1003 строки
24 KiB
C
1003 строки
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/kvm/guest.c:
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/bits.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/module.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/string.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <kvm/arm_psci.h>
|
|
#include <asm/cputype.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/kvm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/sigcontext.h>
|
|
|
|
#include "trace.h"
|
|
|
|
struct kvm_stats_debugfs_item debugfs_entries[] = {
|
|
VCPU_STAT("halt_successful_poll", halt_successful_poll),
|
|
VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
|
|
VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
|
|
VCPU_STAT("halt_wakeup", halt_wakeup),
|
|
VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
|
|
VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
|
|
VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
|
|
VCPU_STAT("mmio_exit_user", mmio_exit_user),
|
|
VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
|
|
VCPU_STAT("exits", exits),
|
|
VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
|
|
VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
|
|
{ NULL }
|
|
};
|
|
|
|
static bool core_reg_offset_is_vreg(u64 off)
|
|
{
|
|
return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
|
|
off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
|
|
}
|
|
|
|
static u64 core_reg_offset_from_id(u64 id)
|
|
{
|
|
return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
|
|
}
|
|
|
|
static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
|
|
{
|
|
int size;
|
|
|
|
switch (off) {
|
|
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
|
|
KVM_REG_ARM_CORE_REG(regs.regs[30]):
|
|
case KVM_REG_ARM_CORE_REG(regs.sp):
|
|
case KVM_REG_ARM_CORE_REG(regs.pc):
|
|
case KVM_REG_ARM_CORE_REG(regs.pstate):
|
|
case KVM_REG_ARM_CORE_REG(sp_el1):
|
|
case KVM_REG_ARM_CORE_REG(elr_el1):
|
|
case KVM_REG_ARM_CORE_REG(spsr[0]) ...
|
|
KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
|
|
size = sizeof(__u64);
|
|
break;
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
|
|
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
|
|
size = sizeof(__uint128_t);
|
|
break;
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
|
|
size = sizeof(__u32);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!IS_ALIGNED(off, size / sizeof(__u32)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The KVM_REG_ARM64_SVE regs must be used instead of
|
|
* KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
|
|
* SVE-enabled vcpus:
|
|
*/
|
|
if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
|
|
return -EINVAL;
|
|
|
|
return size;
|
|
}
|
|
|
|
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
u64 off = core_reg_offset_from_id(reg->id);
|
|
int size = core_reg_size_from_offset(vcpu, off);
|
|
|
|
if (size < 0)
|
|
return NULL;
|
|
|
|
if (KVM_REG_SIZE(reg->id) != size)
|
|
return NULL;
|
|
|
|
switch (off) {
|
|
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
|
|
KVM_REG_ARM_CORE_REG(regs.regs[30]):
|
|
off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
|
|
off /= 2;
|
|
return &vcpu->arch.ctxt.regs.regs[off];
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.sp):
|
|
return &vcpu->arch.ctxt.regs.sp;
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.pc):
|
|
return &vcpu->arch.ctxt.regs.pc;
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.pstate):
|
|
return &vcpu->arch.ctxt.regs.pstate;
|
|
|
|
case KVM_REG_ARM_CORE_REG(sp_el1):
|
|
return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
|
|
|
|
case KVM_REG_ARM_CORE_REG(elr_el1):
|
|
return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
|
|
return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
|
|
return &vcpu->arch.ctxt.spsr_abt;
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
|
|
return &vcpu->arch.ctxt.spsr_und;
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
|
|
return &vcpu->arch.ctxt.spsr_irq;
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
|
|
return &vcpu->arch.ctxt.spsr_fiq;
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
|
|
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
|
|
off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
|
|
off /= 4;
|
|
return &vcpu->arch.ctxt.fp_regs.vregs[off];
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
|
|
return &vcpu->arch.ctxt.fp_regs.fpsr;
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
|
|
return &vcpu->arch.ctxt.fp_regs.fpcr;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
/*
|
|
* Because the kvm_regs structure is a mix of 32, 64 and
|
|
* 128bit fields, we index it as if it was a 32bit
|
|
* array. Hence below, nr_regs is the number of entries, and
|
|
* off the index in the "array".
|
|
*/
|
|
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
|
|
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
|
|
void *addr;
|
|
u32 off;
|
|
|
|
/* Our ID is an index into the kvm_regs struct. */
|
|
off = core_reg_offset_from_id(reg->id);
|
|
if (off >= nr_regs ||
|
|
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
|
|
return -ENOENT;
|
|
|
|
addr = core_reg_addr(vcpu, reg);
|
|
if (!addr)
|
|
return -EINVAL;
|
|
|
|
if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
|
|
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
|
|
__uint128_t tmp;
|
|
void *valp = &tmp, *addr;
|
|
u64 off;
|
|
int err = 0;
|
|
|
|
/* Our ID is an index into the kvm_regs struct. */
|
|
off = core_reg_offset_from_id(reg->id);
|
|
if (off >= nr_regs ||
|
|
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
|
|
return -ENOENT;
|
|
|
|
addr = core_reg_addr(vcpu, reg);
|
|
if (!addr)
|
|
return -EINVAL;
|
|
|
|
if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
|
|
u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
|
|
switch (mode) {
|
|
case PSR_AA32_MODE_USR:
|
|
if (!system_supports_32bit_el0())
|
|
return -EINVAL;
|
|
break;
|
|
case PSR_AA32_MODE_FIQ:
|
|
case PSR_AA32_MODE_IRQ:
|
|
case PSR_AA32_MODE_SVC:
|
|
case PSR_AA32_MODE_ABT:
|
|
case PSR_AA32_MODE_UND:
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
|
return -EINVAL;
|
|
break;
|
|
case PSR_MODE_EL0t:
|
|
case PSR_MODE_EL1t:
|
|
case PSR_MODE_EL1h:
|
|
if (vcpu_el1_is_32bit(vcpu))
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
memcpy(addr, valp, KVM_REG_SIZE(reg->id));
|
|
|
|
if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
|
|
int i, nr_reg;
|
|
|
|
switch (*vcpu_cpsr(vcpu)) {
|
|
/*
|
|
* Either we are dealing with user mode, and only the
|
|
* first 15 registers (+ PC) must be narrowed to 32bit.
|
|
* AArch32 r0-r14 conveniently map to AArch64 x0-x14.
|
|
*/
|
|
case PSR_AA32_MODE_USR:
|
|
case PSR_AA32_MODE_SYS:
|
|
nr_reg = 15;
|
|
break;
|
|
|
|
/*
|
|
* Otherwide, this is a priviledged mode, and *all* the
|
|
* registers must be narrowed to 32bit.
|
|
*/
|
|
default:
|
|
nr_reg = 31;
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < nr_reg; i++)
|
|
vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
|
|
|
|
*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
|
|
}
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
|
|
#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
|
|
#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
|
|
|
|
static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
unsigned int max_vq, vq;
|
|
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
|
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
return -ENOENT;
|
|
|
|
if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
|
|
return -EINVAL;
|
|
|
|
memset(vqs, 0, sizeof(vqs));
|
|
|
|
max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
|
|
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
|
|
if (sve_vq_available(vq))
|
|
vqs[vq_word(vq)] |= vq_mask(vq);
|
|
|
|
if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
unsigned int max_vq, vq;
|
|
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
|
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
return -ENOENT;
|
|
|
|
if (kvm_arm_vcpu_sve_finalized(vcpu))
|
|
return -EPERM; /* too late! */
|
|
|
|
if (WARN_ON(vcpu->arch.sve_state))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
|
|
return -EFAULT;
|
|
|
|
max_vq = 0;
|
|
for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
|
|
if (vq_present(vqs, vq))
|
|
max_vq = vq;
|
|
|
|
if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Vector lengths supported by the host can't currently be
|
|
* hidden from the guest individually: instead we can only set a
|
|
* maximum via ZCR_EL2.LEN. So, make sure the available vector
|
|
* lengths match the set requested exactly up to the requested
|
|
* maximum:
|
|
*/
|
|
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
|
|
if (vq_present(vqs, vq) != sve_vq_available(vq))
|
|
return -EINVAL;
|
|
|
|
/* Can't run with no vector lengths at all: */
|
|
if (max_vq < SVE_VQ_MIN)
|
|
return -EINVAL;
|
|
|
|
/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
|
|
vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SVE_REG_SLICE_SHIFT 0
|
|
#define SVE_REG_SLICE_BITS 5
|
|
#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
|
|
#define SVE_REG_ID_BITS 5
|
|
|
|
#define SVE_REG_SLICE_MASK \
|
|
GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
|
|
SVE_REG_SLICE_SHIFT)
|
|
#define SVE_REG_ID_MASK \
|
|
GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
|
|
|
|
#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
|
|
|
|
#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
|
|
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
|
|
|
|
/*
|
|
* Number of register slices required to cover each whole SVE register.
|
|
* NOTE: Only the first slice every exists, for now.
|
|
* If you are tempted to modify this, you must also rework sve_reg_to_region()
|
|
* to match:
|
|
*/
|
|
#define vcpu_sve_slices(vcpu) 1
|
|
|
|
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
|
|
struct sve_state_reg_region {
|
|
unsigned int koffset; /* offset into sve_state in kernel memory */
|
|
unsigned int klen; /* length in kernel memory */
|
|
unsigned int upad; /* extra trailing padding in user memory */
|
|
};
|
|
|
|
/*
|
|
* Validate SVE register ID and get sanitised bounds for user/kernel SVE
|
|
* register copy
|
|
*/
|
|
static int sve_reg_to_region(struct sve_state_reg_region *region,
|
|
struct kvm_vcpu *vcpu,
|
|
const struct kvm_one_reg *reg)
|
|
{
|
|
/* reg ID ranges for Z- registers */
|
|
const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
|
|
const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
|
|
SVE_NUM_SLICES - 1);
|
|
|
|
/* reg ID ranges for P- registers and FFR (which are contiguous) */
|
|
const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
|
|
const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
|
|
|
|
unsigned int vq;
|
|
unsigned int reg_num;
|
|
|
|
unsigned int reqoffset, reqlen; /* User-requested offset and length */
|
|
unsigned int maxlen; /* Maximum permitted length */
|
|
|
|
size_t sve_state_size;
|
|
|
|
const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
|
|
SVE_NUM_SLICES - 1);
|
|
|
|
/* Verify that the P-regs and FFR really do have contiguous IDs: */
|
|
BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
|
|
|
|
/* Verify that we match the UAPI header: */
|
|
BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
|
|
|
|
reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
|
|
|
|
if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
|
|
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
|
|
return -ENOENT;
|
|
|
|
vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
|
|
|
|
reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
|
|
SVE_SIG_REGS_OFFSET;
|
|
reqlen = KVM_SVE_ZREG_SIZE;
|
|
maxlen = SVE_SIG_ZREG_SIZE(vq);
|
|
} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
|
|
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
|
|
return -ENOENT;
|
|
|
|
vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
|
|
|
|
reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
|
|
SVE_SIG_REGS_OFFSET;
|
|
reqlen = KVM_SVE_PREG_SIZE;
|
|
maxlen = SVE_SIG_PREG_SIZE(vq);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
sve_state_size = vcpu_sve_state_size(vcpu);
|
|
if (WARN_ON(!sve_state_size))
|
|
return -EINVAL;
|
|
|
|
region->koffset = array_index_nospec(reqoffset, sve_state_size);
|
|
region->klen = min(maxlen, reqlen);
|
|
region->upad = reqlen - region->klen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
int ret;
|
|
struct sve_state_reg_region region;
|
|
char __user *uptr = (char __user *)reg->addr;
|
|
|
|
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
|
|
if (reg->id == KVM_REG_ARM64_SVE_VLS)
|
|
return get_sve_vls(vcpu, reg);
|
|
|
|
/* Try to interpret reg ID as an architectural SVE register... */
|
|
ret = sve_reg_to_region(®ion, vcpu, reg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!kvm_arm_vcpu_sve_finalized(vcpu))
|
|
return -EPERM;
|
|
|
|
if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
|
|
region.klen) ||
|
|
clear_user(uptr + region.klen, region.upad))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
int ret;
|
|
struct sve_state_reg_region region;
|
|
const char __user *uptr = (const char __user *)reg->addr;
|
|
|
|
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
|
|
if (reg->id == KVM_REG_ARM64_SVE_VLS)
|
|
return set_sve_vls(vcpu, reg);
|
|
|
|
/* Try to interpret reg ID as an architectural SVE register... */
|
|
ret = sve_reg_to_region(®ion, vcpu, reg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!kvm_arm_vcpu_sve_finalized(vcpu))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
|
|
region.klen))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
|
|
u64 __user *uindices)
|
|
{
|
|
unsigned int i;
|
|
int n = 0;
|
|
|
|
for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
|
|
u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
|
|
int size = core_reg_size_from_offset(vcpu, i);
|
|
|
|
if (size < 0)
|
|
continue;
|
|
|
|
switch (size) {
|
|
case sizeof(__u32):
|
|
reg |= KVM_REG_SIZE_U32;
|
|
break;
|
|
|
|
case sizeof(__u64):
|
|
reg |= KVM_REG_SIZE_U64;
|
|
break;
|
|
|
|
case sizeof(__uint128_t):
|
|
reg |= KVM_REG_SIZE_U128;
|
|
break;
|
|
|
|
default:
|
|
WARN_ON(1);
|
|
continue;
|
|
}
|
|
|
|
if (uindices) {
|
|
if (put_user(reg, uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
|
|
{
|
|
return copy_core_reg_indices(vcpu, NULL);
|
|
}
|
|
|
|
/**
|
|
* ARM64 versions of the TIMER registers, always available on arm64
|
|
*/
|
|
|
|
#define NUM_TIMER_REGS 3
|
|
|
|
static bool is_timer_reg(u64 index)
|
|
{
|
|
switch (index) {
|
|
case KVM_REG_ARM_TIMER_CTL:
|
|
case KVM_REG_ARM_TIMER_CNT:
|
|
case KVM_REG_ARM_TIMER_CVAL:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
|
|
{
|
|
if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
void __user *uaddr = (void __user *)(long)reg->addr;
|
|
u64 val;
|
|
int ret;
|
|
|
|
ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
|
|
if (ret != 0)
|
|
return -EFAULT;
|
|
|
|
return kvm_arm_timer_set_reg(vcpu, reg->id, val);
|
|
}
|
|
|
|
static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
void __user *uaddr = (void __user *)(long)reg->addr;
|
|
u64 val;
|
|
|
|
val = kvm_arm_timer_get_reg(vcpu, reg->id);
|
|
return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
|
|
}
|
|
|
|
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
|
|
{
|
|
const unsigned int slices = vcpu_sve_slices(vcpu);
|
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
return 0;
|
|
|
|
/* Policed by KVM_GET_REG_LIST: */
|
|
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
|
|
|
|
return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
|
|
+ 1; /* KVM_REG_ARM64_SVE_VLS */
|
|
}
|
|
|
|
static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
|
|
u64 __user *uindices)
|
|
{
|
|
const unsigned int slices = vcpu_sve_slices(vcpu);
|
|
u64 reg;
|
|
unsigned int i, n;
|
|
int num_regs = 0;
|
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
return 0;
|
|
|
|
/* Policed by KVM_GET_REG_LIST: */
|
|
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
|
|
|
|
/*
|
|
* Enumerate this first, so that userspace can save/restore in
|
|
* the order reported by KVM_GET_REG_LIST:
|
|
*/
|
|
reg = KVM_REG_ARM64_SVE_VLS;
|
|
if (put_user(reg, uindices++))
|
|
return -EFAULT;
|
|
++num_regs;
|
|
|
|
for (i = 0; i < slices; i++) {
|
|
for (n = 0; n < SVE_NUM_ZREGS; n++) {
|
|
reg = KVM_REG_ARM64_SVE_ZREG(n, i);
|
|
if (put_user(reg, uindices++))
|
|
return -EFAULT;
|
|
num_regs++;
|
|
}
|
|
|
|
for (n = 0; n < SVE_NUM_PREGS; n++) {
|
|
reg = KVM_REG_ARM64_SVE_PREG(n, i);
|
|
if (put_user(reg, uindices++))
|
|
return -EFAULT;
|
|
num_regs++;
|
|
}
|
|
|
|
reg = KVM_REG_ARM64_SVE_FFR(i);
|
|
if (put_user(reg, uindices++))
|
|
return -EFAULT;
|
|
num_regs++;
|
|
}
|
|
|
|
return num_regs;
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
|
|
*
|
|
* This is for all registers.
|
|
*/
|
|
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long res = 0;
|
|
|
|
res += num_core_regs(vcpu);
|
|
res += num_sve_regs(vcpu);
|
|
res += kvm_arm_num_sys_reg_descs(vcpu);
|
|
res += kvm_arm_get_fw_num_regs(vcpu);
|
|
res += NUM_TIMER_REGS;
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_copy_reg_indices - get indices of all registers.
|
|
*
|
|
* We do core registers right here, then we append system regs.
|
|
*/
|
|
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
|
|
{
|
|
int ret;
|
|
|
|
ret = copy_core_reg_indices(vcpu, uindices);
|
|
if (ret < 0)
|
|
return ret;
|
|
uindices += ret;
|
|
|
|
ret = copy_sve_reg_indices(vcpu, uindices);
|
|
if (ret < 0)
|
|
return ret;
|
|
uindices += ret;
|
|
|
|
ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
|
|
if (ret < 0)
|
|
return ret;
|
|
uindices += kvm_arm_get_fw_num_regs(vcpu);
|
|
|
|
ret = copy_timer_indices(vcpu, uindices);
|
|
if (ret < 0)
|
|
return ret;
|
|
uindices += NUM_TIMER_REGS;
|
|
|
|
return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
|
|
}
|
|
|
|
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
/* We currently use nothing arch-specific in upper 32 bits */
|
|
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
|
|
return -EINVAL;
|
|
|
|
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
|
|
case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
|
|
case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
|
|
case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
|
|
}
|
|
|
|
if (is_timer_reg(reg->id))
|
|
return get_timer_reg(vcpu, reg);
|
|
|
|
return kvm_arm_sys_reg_get_reg(vcpu, reg);
|
|
}
|
|
|
|
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
/* We currently use nothing arch-specific in upper 32 bits */
|
|
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
|
|
return -EINVAL;
|
|
|
|
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
|
|
case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
|
|
case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
|
|
case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
|
|
}
|
|
|
|
if (is_timer_reg(reg->id))
|
|
return set_timer_reg(vcpu, reg);
|
|
|
|
return kvm_arm_sys_reg_set_reg(vcpu, reg);
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
|
|
events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
|
|
|
|
if (events->exception.serror_pending && events->exception.serror_has_esr)
|
|
events->exception.serror_esr = vcpu_get_vsesr(vcpu);
|
|
|
|
/*
|
|
* We never return a pending ext_dabt here because we deliver it to
|
|
* the virtual CPU directly when setting the event and it's no longer
|
|
* 'pending' at this point.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
bool serror_pending = events->exception.serror_pending;
|
|
bool has_esr = events->exception.serror_has_esr;
|
|
bool ext_dabt_pending = events->exception.ext_dabt_pending;
|
|
|
|
if (serror_pending && has_esr) {
|
|
if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
|
|
return -EINVAL;
|
|
|
|
if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
|
|
kvm_set_sei_esr(vcpu, events->exception.serror_esr);
|
|
else
|
|
return -EINVAL;
|
|
} else if (serror_pending) {
|
|
kvm_inject_vabt(vcpu);
|
|
}
|
|
|
|
if (ext_dabt_pending)
|
|
kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __attribute_const__ kvm_target_cpu(void)
|
|
{
|
|
unsigned long implementor = read_cpuid_implementor();
|
|
unsigned long part_number = read_cpuid_part_number();
|
|
|
|
switch (implementor) {
|
|
case ARM_CPU_IMP_ARM:
|
|
switch (part_number) {
|
|
case ARM_CPU_PART_AEM_V8:
|
|
return KVM_ARM_TARGET_AEM_V8;
|
|
case ARM_CPU_PART_FOUNDATION:
|
|
return KVM_ARM_TARGET_FOUNDATION_V8;
|
|
case ARM_CPU_PART_CORTEX_A53:
|
|
return KVM_ARM_TARGET_CORTEX_A53;
|
|
case ARM_CPU_PART_CORTEX_A57:
|
|
return KVM_ARM_TARGET_CORTEX_A57;
|
|
}
|
|
break;
|
|
case ARM_CPU_IMP_APM:
|
|
switch (part_number) {
|
|
case APM_CPU_PART_POTENZA:
|
|
return KVM_ARM_TARGET_XGENE_POTENZA;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Return a default generic target */
|
|
return KVM_ARM_TARGET_GENERIC_V8;
|
|
}
|
|
|
|
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
|
|
{
|
|
int target = kvm_target_cpu();
|
|
|
|
if (target < 0)
|
|
return -ENODEV;
|
|
|
|
memset(init, 0, sizeof(*init));
|
|
|
|
/*
|
|
* For now, we don't return any features.
|
|
* In future, we might use features to return target
|
|
* specific features available for the preferred
|
|
* target type.
|
|
*/
|
|
init->target = (__u32)target;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
|
|
struct kvm_translation *tr)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
|
|
KVM_GUESTDBG_USE_SW_BP | \
|
|
KVM_GUESTDBG_USE_HW | \
|
|
KVM_GUESTDBG_SINGLESTEP)
|
|
|
|
/**
|
|
* kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
|
|
* @kvm: pointer to the KVM struct
|
|
* @kvm_guest_debug: the ioctl data buffer
|
|
*
|
|
* This sets up and enables the VM for guest debugging. Userspace
|
|
* passes in a control flag to enable different debug types and
|
|
* potentially other architecture specific information in the rest of
|
|
* the structure.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
|
|
struct kvm_guest_debug *dbg)
|
|
{
|
|
int ret = 0;
|
|
|
|
trace_kvm_set_guest_debug(vcpu, dbg->control);
|
|
|
|
if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (dbg->control & KVM_GUESTDBG_ENABLE) {
|
|
vcpu->guest_debug = dbg->control;
|
|
|
|
/* Hardware assisted Break and Watch points */
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
|
|
vcpu->arch.external_debug_state = dbg->arch;
|
|
}
|
|
|
|
} else {
|
|
/* If not enabled clear all flags */
|
|
vcpu->guest_debug = 0;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret;
|
|
|
|
switch (attr->group) {
|
|
case KVM_ARM_VCPU_PMU_V3_CTRL:
|
|
ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_CTRL:
|
|
ret = kvm_arm_timer_set_attr(vcpu, attr);
|
|
break;
|
|
case KVM_ARM_VCPU_PVTIME_CTRL:
|
|
ret = kvm_arm_pvtime_set_attr(vcpu, attr);
|
|
break;
|
|
default:
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret;
|
|
|
|
switch (attr->group) {
|
|
case KVM_ARM_VCPU_PMU_V3_CTRL:
|
|
ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_CTRL:
|
|
ret = kvm_arm_timer_get_attr(vcpu, attr);
|
|
break;
|
|
case KVM_ARM_VCPU_PVTIME_CTRL:
|
|
ret = kvm_arm_pvtime_get_attr(vcpu, attr);
|
|
break;
|
|
default:
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret;
|
|
|
|
switch (attr->group) {
|
|
case KVM_ARM_VCPU_PMU_V3_CTRL:
|
|
ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_CTRL:
|
|
ret = kvm_arm_timer_has_attr(vcpu, attr);
|
|
break;
|
|
case KVM_ARM_VCPU_PVTIME_CTRL:
|
|
ret = kvm_arm_pvtime_has_attr(vcpu, attr);
|
|
break;
|
|
default:
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|