lock, flags);
/* wait until the task management command is completed */
err =
wait_event_interruptible_timeout(hba->ufshcd_tm_wait_queue,
(test_bit(free_slot,
&hba->tm_condition) != 0),
60 * HZ);
if (!err) {
dev_err(&hba->pdev->dev,
"Task management command timed-out\n");
err = FAILED;
goto out;
}
clear_bit(free_slot, &hba->tm_condition);
return ufshcd_task_req_compl(hba, free_slot);
out:
return err;
}
/**
* ufshcd_device_reset - reset device and abort all the pending commands
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_device_reset(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
unsigned int tag;
u32 pos;
int err;
host = cmd->device->host;
hba = shost_priv(host);
tag = cmd->request->tag;
err = ufshcd_issue_tm_cmd(hba, &hba->lrb[tag], UFS_LOGICAL_RESET);
if (err)
goto out;
for (pos = 0; pos < hba->nutrs; pos++) {
if (test_bit(pos, &hba->outstanding_reqs) &&
(hba->lrb[tag].lun == hba->lrb[pos].lun)) {
/* clear the respective UTRLCLR register bit */
ufshcd_utrl_clear(hba, pos);
clear_bit(pos, &hba->outstanding_reqs);
if (hba->lrb[pos].cmd) {
scsi_dma_unmap(hba->lrb[pos].cmd);
hba->lrb[pos].cmd->result =
DID_ABORT << 16;
hba->lrb[pos].cmd->scsi_done(cmd);
hba->lrb[pos].cmd = NULL;
}
}
} /* end of for */
out:
return err;
}
/**
* ufshcd_host_reset - Main reset function registered with scsi layer
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_host_reset(struct scsi_cmnd *cmd)
{
struct ufs_hba *hba;
hba = shost_priv(cmd->device->host);
if (hba->ufshcd_state == UFSHCD_STATE_RESET)
return SUCCESS;
return (ufshcd_do_reset(hba) == SUCCESS) ? SUCCESS : FAILED;
}
/**
* ufshcd_abort - abort a specific command
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_abort(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
unsigned long flags;
unsigned int tag;
int err;
host = cmd->device->host;
hba = shost_priv(host);
tag = cmd->request->tag;
spin_lock_irqsave(host->host_lock, flags);
/* check if command is still pending */
if (!(test_bit(tag, &hba->outstanding_reqs))) {
err = FAILED;
spin_unlock_irqrestore(host->host_lock, flags);
goto out;
}
spin_unlock_irqrestore(host->host_lock, flags);
err = ufshcd_issue_tm_cmd(hba, &hba->lrb[tag], UFS_ABORT_TASK);
if (err)
goto out;
scsi_dma_unmap(cmd);
spin_lock_irqsave(host->host_lock, flags);
/* clear the respective UTRLCLR register bit */
ufshcd_utrl_clear(hba, tag);
__clear_bit(tag, &hba->outstanding_reqs);
hba->lrb[tag].cmd = NULL;
spin_unlock_irqrestore(host->host_lock, flags);
out:
return err;
}
static struct scsi_host_template ufshcd_driver_template = {
.module = THIS_MODULE,
.name = UFSHCD,
.proc_name = UFSHCD,
.queuecommand = ufshcd_queuecommand,
.slave_alloc = ufshcd_slave_alloc,
.slave_destroy = ufshcd_slave_destroy,
.eh_abort_handler = ufshcd_abort,
.eh_device_reset_handler = ufshcd_device_reset,
.eh_host_reset_handler = ufshcd_host_reset,
.this_id = -1,
.sg_tablesize = SG_ALL,
.cmd_per_lun = UFSHCD_CMD_PER_LUN,
.can_queue = UFSHCD_CAN_QUEUE,
};
/**
* ufshcd_shutdown - main function to put the controller in reset state
* @pdev: pointer to PCI device handle
*/
static void ufshcd_shutdown(struct pci_dev *pdev)
{
ufshcd_hba_stop((struct ufs_hba *)pci_get_drvdata(pdev));
}
#ifdef CONFIG_PM
/**
* ufshcd_suspend - suspend power management function
* @pdev: pointer to PCI device handle
* @state: power state
*
* Returns -ENOSYS
*/
static int ufshcd_suspend(struct pci_dev *pdev, pm_message_t state)
{
/*
* TODO:
* 1. Block SCSI requests from SCSI midlayer
* 2. Change the internal driver state to non operational
* 3. Set UTRLRSR and UTMRLRSR bits to zero
* 4. Wait until outstanding commands are completed
* 5. Set HCE to zero to send the UFS host controller to reset state
*/
return -ENOSYS;
}
/**
* ufshcd_resume - resume power management function
* @pdev: pointer to PCI device handle
*
* Returns -ENOSYS
*/
static int ufshcd_resume(struct pci_dev *pdev)
{
/*
* TODO:
* 1. Set HCE to 1, to start the UFS host controller
* initialization process
* 2. Set UTRLRSR and UTMRLRSR bits to 1
* 3. Change the internal driver state to operational
* 4. Unblock SCSI requests from SCSI midlayer
*/
return -ENOSYS;
}
#endif /* CONFIG_PM */
/**
* ufshcd_hba_free - free allocated memory for
* host memory space data structures
* @hba: per adapter instance
*/
static void ufshcd_hba_free(struct ufs_hba *hba)
{
iounmap(hba->mmio_base);
ufshcd_free_hba_memory(hba);
pci_release_regions(hba->pdev);
}
/**
* ufshcd_remove - de-allocate PCI/SCSI host and host memory space
* data structure memory
* @pdev - pointer to PCI handle
*/
static void ufshcd_remove(struct pci_dev *pdev)
{
struct ufs_hba *hba = pci_get_drvdata(pdev);
/* disable interrupts */
ufshcd_int_config(hba, UFSHCD_INT_DISABLE);
free_irq(pdev->irq, hba);
ufshcd_hba_stop(hba);
ufshcd_hba_free(hba);
scsi_remove_host(hba->host);
scsi_host_put(hba->host);
pci_set_drvdata(pdev, NULL);
pci_clear_master(pdev);
pci_disable_device(pdev);
}
/**
* ufshcd_set_dma_mask - Set dma mask based on the controller
* addressing capability
* @pdev: PCI device structure
*
* Returns 0 for success, non-zero for failure
*/
static int ufshcd_set_dma_mask(struct ufs_hba *hba)
{
int err;
u64 dma_mask;
/*
* If controller supports 64 bit addressing mode, then set the DMA
* mask to 64-bit, else set the DMA mask to 32-bit
*/
if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT)
dma_mask = DMA_BIT_MASK(64);
else
dma_mask = DMA_BIT_MASK(32);
err = pci_set_dma_mask(hba->pdev, dma_mask);
if (err)
return err;
err = pci_set_consistent_dma_mask(hba->pdev, dma_mask);
return err;
}
/**
* ufshcd_probe - probe routine of the driver
* @pdev: pointer to PCI device handle
* @id: PCI device id
*
* Returns 0 on success, non-zero value on failure
*/
static int __devinit
ufshcd_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
int err;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "pci_enable_device failed\n");
goto out_error;
}
pci_set_master(pdev);
host = scsi_host_alloc(&ufshcd_driver_template,
sizeof(struct ufs_hba));
if (!host) {
dev_err(&pdev->dev, "scsi_host_alloc failed\n");
err = -ENOMEM;
goto out_disable;
}
hba = shost_priv(host);
err = pci_request_regions(pdev, UFSHCD);
if (err < 0) {
dev_err(&pdev->dev, "request regions failed\n");
goto out_disable;
}
hba->mmio_base = pci_ioremap_bar(pdev, 0);
if (!hba->mmio_base) {
dev_err(&pdev->dev, "memory map failed\n");
err = -ENOMEM;
goto out_release_regions;
}
hba->host = host;
hba->pdev = pdev;
/* Read capabilities registers */
ufshcd_hba_capabilities(hba);
/* Get UFS version supported by the controller */
hba->ufs_version = ufshcd_get_ufs_version(hba);
err = ufshcd_set_dma_mask(hba);
if (err) {
dev_err(&pdev->dev, "set dma mask failed\n");
goto out_iounmap;
}
/* Allocate memory for host memory space */
err = ufshcd_memory_alloc(hba);
if (err) {
dev_err(&pdev->dev, "Memory allocation failed\n");
goto out_iounmap;
}
/* Configure LRB */
ufshcd_host_memory_configure(hba);
host->can_queue = hba->nutrs;
host->cmd_per_lun = hba->nutrs;
host->max_id = UFSHCD_MAX_ID;
host->max_lun = UFSHCD_MAX_LUNS;
host->max_channel = UFSHCD_MAX_CHANNEL;
host->unique_id = host->host_no;
host->max_cmd_len = MAX_CDB_SIZE;
/* Initailize wait queue for task management */
init_waitqueue_head(&hba->ufshcd_tm_wait_queue);
/* Initialize work queues */
INIT_WORK(&hba->uic_workq, ufshcd_uic_cc_handler);
INIT_WORK(&hba->feh_workq, ufshcd_fatal_err_handler);
/* IRQ registration */
err = request_irq(pdev->irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
if (err) {
dev_err(&pdev->dev, "request irq failed\n");
goto out_lrb_free;
}
/* Enable SCSI tag mapping */
err = scsi_init_shared_tag_map(host, host->can_queue);
if (err) {
dev_err(&pdev->dev, "init shared queue failed\n");
goto out_free_irq;
}
pci_set_drvdata(pdev, hba);
err = scsi_add_host(host, &pdev->dev);
if (err) {
dev_err(&pdev->dev, "scsi_add_host failed\n");
goto out_free_irq;
}
/* Initialization routine */
err = ufshcd_initialize_hba(hba);
if (err) {
dev_err(&pdev->dev, "Initialization failed\n");
goto out_free_irq;
}
return 0;
out_free_irq:
free_irq(pdev->irq, hba);
out_lrb_free:
ufshcd_free_hba_memory(hba);
out_iounmap:
iounmap(hba->mmio_base);
out_release_regions:
pci_release_regions(pdev);
out_disable:
scsi_host_put(host);
pci_clear_master(pdev);
pci_disable_device(pdev);
out_error:
return err;
}
static DEFINE_PCI_DEVICE_TABLE(ufshcd_pci_tbl) = {
{ PCI_VENDOR_ID_SAMSUNG, 0xC00C, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, ufshcd_pci_tbl);
static struct pci_driver ufshcd_pci_driver = {
.name = UFSHCD,
.id_table = ufshcd_pci_tbl,
.probe = ufshcd_probe,
.remove = __devexit_p(ufshcd_remove),
.shutdown = ufshcd_shutdown,
#ifdef CONFIG_PM
.suspend = ufshcd_suspend,
.resume = ufshcd_resume,
#endif
};
/**
* ufshcd_init - Driver registration routine
*/
static int __init ufshcd_init(void)
{
return pci_register_driver(&ufshcd_pci_driver);
}
module_init(ufshcd_init);
/**
* ufshcd_exit - Driver exit clean-up routine
*/
static void __exit ufshcd_exit(void)
{
pci_unregister_driver(&ufshcd_pci_driver);
}
module_exit(ufshcd_exit);
MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>, "
"Vinayak Holikatti <h.vinayak@samsung.com>");
MODULE_DESCRIPTION("Generic UFS host controller driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(UFSHCD_DRIVER_VERSION);