731 строка
20 KiB
C
731 строка
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* aes-ce-glue.c - wrapper code for ARMv8 AES
|
|
*
|
|
* Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <asm/hwcap.h>
|
|
#include <asm/neon.h>
|
|
#include <asm/simd.h>
|
|
#include <asm/unaligned.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/ctr.h>
|
|
#include <crypto/internal/simd.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <linux/module.h>
|
|
#include <crypto/xts.h>
|
|
|
|
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
|
|
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
/* defined in aes-ce-core.S */
|
|
asmlinkage u32 ce_aes_sub(u32 input);
|
|
asmlinkage void ce_aes_invert(void *dst, void *src);
|
|
|
|
asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks);
|
|
asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks);
|
|
|
|
asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks, u8 iv[]);
|
|
asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks, u8 iv[]);
|
|
asmlinkage void ce_aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 const iv[]);
|
|
asmlinkage void ce_aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 const iv[]);
|
|
|
|
asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks, u8 ctr[]);
|
|
|
|
asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int bytes, u8 iv[],
|
|
u32 const rk2[], int first);
|
|
asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int bytes, u8 iv[],
|
|
u32 const rk2[], int first);
|
|
|
|
struct aes_block {
|
|
u8 b[AES_BLOCK_SIZE];
|
|
};
|
|
|
|
static int num_rounds(struct crypto_aes_ctx *ctx)
|
|
{
|
|
/*
|
|
* # of rounds specified by AES:
|
|
* 128 bit key 10 rounds
|
|
* 192 bit key 12 rounds
|
|
* 256 bit key 14 rounds
|
|
* => n byte key => 6 + (n/4) rounds
|
|
*/
|
|
return 6 + ctx->key_length / 4;
|
|
}
|
|
|
|
static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
/*
|
|
* The AES key schedule round constants
|
|
*/
|
|
static u8 const rcon[] = {
|
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
|
|
};
|
|
|
|
u32 kwords = key_len / sizeof(u32);
|
|
struct aes_block *key_enc, *key_dec;
|
|
int i, j;
|
|
|
|
if (key_len != AES_KEYSIZE_128 &&
|
|
key_len != AES_KEYSIZE_192 &&
|
|
key_len != AES_KEYSIZE_256)
|
|
return -EINVAL;
|
|
|
|
ctx->key_length = key_len;
|
|
for (i = 0; i < kwords; i++)
|
|
ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
|
|
|
|
kernel_neon_begin();
|
|
for (i = 0; i < sizeof(rcon); i++) {
|
|
u32 *rki = ctx->key_enc + (i * kwords);
|
|
u32 *rko = rki + kwords;
|
|
|
|
rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
|
|
rko[0] = rko[0] ^ rki[0] ^ rcon[i];
|
|
rko[1] = rko[0] ^ rki[1];
|
|
rko[2] = rko[1] ^ rki[2];
|
|
rko[3] = rko[2] ^ rki[3];
|
|
|
|
if (key_len == AES_KEYSIZE_192) {
|
|
if (i >= 7)
|
|
break;
|
|
rko[4] = rko[3] ^ rki[4];
|
|
rko[5] = rko[4] ^ rki[5];
|
|
} else if (key_len == AES_KEYSIZE_256) {
|
|
if (i >= 6)
|
|
break;
|
|
rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
|
|
rko[5] = rko[4] ^ rki[5];
|
|
rko[6] = rko[5] ^ rki[6];
|
|
rko[7] = rko[6] ^ rki[7];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate the decryption keys for the Equivalent Inverse Cipher.
|
|
* This involves reversing the order of the round keys, and applying
|
|
* the Inverse Mix Columns transformation on all but the first and
|
|
* the last one.
|
|
*/
|
|
key_enc = (struct aes_block *)ctx->key_enc;
|
|
key_dec = (struct aes_block *)ctx->key_dec;
|
|
j = num_rounds(ctx);
|
|
|
|
key_dec[0] = key_enc[j];
|
|
for (i = 1, j--; j > 0; i++, j--)
|
|
ce_aes_invert(key_dec + i, key_enc + j);
|
|
key_dec[i] = key_enc[0];
|
|
|
|
kernel_neon_end();
|
|
return 0;
|
|
}
|
|
|
|
static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
return ce_aes_expandkey(ctx, in_key, key_len);
|
|
}
|
|
|
|
struct crypto_aes_xts_ctx {
|
|
struct crypto_aes_ctx key1;
|
|
struct crypto_aes_ctx __aligned(8) key2;
|
|
};
|
|
|
|
static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ret = xts_verify_key(tfm, in_key, key_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
|
|
if (!ret)
|
|
ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
|
|
key_len / 2);
|
|
return ret;
|
|
}
|
|
|
|
static int ecb_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, num_rounds(ctx), blocks);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int ecb_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, num_rounds(ctx), blocks);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int cbc_encrypt_walk(struct skcipher_request *req,
|
|
struct skcipher_walk *walk)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
unsigned int blocks;
|
|
int err = 0;
|
|
|
|
while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
ce_aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
|
|
ctx->key_enc, num_rounds(ctx), blocks,
|
|
walk->iv);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
return cbc_encrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int cbc_decrypt_walk(struct skcipher_request *req,
|
|
struct skcipher_walk *walk)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
unsigned int blocks;
|
|
int err = 0;
|
|
|
|
while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
ce_aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
|
|
ctx->key_dec, num_rounds(ctx), blocks,
|
|
walk->iv);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
return cbc_decrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int cts_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
struct scatterlist *src = req->src, *dst = req->dst;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
|
|
if (req->cryptlen <= AES_BLOCK_SIZE) {
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
cbc_blocks = 1;
|
|
}
|
|
|
|
if (cbc_blocks > 0) {
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false) ?:
|
|
cbc_encrypt_walk(&subreq, &walk);
|
|
if (err)
|
|
return err;
|
|
|
|
if (req->cryptlen == AES_BLOCK_SIZE)
|
|
return 0;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst,
|
|
subreq.cryptlen);
|
|
}
|
|
|
|
/* handle ciphertext stealing */
|
|
skcipher_request_set_crypt(&subreq, src, dst,
|
|
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
ce_aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, num_rounds(ctx), walk.nbytes,
|
|
walk.iv);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int cts_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
struct scatterlist *src = req->src, *dst = req->dst;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
|
|
if (req->cryptlen <= AES_BLOCK_SIZE) {
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
cbc_blocks = 1;
|
|
}
|
|
|
|
if (cbc_blocks > 0) {
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false) ?:
|
|
cbc_decrypt_walk(&subreq, &walk);
|
|
if (err)
|
|
return err;
|
|
|
|
if (req->cryptlen == AES_BLOCK_SIZE)
|
|
return 0;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst,
|
|
subreq.cryptlen);
|
|
}
|
|
|
|
/* handle ciphertext stealing */
|
|
skcipher_request_set_crypt(&subreq, src, dst,
|
|
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
ce_aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, num_rounds(ctx), walk.nbytes,
|
|
walk.iv);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int ctr_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk walk;
|
|
int err, blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, num_rounds(ctx), blocks,
|
|
walk.iv);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
if (walk.nbytes) {
|
|
u8 __aligned(8) tail[AES_BLOCK_SIZE];
|
|
unsigned int nbytes = walk.nbytes;
|
|
u8 *tdst = walk.dst.virt.addr;
|
|
u8 *tsrc = walk.src.virt.addr;
|
|
|
|
/*
|
|
* Tell aes_ctr_encrypt() to process a tail block.
|
|
*/
|
|
blocks = -1;
|
|
|
|
kernel_neon_begin();
|
|
ce_aes_ctr_encrypt(tail, NULL, ctx->key_enc, num_rounds(ctx),
|
|
blocks, walk.iv);
|
|
kernel_neon_end();
|
|
crypto_xor_cpy(tdst, tsrc, tail, nbytes);
|
|
err = skcipher_walk_done(&walk, 0);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
|
|
{
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Temporarily disable interrupts to avoid races where
|
|
* cachelines are evicted when the CPU is interrupted
|
|
* to do something else.
|
|
*/
|
|
local_irq_save(flags);
|
|
aes_encrypt(ctx, dst, src);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int ctr_encrypt_sync(struct skcipher_request *req)
|
|
{
|
|
if (!crypto_simd_usable())
|
|
return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
|
|
|
|
return ctr_encrypt(req);
|
|
}
|
|
|
|
static int xts_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, first, rounds = num_rounds(&ctx->key1);
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct scatterlist *src, *dst;
|
|
struct skcipher_walk walk;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
|
|
int xts_blocks = DIV_ROUND_UP(req->cryptlen,
|
|
AES_BLOCK_SIZE) - 2;
|
|
|
|
skcipher_walk_abort(&walk);
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq,
|
|
skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
xts_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
req = &subreq;
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
} else {
|
|
tail = 0;
|
|
}
|
|
|
|
for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
|
|
int nbytes = walk.nbytes;
|
|
|
|
if (walk.nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_enc, rounds, nbytes, walk.iv,
|
|
ctx->key2.key_enc, first);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
if (err || likely(!tail))
|
|
return err;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
|
|
|
|
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_enc, rounds, walk.nbytes, walk.iv,
|
|
ctx->key2.key_enc, first);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int xts_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, first, rounds = num_rounds(&ctx->key1);
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct scatterlist *src, *dst;
|
|
struct skcipher_walk walk;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
|
|
int xts_blocks = DIV_ROUND_UP(req->cryptlen,
|
|
AES_BLOCK_SIZE) - 2;
|
|
|
|
skcipher_walk_abort(&walk);
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq,
|
|
skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
xts_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
req = &subreq;
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
} else {
|
|
tail = 0;
|
|
}
|
|
|
|
for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
|
|
int nbytes = walk.nbytes;
|
|
|
|
if (walk.nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_dec, rounds, nbytes, walk.iv,
|
|
ctx->key2.key_enc, first);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
if (err || likely(!tail))
|
|
return err;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
|
|
|
|
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_dec, rounds, walk.nbytes, walk.iv,
|
|
ctx->key2.key_enc, first);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static struct skcipher_alg aes_algs[] = { {
|
|
.base.cra_name = "__ecb(aes)",
|
|
.base.cra_driver_name = "__ecb-aes-ce",
|
|
.base.cra_priority = 300,
|
|
.base.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = ce_aes_setkey,
|
|
.encrypt = ecb_encrypt,
|
|
.decrypt = ecb_decrypt,
|
|
}, {
|
|
.base.cra_name = "__cbc(aes)",
|
|
.base.cra_driver_name = "__cbc-aes-ce",
|
|
.base.cra_priority = 300,
|
|
.base.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = ce_aes_setkey,
|
|
.encrypt = cbc_encrypt,
|
|
.decrypt = cbc_decrypt,
|
|
}, {
|
|
.base.cra_name = "__cts(cbc(aes))",
|
|
.base.cra_driver_name = "__cts-cbc-aes-ce",
|
|
.base.cra_priority = 300,
|
|
.base.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.walksize = 2 * AES_BLOCK_SIZE,
|
|
.setkey = ce_aes_setkey,
|
|
.encrypt = cts_cbc_encrypt,
|
|
.decrypt = cts_cbc_decrypt,
|
|
}, {
|
|
.base.cra_name = "__ctr(aes)",
|
|
.base.cra_driver_name = "__ctr-aes-ce",
|
|
.base.cra_priority = 300,
|
|
.base.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.setkey = ce_aes_setkey,
|
|
.encrypt = ctr_encrypt,
|
|
.decrypt = ctr_encrypt,
|
|
}, {
|
|
.base.cra_name = "ctr(aes)",
|
|
.base.cra_driver_name = "ctr-aes-ce-sync",
|
|
.base.cra_priority = 300 - 1,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.setkey = ce_aes_setkey,
|
|
.encrypt = ctr_encrypt_sync,
|
|
.decrypt = ctr_encrypt_sync,
|
|
}, {
|
|
.base.cra_name = "__xts(aes)",
|
|
.base.cra_driver_name = "__xts-aes-ce",
|
|
.base.cra_priority = 300,
|
|
.base.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.min_keysize = 2 * AES_MIN_KEY_SIZE,
|
|
.max_keysize = 2 * AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.walksize = 2 * AES_BLOCK_SIZE,
|
|
.setkey = xts_set_key,
|
|
.encrypt = xts_encrypt,
|
|
.decrypt = xts_decrypt,
|
|
} };
|
|
|
|
static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
|
|
|
|
static void aes_exit(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++)
|
|
simd_skcipher_free(aes_simd_algs[i]);
|
|
|
|
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
|
|
}
|
|
|
|
static int __init aes_init(void)
|
|
{
|
|
struct simd_skcipher_alg *simd;
|
|
const char *basename;
|
|
const char *algname;
|
|
const char *drvname;
|
|
int err;
|
|
int i;
|
|
|
|
err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
|
|
if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
|
|
continue;
|
|
|
|
algname = aes_algs[i].base.cra_name + 2;
|
|
drvname = aes_algs[i].base.cra_driver_name + 2;
|
|
basename = aes_algs[i].base.cra_driver_name;
|
|
simd = simd_skcipher_create_compat(algname, drvname, basename);
|
|
err = PTR_ERR(simd);
|
|
if (IS_ERR(simd))
|
|
goto unregister_simds;
|
|
|
|
aes_simd_algs[i] = simd;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unregister_simds:
|
|
aes_exit();
|
|
return err;
|
|
}
|
|
|
|
module_cpu_feature_match(AES, aes_init);
|
|
module_exit(aes_exit);
|