WSL2-Linux-Kernel/kernel/cgroup/cgroup-v1.c

1262 строки
33 KiB
C

#include "cgroup-internal.h"
#include <linux/ctype.h>
#include <linux/kmod.h>
#include <linux/sort.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/magic.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delayacct.h>
#include <linux/pid_namespace.h>
#include <linux/cgroupstats.h>
#include <trace/events/cgroup.h>
/*
* pidlists linger the following amount before being destroyed. The goal
* is avoiding frequent destruction in the middle of consecutive read calls
* Expiring in the middle is a performance problem not a correctness one.
* 1 sec should be enough.
*/
#define CGROUP_PIDLIST_DESTROY_DELAY HZ
/* Controllers blocked by the commandline in v1 */
static u16 cgroup_no_v1_mask;
/*
* pidlist destructions need to be flushed on cgroup destruction. Use a
* separate workqueue as flush domain.
*/
static struct workqueue_struct *cgroup_pidlist_destroy_wq;
/*
* Protects cgroup_subsys->release_agent_path. Modifying it also requires
* cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
*/
static DEFINE_SPINLOCK(release_agent_path_lock);
bool cgroup1_ssid_disabled(int ssid)
{
return cgroup_no_v1_mask & (1 << ssid);
}
/**
* cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
* @from: attach to all cgroups of a given task
* @tsk: the task to be attached
*/
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
struct cgroup_root *root;
int retval = 0;
mutex_lock(&cgroup_mutex);
percpu_down_write(&cgroup_threadgroup_rwsem);
for_each_root(root) {
struct cgroup *from_cgrp;
if (root == &cgrp_dfl_root)
continue;
spin_lock_irq(&css_set_lock);
from_cgrp = task_cgroup_from_root(from, root);
spin_unlock_irq(&css_set_lock);
retval = cgroup_attach_task(from_cgrp, tsk, false);
if (retval)
break;
}
percpu_up_write(&cgroup_threadgroup_rwsem);
mutex_unlock(&cgroup_mutex);
return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
/**
* cgroup_trasnsfer_tasks - move tasks from one cgroup to another
* @to: cgroup to which the tasks will be moved
* @from: cgroup in which the tasks currently reside
*
* Locking rules between cgroup_post_fork() and the migration path
* guarantee that, if a task is forking while being migrated, the new child
* is guaranteed to be either visible in the source cgroup after the
* parent's migration is complete or put into the target cgroup. No task
* can slip out of migration through forking.
*/
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
DEFINE_CGROUP_MGCTX(mgctx);
struct cgrp_cset_link *link;
struct css_task_iter it;
struct task_struct *task;
int ret;
if (cgroup_on_dfl(to))
return -EINVAL;
if (!cgroup_may_migrate_to(to))
return -EBUSY;
mutex_lock(&cgroup_mutex);
percpu_down_write(&cgroup_threadgroup_rwsem);
/* all tasks in @from are being moved, all csets are source */
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &from->cset_links, cset_link)
cgroup_migrate_add_src(link->cset, to, &mgctx);
spin_unlock_irq(&css_set_lock);
ret = cgroup_migrate_prepare_dst(&mgctx);
if (ret)
goto out_err;
/*
* Migrate tasks one-by-one until @from is empty. This fails iff
* ->can_attach() fails.
*/
do {
css_task_iter_start(&from->self, &it);
task = css_task_iter_next(&it);
if (task)
get_task_struct(task);
css_task_iter_end(&it);
if (task) {
ret = cgroup_migrate(task, false, &mgctx);
if (!ret)
trace_cgroup_transfer_tasks(to, task, false);
put_task_struct(task);
}
} while (task && !ret);
out_err:
cgroup_migrate_finish(&mgctx);
percpu_up_write(&cgroup_threadgroup_rwsem);
mutex_unlock(&cgroup_mutex);
return ret;
}
/*
* Stuff for reading the 'tasks'/'procs' files.
*
* Reading this file can return large amounts of data if a cgroup has
* *lots* of attached tasks. So it may need several calls to read(),
* but we cannot guarantee that the information we produce is correct
* unless we produce it entirely atomically.
*
*/
/* which pidlist file are we talking about? */
enum cgroup_filetype {
CGROUP_FILE_PROCS,
CGROUP_FILE_TASKS,
};
/*
* A pidlist is a list of pids that virtually represents the contents of one
* of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
* a pair (one each for procs, tasks) for each pid namespace that's relevant
* to the cgroup.
*/
struct cgroup_pidlist {
/*
* used to find which pidlist is wanted. doesn't change as long as
* this particular list stays in the list.
*/
struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
/* array of xids */
pid_t *list;
/* how many elements the above list has */
int length;
/* each of these stored in a list by its cgroup */
struct list_head links;
/* pointer to the cgroup we belong to, for list removal purposes */
struct cgroup *owner;
/* for delayed destruction */
struct delayed_work destroy_dwork;
};
/*
* The following two functions "fix" the issue where there are more pids
* than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
* TODO: replace with a kernel-wide solution to this problem
*/
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
if (PIDLIST_TOO_LARGE(count))
return vmalloc(count * sizeof(pid_t));
else
return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
kvfree(p);
}
/*
* Used to destroy all pidlists lingering waiting for destroy timer. None
* should be left afterwards.
*/
void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
{
struct cgroup_pidlist *l, *tmp_l;
mutex_lock(&cgrp->pidlist_mutex);
list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
mutex_unlock(&cgrp->pidlist_mutex);
flush_workqueue(cgroup_pidlist_destroy_wq);
BUG_ON(!list_empty(&cgrp->pidlists));
}
static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
destroy_dwork);
struct cgroup_pidlist *tofree = NULL;
mutex_lock(&l->owner->pidlist_mutex);
/*
* Destroy iff we didn't get queued again. The state won't change
* as destroy_dwork can only be queued while locked.
*/
if (!delayed_work_pending(dwork)) {
list_del(&l->links);
pidlist_free(l->list);
put_pid_ns(l->key.ns);
tofree = l;
}
mutex_unlock(&l->owner->pidlist_mutex);
kfree(tofree);
}
/*
* pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
* Returns the number of unique elements.
*/
static int pidlist_uniq(pid_t *list, int length)
{
int src, dest = 1;
/*
* we presume the 0th element is unique, so i starts at 1. trivial
* edge cases first; no work needs to be done for either
*/
if (length == 0 || length == 1)
return length;
/* src and dest walk down the list; dest counts unique elements */
for (src = 1; src < length; src++) {
/* find next unique element */
while (list[src] == list[src-1]) {
src++;
if (src == length)
goto after;
}
/* dest always points to where the next unique element goes */
list[dest] = list[src];
dest++;
}
after:
return dest;
}
/*
* The two pid files - task and cgroup.procs - guaranteed that the result
* is sorted, which forced this whole pidlist fiasco. As pid order is
* different per namespace, each namespace needs differently sorted list,
* making it impossible to use, for example, single rbtree of member tasks
* sorted by task pointer. As pidlists can be fairly large, allocating one
* per open file is dangerous, so cgroup had to implement shared pool of
* pidlists keyed by cgroup and namespace.
*/
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
/* don't need task_nsproxy() if we're looking at ourself */
struct pid_namespace *ns = task_active_pid_ns(current);
lockdep_assert_held(&cgrp->pidlist_mutex);
list_for_each_entry(l, &cgrp->pidlists, links)
if (l->key.type == type && l->key.ns == ns)
return l;
return NULL;
}
/*
* find the appropriate pidlist for our purpose (given procs vs tasks)
* returns with the lock on that pidlist already held, and takes care
* of the use count, or returns NULL with no locks held if we're out of
* memory.
*/
static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
l = cgroup_pidlist_find(cgrp, type);
if (l)
return l;
/* entry not found; create a new one */
l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
if (!l)
return l;
INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
l->key.type = type;
/* don't need task_nsproxy() if we're looking at ourself */
l->key.ns = get_pid_ns(task_active_pid_ns(current));
l->owner = cgrp;
list_add(&l->links, &cgrp->pidlists);
return l;
}
/**
* cgroup_task_count - count the number of tasks in a cgroup.
* @cgrp: the cgroup in question
*/
int cgroup_task_count(const struct cgroup *cgrp)
{
int count = 0;
struct cgrp_cset_link *link;
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &cgrp->cset_links, cset_link)
count += link->cset->nr_tasks;
spin_unlock_irq(&css_set_lock);
return count;
}
/*
* Load a cgroup's pidarray with either procs' tgids or tasks' pids
*/
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
struct cgroup_pidlist **lp)
{
pid_t *array;
int length;
int pid, n = 0; /* used for populating the array */
struct css_task_iter it;
struct task_struct *tsk;
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
/*
* If cgroup gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
* caller from the case that the additional cgroup users didn't
* show up until sometime later on.
*/
length = cgroup_task_count(cgrp);
array = pidlist_allocate(length);
if (!array)
return -ENOMEM;
/* now, populate the array */
css_task_iter_start(&cgrp->self, &it);
while ((tsk = css_task_iter_next(&it))) {
if (unlikely(n == length))
break;
/* get tgid or pid for procs or tasks file respectively */
if (type == CGROUP_FILE_PROCS)
pid = task_tgid_vnr(tsk);
else
pid = task_pid_vnr(tsk);
if (pid > 0) /* make sure to only use valid results */
array[n++] = pid;
}
css_task_iter_end(&it);
length = n;
/* now sort & (if procs) strip out duplicates */
sort(array, length, sizeof(pid_t), cmppid, NULL);
if (type == CGROUP_FILE_PROCS)
length = pidlist_uniq(array, length);
l = cgroup_pidlist_find_create(cgrp, type);
if (!l) {
pidlist_free(array);
return -ENOMEM;
}
/* store array, freeing old if necessary */
pidlist_free(l->list);
l->list = array;
l->length = length;
*lp = l;
return 0;
}
/*
* seq_file methods for the tasks/procs files. The seq_file position is the
* next pid to display; the seq_file iterator is a pointer to the pid
* in the cgroup->l->list array.
*/
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
{
/*
* Initially we receive a position value that corresponds to
* one more than the last pid shown (or 0 on the first call or
* after a seek to the start). Use a binary-search to find the
* next pid to display, if any
*/
struct kernfs_open_file *of = s->private;
struct cgroup *cgrp = seq_css(s)->cgroup;
struct cgroup_pidlist *l;
enum cgroup_filetype type = seq_cft(s)->private;
int index = 0, pid = *pos;
int *iter, ret;
mutex_lock(&cgrp->pidlist_mutex);
/*
* !NULL @of->priv indicates that this isn't the first start()
* after open. If the matching pidlist is around, we can use that.
* Look for it. Note that @of->priv can't be used directly. It
* could already have been destroyed.
*/
if (of->priv)
of->priv = cgroup_pidlist_find(cgrp, type);
/*
* Either this is the first start() after open or the matching
* pidlist has been destroyed inbetween. Create a new one.
*/
if (!of->priv) {
ret = pidlist_array_load(cgrp, type,
(struct cgroup_pidlist **)&of->priv);
if (ret)
return ERR_PTR(ret);
}
l = of->priv;
if (pid) {
int end = l->length;
while (index < end) {
int mid = (index + end) / 2;
if (l->list[mid] == pid) {
index = mid;
break;
} else if (l->list[mid] <= pid)
index = mid + 1;
else
end = mid;
}
}
/* If we're off the end of the array, we're done */
if (index >= l->length)
return NULL;
/* Update the abstract position to be the actual pid that we found */
iter = l->list + index;
*pos = *iter;
return iter;
}
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
if (l)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
CGROUP_PIDLIST_DESTROY_DELAY);
mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
}
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
pid_t *p = v;
pid_t *end = l->list + l->length;
/*
* Advance to the next pid in the array. If this goes off the
* end, we're done
*/
p++;
if (p >= end) {
return NULL;
} else {
*pos = *p;
return p;
}
}
static int cgroup_pidlist_show(struct seq_file *s, void *v)
{
seq_printf(s, "%d\n", *(int *)v);
return 0;
}
static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
return __cgroup_procs_write(of, buf, nbytes, off, false);
}
static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cgroup *cgrp;
BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
cgrp = cgroup_kn_lock_live(of->kn, false);
if (!cgrp)
return -ENODEV;
spin_lock(&release_agent_path_lock);
strlcpy(cgrp->root->release_agent_path, strstrip(buf),
sizeof(cgrp->root->release_agent_path));
spin_unlock(&release_agent_path_lock);
cgroup_kn_unlock(of->kn);
return nbytes;
}
static int cgroup_release_agent_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
spin_lock(&release_agent_path_lock);
seq_puts(seq, cgrp->root->release_agent_path);
spin_unlock(&release_agent_path_lock);
seq_putc(seq, '\n');
return 0;
}
static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
{
seq_puts(seq, "0\n");
return 0;
}
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return notify_on_release(css->cgroup);
}
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val)
set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
else
clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
return 0;
}
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
}
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
else
clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
return 0;
}
/* cgroup core interface files for the legacy hierarchies */
struct cftype cgroup1_base_files[] = {
{
.name = "cgroup.procs",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_PROCS,
.write = cgroup_procs_write,
},
{
.name = "cgroup.clone_children",
.read_u64 = cgroup_clone_children_read,
.write_u64 = cgroup_clone_children_write,
},
{
.name = "cgroup.sane_behavior",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_sane_behavior_show,
},
{
.name = "tasks",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_TASKS,
.write = cgroup_tasks_write,
},
{
.name = "notify_on_release",
.read_u64 = cgroup_read_notify_on_release,
.write_u64 = cgroup_write_notify_on_release,
},
{
.name = "release_agent",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_release_agent_show,
.write = cgroup_release_agent_write,
.max_write_len = PATH_MAX - 1,
},
{ } /* terminate */
};
/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
struct cgroup_subsys *ss;
int i;
seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
/*
* ideally we don't want subsystems moving around while we do this.
* cgroup_mutex is also necessary to guarantee an atomic snapshot of
* subsys/hierarchy state.
*/
mutex_lock(&cgroup_mutex);
for_each_subsys(ss, i)
seq_printf(m, "%s\t%d\t%d\t%d\n",
ss->legacy_name, ss->root->hierarchy_id,
atomic_read(&ss->root->nr_cgrps),
cgroup_ssid_enabled(i));
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroupstats_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_cgroupstats_show, NULL);
}
const struct file_operations proc_cgroupstats_operations = {
.open = cgroupstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* cgroupstats_build - build and fill cgroupstats
* @stats: cgroupstats to fill information into
* @dentry: A dentry entry belonging to the cgroup for which stats have
* been requested.
*
* Build and fill cgroupstats so that taskstats can export it to user
* space.
*/
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
struct cgroup *cgrp;
struct css_task_iter it;
struct task_struct *tsk;
/* it should be kernfs_node belonging to cgroupfs and is a directory */
if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
kernfs_type(kn) != KERNFS_DIR)
return -EINVAL;
mutex_lock(&cgroup_mutex);
/*
* We aren't being called from kernfs and there's no guarantee on
* @kn->priv's validity. For this and css_tryget_online_from_dir(),
* @kn->priv is RCU safe. Let's do the RCU dancing.
*/
rcu_read_lock();
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
if (!cgrp || cgroup_is_dead(cgrp)) {
rcu_read_unlock();
mutex_unlock(&cgroup_mutex);
return -ENOENT;
}
rcu_read_unlock();
css_task_iter_start(&cgrp->self, &it);
while ((tsk = css_task_iter_next(&it))) {
switch (tsk->state) {
case TASK_RUNNING:
stats->nr_running++;
break;
case TASK_INTERRUPTIBLE:
stats->nr_sleeping++;
break;
case TASK_UNINTERRUPTIBLE:
stats->nr_uninterruptible++;
break;
case TASK_STOPPED:
stats->nr_stopped++;
break;
default:
if (delayacct_is_task_waiting_on_io(tsk))
stats->nr_io_wait++;
break;
}
}
css_task_iter_end(&it);
mutex_unlock(&cgroup_mutex);
return 0;
}
void cgroup1_check_for_release(struct cgroup *cgrp)
{
if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
!css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
schedule_work(&cgrp->release_agent_work);
}
/*
* Notify userspace when a cgroup is released, by running the
* configured release agent with the name of the cgroup (path
* relative to the root of cgroup file system) as the argument.
*
* Most likely, this user command will try to rmdir this cgroup.
*
* This races with the possibility that some other task will be
* attached to this cgroup before it is removed, or that some other
* user task will 'mkdir' a child cgroup of this cgroup. That's ok.
* The presumed 'rmdir' will fail quietly if this cgroup is no longer
* unused, and this cgroup will be reprieved from its death sentence,
* to continue to serve a useful existence. Next time it's released,
* we will get notified again, if it still has 'notify_on_release' set.
*
* The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
* means only wait until the task is successfully execve()'d. The
* separate release agent task is forked by call_usermodehelper(),
* then control in this thread returns here, without waiting for the
* release agent task. We don't bother to wait because the caller of
* this routine has no use for the exit status of the release agent
* task, so no sense holding our caller up for that.
*/
void cgroup1_release_agent(struct work_struct *work)
{
struct cgroup *cgrp =
container_of(work, struct cgroup, release_agent_work);
char *pathbuf = NULL, *agentbuf = NULL;
char *argv[3], *envp[3];
int ret;
mutex_lock(&cgroup_mutex);
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
if (!pathbuf || !agentbuf)
goto out;
spin_lock_irq(&css_set_lock);
ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
spin_unlock_irq(&css_set_lock);
if (ret < 0 || ret >= PATH_MAX)
goto out;
argv[0] = agentbuf;
argv[1] = pathbuf;
argv[2] = NULL;
/* minimal command environment */
envp[0] = "HOME=/";
envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[2] = NULL;
mutex_unlock(&cgroup_mutex);
call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
goto out_free;
out:
mutex_unlock(&cgroup_mutex);
out_free:
kfree(agentbuf);
kfree(pathbuf);
}
/*
* cgroup_rename - Only allow simple rename of directories in place.
*/
static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name_str)
{
struct cgroup *cgrp = kn->priv;
int ret;
if (kernfs_type(kn) != KERNFS_DIR)
return -ENOTDIR;
if (kn->parent != new_parent)
return -EIO;
/*
* We're gonna grab cgroup_mutex which nests outside kernfs
* active_ref. kernfs_rename() doesn't require active_ref
* protection. Break them before grabbing cgroup_mutex.
*/
kernfs_break_active_protection(new_parent);
kernfs_break_active_protection(kn);
mutex_lock(&cgroup_mutex);
ret = kernfs_rename(kn, new_parent, new_name_str);
if (!ret)
trace_cgroup_rename(cgrp);
mutex_unlock(&cgroup_mutex);
kernfs_unbreak_active_protection(kn);
kernfs_unbreak_active_protection(new_parent);
return ret;
}
static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
{
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
struct cgroup_subsys *ss;
int ssid;
for_each_subsys(ss, ssid)
if (root->subsys_mask & (1 << ssid))
seq_show_option(seq, ss->legacy_name, NULL);
if (root->flags & CGRP_ROOT_NOPREFIX)
seq_puts(seq, ",noprefix");
if (root->flags & CGRP_ROOT_XATTR)
seq_puts(seq, ",xattr");
spin_lock(&release_agent_path_lock);
if (strlen(root->release_agent_path))
seq_show_option(seq, "release_agent",
root->release_agent_path);
spin_unlock(&release_agent_path_lock);
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
seq_puts(seq, ",clone_children");
if (strlen(root->name))
seq_show_option(seq, "name", root->name);
return 0;
}
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
{
char *token, *o = data;
bool all_ss = false, one_ss = false;
u16 mask = U16_MAX;
struct cgroup_subsys *ss;
int nr_opts = 0;
int i;
#ifdef CONFIG_CPUSETS
mask = ~((u16)1 << cpuset_cgrp_id);
#endif
memset(opts, 0, sizeof(*opts));
while ((token = strsep(&o, ",")) != NULL) {
nr_opts++;
if (!*token)
return -EINVAL;
if (!strcmp(token, "none")) {
/* Explicitly have no subsystems */
opts->none = true;
continue;
}
if (!strcmp(token, "all")) {
/* Mutually exclusive option 'all' + subsystem name */
if (one_ss)
return -EINVAL;
all_ss = true;
continue;
}
if (!strcmp(token, "noprefix")) {
opts->flags |= CGRP_ROOT_NOPREFIX;
continue;
}
if (!strcmp(token, "clone_children")) {
opts->cpuset_clone_children = true;
continue;
}
if (!strcmp(token, "xattr")) {
opts->flags |= CGRP_ROOT_XATTR;
continue;
}
if (!strncmp(token, "release_agent=", 14)) {
/* Specifying two release agents is forbidden */
if (opts->release_agent)
return -EINVAL;
opts->release_agent =
kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
if (!opts->release_agent)
return -ENOMEM;
continue;
}
if (!strncmp(token, "name=", 5)) {
const char *name = token + 5;
/* Can't specify an empty name */
if (!strlen(name))
return -EINVAL;
/* Must match [\w.-]+ */
for (i = 0; i < strlen(name); i++) {
char c = name[i];
if (isalnum(c))
continue;
if ((c == '.') || (c == '-') || (c == '_'))
continue;
return -EINVAL;
}
/* Specifying two names is forbidden */
if (opts->name)
return -EINVAL;
opts->name = kstrndup(name,
MAX_CGROUP_ROOT_NAMELEN - 1,
GFP_KERNEL);
if (!opts->name)
return -ENOMEM;
continue;
}
for_each_subsys(ss, i) {
if (strcmp(token, ss->legacy_name))
continue;
if (!cgroup_ssid_enabled(i))
continue;
if (cgroup1_ssid_disabled(i))
continue;
/* Mutually exclusive option 'all' + subsystem name */
if (all_ss)
return -EINVAL;
opts->subsys_mask |= (1 << i);
one_ss = true;
break;
}
if (i == CGROUP_SUBSYS_COUNT)
return -ENOENT;
}
/*
* If the 'all' option was specified select all the subsystems,
* otherwise if 'none', 'name=' and a subsystem name options were
* not specified, let's default to 'all'
*/
if (all_ss || (!one_ss && !opts->none && !opts->name))
for_each_subsys(ss, i)
if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
opts->subsys_mask |= (1 << i);
/*
* We either have to specify by name or by subsystems. (So all
* empty hierarchies must have a name).
*/
if (!opts->subsys_mask && !opts->name)
return -EINVAL;
/*
* Option noprefix was introduced just for backward compatibility
* with the old cpuset, so we allow noprefix only if mounting just
* the cpuset subsystem.
*/
if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
return -EINVAL;
/* Can't specify "none" and some subsystems */
if (opts->subsys_mask && opts->none)
return -EINVAL;
return 0;
}
static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
{
int ret = 0;
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
struct cgroup_sb_opts opts;
u16 added_mask, removed_mask;
cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
/* See what subsystems are wanted */
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
task_tgid_nr(current), current->comm);
added_mask = opts.subsys_mask & ~root->subsys_mask;
removed_mask = root->subsys_mask & ~opts.subsys_mask;
/* Don't allow flags or name to change at remount */
if ((opts.flags ^ root->flags) ||
(opts.name && strcmp(opts.name, root->name))) {
pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
opts.flags, opts.name ?: "", root->flags, root->name);
ret = -EINVAL;
goto out_unlock;
}
/* remounting is not allowed for populated hierarchies */
if (!list_empty(&root->cgrp.self.children)) {
ret = -EBUSY;
goto out_unlock;
}
ret = rebind_subsystems(root, added_mask);
if (ret)
goto out_unlock;
WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
if (opts.release_agent) {
spin_lock(&release_agent_path_lock);
strcpy(root->release_agent_path, opts.release_agent);
spin_unlock(&release_agent_path_lock);
}
trace_cgroup_remount(root);
out_unlock:
kfree(opts.release_agent);
kfree(opts.name);
mutex_unlock(&cgroup_mutex);
return ret;
}
struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
.rename = cgroup1_rename,
.show_options = cgroup1_show_options,
.remount_fs = cgroup1_remount,
.mkdir = cgroup_mkdir,
.rmdir = cgroup_rmdir,
.show_path = cgroup_show_path,
};
struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
void *data, unsigned long magic,
struct cgroup_namespace *ns)
{
struct super_block *pinned_sb = NULL;
struct cgroup_sb_opts opts;
struct cgroup_root *root;
struct cgroup_subsys *ss;
struct dentry *dentry;
int i, ret;
bool new_root = false;
cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
/* First find the desired set of subsystems */
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
/*
* Destruction of cgroup root is asynchronous, so subsystems may
* still be dying after the previous unmount. Let's drain the
* dying subsystems. We just need to ensure that the ones
* unmounted previously finish dying and don't care about new ones
* starting. Testing ref liveliness is good enough.
*/
for_each_subsys(ss, i) {
if (!(opts.subsys_mask & (1 << i)) ||
ss->root == &cgrp_dfl_root)
continue;
if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
mutex_unlock(&cgroup_mutex);
msleep(10);
ret = restart_syscall();
goto out_free;
}
cgroup_put(&ss->root->cgrp);
}
for_each_root(root) {
bool name_match = false;
if (root == &cgrp_dfl_root)
continue;
/*
* If we asked for a name then it must match. Also, if
* name matches but sybsys_mask doesn't, we should fail.
* Remember whether name matched.
*/
if (opts.name) {
if (strcmp(opts.name, root->name))
continue;
name_match = true;
}
/*
* If we asked for subsystems (or explicitly for no
* subsystems) then they must match.
*/
if ((opts.subsys_mask || opts.none) &&
(opts.subsys_mask != root->subsys_mask)) {
if (!name_match)
continue;
ret = -EBUSY;
goto out_unlock;
}
if (root->flags ^ opts.flags)
pr_warn("new mount options do not match the existing superblock, will be ignored\n");
/*
* We want to reuse @root whose lifetime is governed by its
* ->cgrp. Let's check whether @root is alive and keep it
* that way. As cgroup_kill_sb() can happen anytime, we
* want to block it by pinning the sb so that @root doesn't
* get killed before mount is complete.
*
* With the sb pinned, tryget_live can reliably indicate
* whether @root can be reused. If it's being killed,
* drain it. We can use wait_queue for the wait but this
* path is super cold. Let's just sleep a bit and retry.
*/
pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
if (IS_ERR(pinned_sb) ||
!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
mutex_unlock(&cgroup_mutex);
if (!IS_ERR_OR_NULL(pinned_sb))
deactivate_super(pinned_sb);
msleep(10);
ret = restart_syscall();
goto out_free;
}
ret = 0;
goto out_unlock;
}
/*
* No such thing, create a new one. name= matching without subsys
* specification is allowed for already existing hierarchies but we
* can't create new one without subsys specification.
*/
if (!opts.subsys_mask && !opts.none) {
ret = -EINVAL;
goto out_unlock;
}
/* Hierarchies may only be created in the initial cgroup namespace. */
if (ns != &init_cgroup_ns) {
ret = -EPERM;
goto out_unlock;
}
root = kzalloc(sizeof(*root), GFP_KERNEL);
if (!root) {
ret = -ENOMEM;
goto out_unlock;
}
new_root = true;
init_cgroup_root(root, &opts);
ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
if (ret)
cgroup_free_root(root);
out_unlock:
mutex_unlock(&cgroup_mutex);
out_free:
kfree(opts.release_agent);
kfree(opts.name);
if (ret)
return ERR_PTR(ret);
dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
CGROUP_SUPER_MAGIC, ns);
/*
* There's a race window after we release cgroup_mutex and before
* allocating a superblock. Make sure a concurrent process won't
* be able to re-use the root during this window by delaying the
* initialization of root refcnt.
*/
if (new_root) {
mutex_lock(&cgroup_mutex);
percpu_ref_reinit(&root->cgrp.self.refcnt);
mutex_unlock(&cgroup_mutex);
}
/*
* If @pinned_sb, we're reusing an existing root and holding an
* extra ref on its sb. Mount is complete. Put the extra ref.
*/
if (pinned_sb)
deactivate_super(pinned_sb);
return dentry;
}
static int __init cgroup1_wq_init(void)
{
/*
* Used to destroy pidlists and separate to serve as flush domain.
* Cap @max_active to 1 too.
*/
cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
0, 1);
BUG_ON(!cgroup_pidlist_destroy_wq);
return 0;
}
core_initcall(cgroup1_wq_init);
static int __init cgroup_no_v1(char *str)
{
struct cgroup_subsys *ss;
char *token;
int i;
while ((token = strsep(&str, ",")) != NULL) {
if (!*token)
continue;
if (!strcmp(token, "all")) {
cgroup_no_v1_mask = U16_MAX;
break;
}
for_each_subsys(ss, i) {
if (strcmp(token, ss->name) &&
strcmp(token, ss->legacy_name))
continue;
cgroup_no_v1_mask |= 1 << i;
}
}
return 1;
}
__setup("cgroup_no_v1=", cgroup_no_v1);