720 строки
18 KiB
C
720 строки
18 KiB
C
/*
|
|
* multiorder.c: Multi-order radix tree entry testing
|
|
* Copyright (c) 2016 Intel Corporation
|
|
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
|
|
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <pthread.h>
|
|
|
|
#include "test.h"
|
|
|
|
#define for_each_index(i, base, order) \
|
|
for (i = base; i < base + (1 << order); i++)
|
|
|
|
static void __multiorder_tag_test(int index, int order)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
int base, err, i;
|
|
|
|
/* our canonical entry */
|
|
base = index & ~((1 << order) - 1);
|
|
|
|
printv(2, "Multiorder tag test with index %d, canonical entry %d\n",
|
|
index, base);
|
|
|
|
err = item_insert_order(&tree, index, order);
|
|
assert(!err);
|
|
|
|
/*
|
|
* Verify we get collisions for covered indices. We try and fail to
|
|
* insert an exceptional entry so we don't leak memory via
|
|
* item_insert_order().
|
|
*/
|
|
for_each_index(i, base, order) {
|
|
err = __radix_tree_insert(&tree, i, order,
|
|
(void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
|
|
assert(err == -EEXIST);
|
|
}
|
|
|
|
for_each_index(i, base, order) {
|
|
assert(!radix_tree_tag_get(&tree, i, 0));
|
|
assert(!radix_tree_tag_get(&tree, i, 1));
|
|
}
|
|
|
|
assert(radix_tree_tag_set(&tree, index, 0));
|
|
|
|
for_each_index(i, base, order) {
|
|
assert(radix_tree_tag_get(&tree, i, 0));
|
|
assert(!radix_tree_tag_get(&tree, i, 1));
|
|
}
|
|
|
|
assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
|
|
assert(radix_tree_tag_clear(&tree, index, 0));
|
|
|
|
for_each_index(i, base, order) {
|
|
assert(!radix_tree_tag_get(&tree, i, 0));
|
|
assert(radix_tree_tag_get(&tree, i, 1));
|
|
}
|
|
|
|
assert(radix_tree_tag_clear(&tree, index, 1));
|
|
|
|
assert(!radix_tree_tagged(&tree, 0));
|
|
assert(!radix_tree_tagged(&tree, 1));
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void __multiorder_tag_test2(unsigned order, unsigned long index2)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
unsigned long index = (1 << order);
|
|
index2 += index;
|
|
|
|
assert(item_insert_order(&tree, 0, order) == 0);
|
|
assert(item_insert(&tree, index2) == 0);
|
|
|
|
assert(radix_tree_tag_set(&tree, 0, 0));
|
|
assert(radix_tree_tag_set(&tree, index2, 0));
|
|
|
|
assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void multiorder_tag_tests(void)
|
|
{
|
|
int i, j;
|
|
|
|
/* test multi-order entry for indices 0-7 with no sibling pointers */
|
|
__multiorder_tag_test(0, 3);
|
|
__multiorder_tag_test(5, 3);
|
|
|
|
/* test multi-order entry for indices 8-15 with no sibling pointers */
|
|
__multiorder_tag_test(8, 3);
|
|
__multiorder_tag_test(15, 3);
|
|
|
|
/*
|
|
* Our order 5 entry covers indices 0-31 in a tree with height=2.
|
|
* This is broken up as follows:
|
|
* 0-7: canonical entry
|
|
* 8-15: sibling 1
|
|
* 16-23: sibling 2
|
|
* 24-31: sibling 3
|
|
*/
|
|
__multiorder_tag_test(0, 5);
|
|
__multiorder_tag_test(29, 5);
|
|
|
|
/* same test, but with indices 32-63 */
|
|
__multiorder_tag_test(32, 5);
|
|
__multiorder_tag_test(44, 5);
|
|
|
|
/*
|
|
* Our order 8 entry covers indices 0-255 in a tree with height=3.
|
|
* This is broken up as follows:
|
|
* 0-63: canonical entry
|
|
* 64-127: sibling 1
|
|
* 128-191: sibling 2
|
|
* 192-255: sibling 3
|
|
*/
|
|
__multiorder_tag_test(0, 8);
|
|
__multiorder_tag_test(190, 8);
|
|
|
|
/* same test, but with indices 256-511 */
|
|
__multiorder_tag_test(256, 8);
|
|
__multiorder_tag_test(300, 8);
|
|
|
|
__multiorder_tag_test(0x12345678UL, 8);
|
|
|
|
for (i = 1; i < 10; i++)
|
|
for (j = 0; j < (10 << i); j++)
|
|
__multiorder_tag_test2(i, j);
|
|
}
|
|
|
|
static void multiorder_check(unsigned long index, int order)
|
|
{
|
|
unsigned long i;
|
|
unsigned long min = index & ~((1UL << order) - 1);
|
|
unsigned long max = min + (1UL << order);
|
|
void **slot;
|
|
struct item *item2 = item_create(min, order);
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
|
|
printv(2, "Multiorder index %ld, order %d\n", index, order);
|
|
|
|
assert(item_insert_order(&tree, index, order) == 0);
|
|
|
|
for (i = min; i < max; i++) {
|
|
struct item *item = item_lookup(&tree, i);
|
|
assert(item != 0);
|
|
assert(item->index == index);
|
|
}
|
|
for (i = 0; i < min; i++)
|
|
item_check_absent(&tree, i);
|
|
for (i = max; i < 2*max; i++)
|
|
item_check_absent(&tree, i);
|
|
for (i = min; i < max; i++)
|
|
assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
|
|
|
|
slot = radix_tree_lookup_slot(&tree, index);
|
|
free(*slot);
|
|
radix_tree_replace_slot(&tree, slot, item2);
|
|
for (i = min; i < max; i++) {
|
|
struct item *item = item_lookup(&tree, i);
|
|
assert(item != 0);
|
|
assert(item->index == min);
|
|
}
|
|
|
|
assert(item_delete(&tree, min) != 0);
|
|
|
|
for (i = 0; i < 2*max; i++)
|
|
item_check_absent(&tree, i);
|
|
}
|
|
|
|
static void multiorder_shrink(unsigned long index, int order)
|
|
{
|
|
unsigned long i;
|
|
unsigned long max = 1 << order;
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_node *node;
|
|
|
|
printv(2, "Multiorder shrink index %ld, order %d\n", index, order);
|
|
|
|
assert(item_insert_order(&tree, 0, order) == 0);
|
|
|
|
node = tree.rnode;
|
|
|
|
assert(item_insert(&tree, index) == 0);
|
|
assert(node != tree.rnode);
|
|
|
|
assert(item_delete(&tree, index) != 0);
|
|
assert(node == tree.rnode);
|
|
|
|
for (i = 0; i < max; i++) {
|
|
struct item *item = item_lookup(&tree, i);
|
|
assert(item != 0);
|
|
assert(item->index == 0);
|
|
}
|
|
for (i = max; i < 2*max; i++)
|
|
item_check_absent(&tree, i);
|
|
|
|
if (!item_delete(&tree, 0)) {
|
|
printv(2, "failed to delete index %ld (order %d)\n", index, order);
|
|
abort();
|
|
}
|
|
|
|
for (i = 0; i < 2*max; i++)
|
|
item_check_absent(&tree, i);
|
|
}
|
|
|
|
static void multiorder_insert_bug(void)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
|
|
item_insert(&tree, 0);
|
|
radix_tree_tag_set(&tree, 0, 0);
|
|
item_insert_order(&tree, 3 << 6, 6);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
void multiorder_iteration(void)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
int i, j, err;
|
|
|
|
printv(1, "Multiorder iteration test\n");
|
|
|
|
#define NUM_ENTRIES 11
|
|
int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
|
|
int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
|
|
|
|
for (i = 0; i < NUM_ENTRIES; i++) {
|
|
err = item_insert_order(&tree, index[i], order[i]);
|
|
assert(!err);
|
|
}
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
for (i = 0; i < NUM_ENTRIES; i++)
|
|
if (j <= (index[i] | ((1 << order[i]) - 1)))
|
|
break;
|
|
|
|
radix_tree_for_each_slot(slot, &tree, &iter, j) {
|
|
int height = order[i] / RADIX_TREE_MAP_SHIFT;
|
|
int shift = height * RADIX_TREE_MAP_SHIFT;
|
|
unsigned long mask = (1UL << order[i]) - 1;
|
|
struct item *item = *slot;
|
|
|
|
assert((iter.index | mask) == (index[i] | mask));
|
|
assert(iter.shift == shift);
|
|
assert(!radix_tree_is_internal_node(item));
|
|
assert((item->index | mask) == (index[i] | mask));
|
|
assert(item->order == order[i]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
void multiorder_tagged_iteration(void)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
int i, j;
|
|
|
|
printv(1, "Multiorder tagged iteration test\n");
|
|
|
|
#define MT_NUM_ENTRIES 9
|
|
int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
|
|
int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
|
|
|
|
#define TAG_ENTRIES 7
|
|
int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
|
|
|
|
for (i = 0; i < MT_NUM_ENTRIES; i++)
|
|
assert(!item_insert_order(&tree, index[i], order[i]));
|
|
|
|
assert(!radix_tree_tagged(&tree, 1));
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++)
|
|
assert(radix_tree_tag_set(&tree, tag_index[i], 1));
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
int k;
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++) {
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
if (j <= (index[k] | ((1 << order[k]) - 1)))
|
|
break;
|
|
}
|
|
|
|
radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
|
|
unsigned long mask;
|
|
struct item *item = *slot;
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
mask = (1UL << order[k]) - 1;
|
|
|
|
assert((iter.index | mask) == (tag_index[i] | mask));
|
|
assert(!radix_tree_is_internal_node(item));
|
|
assert((item->index | mask) == (tag_index[i] | mask));
|
|
assert(item->order == order[k]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
|
|
TAG_ENTRIES);
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
int mask, k;
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++) {
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
if (j <= (index[k] | ((1 << order[k]) - 1)))
|
|
break;
|
|
}
|
|
|
|
radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
|
|
struct item *item = *slot;
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
mask = (1 << order[k]) - 1;
|
|
|
|
assert((iter.index | mask) == (tag_index[i] | mask));
|
|
assert(!radix_tree_is_internal_node(item));
|
|
assert((item->index | mask) == (tag_index[i] | mask));
|
|
assert(item->order == order[k]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
|
|
== TAG_ENTRIES);
|
|
i = 0;
|
|
radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
|
|
assert(iter.index == tag_index[i]);
|
|
i++;
|
|
}
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
/*
|
|
* Basic join checks: make sure we can't find an entry in the tree after
|
|
* a larger entry has replaced it
|
|
*/
|
|
static void multiorder_join1(unsigned long index,
|
|
unsigned order1, unsigned order2)
|
|
{
|
|
unsigned long loc;
|
|
void *item, *item2 = item_create(index + 1, order1);
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
|
|
item_insert_order(&tree, index, order2);
|
|
item = radix_tree_lookup(&tree, index);
|
|
radix_tree_join(&tree, index + 1, order1, item2);
|
|
loc = find_item(&tree, item);
|
|
if (loc == -1)
|
|
free(item);
|
|
item = radix_tree_lookup(&tree, index + 1);
|
|
assert(item == item2);
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
/*
|
|
* Check that the accounting of exceptional entries is handled correctly
|
|
* by joining an exceptional entry to a normal pointer.
|
|
*/
|
|
static void multiorder_join2(unsigned order1, unsigned order2)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_node *node;
|
|
void *item1 = item_create(0, order1);
|
|
void *item2;
|
|
|
|
item_insert_order(&tree, 0, order2);
|
|
radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
|
|
item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
|
|
assert(item2 == (void *)0x12UL);
|
|
assert(node->exceptional == 1);
|
|
|
|
item2 = radix_tree_lookup(&tree, 0);
|
|
free(item2);
|
|
|
|
radix_tree_join(&tree, 0, order1, item1);
|
|
item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
|
|
assert(item2 == item1);
|
|
assert(node->exceptional == 0);
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
/*
|
|
* This test revealed an accounting bug for exceptional entries at one point.
|
|
* Nodes were being freed back into the pool with an elevated exception count
|
|
* by radix_tree_join() and then radix_tree_split() was failing to zero the
|
|
* count of exceptional entries.
|
|
*/
|
|
static void multiorder_join3(unsigned int order)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_node *node;
|
|
void **slot;
|
|
struct radix_tree_iter iter;
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < (1 << order); i++) {
|
|
radix_tree_insert(&tree, i, (void *)0x12UL);
|
|
}
|
|
|
|
radix_tree_join(&tree, 0, order, (void *)0x16UL);
|
|
rcu_barrier();
|
|
|
|
radix_tree_split(&tree, 0, 0);
|
|
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL);
|
|
}
|
|
|
|
__radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(node->exceptional == node->count);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void multiorder_join(void)
|
|
{
|
|
int i, j, idx;
|
|
|
|
for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
|
|
for (i = 1; i < 15; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
multiorder_join1(idx, i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < 15; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
multiorder_join2(i, j);
|
|
}
|
|
}
|
|
|
|
for (i = 3; i < 10; i++) {
|
|
multiorder_join3(i);
|
|
}
|
|
}
|
|
|
|
static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
|
|
{
|
|
struct radix_tree_preload *rtp = &radix_tree_preloads;
|
|
if (rtp->nr != 0)
|
|
printv(2, "split(%u %u) remaining %u\n", old_order, new_order,
|
|
rtp->nr);
|
|
/*
|
|
* Can't check for equality here as some nodes may have been
|
|
* RCU-freed while we ran. But we should never finish with more
|
|
* nodes allocated since they should have all been preloaded.
|
|
*/
|
|
if (nr_allocated > alloc)
|
|
printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order,
|
|
alloc, nr_allocated);
|
|
}
|
|
|
|
static void __multiorder_split(int old_order, int new_order)
|
|
{
|
|
RADIX_TREE(tree, GFP_ATOMIC);
|
|
void **slot;
|
|
struct radix_tree_iter iter;
|
|
unsigned alloc;
|
|
struct item *item;
|
|
|
|
radix_tree_preload(GFP_KERNEL);
|
|
assert(item_insert_order(&tree, 0, old_order) == 0);
|
|
radix_tree_preload_end();
|
|
|
|
/* Wipe out the preloaded cache or it'll confuse check_mem() */
|
|
radix_tree_cpu_dead(0);
|
|
|
|
item = radix_tree_tag_set(&tree, 0, 2);
|
|
|
|
radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
|
|
alloc = nr_allocated;
|
|
radix_tree_split(&tree, 0, new_order);
|
|
check_mem(old_order, new_order, alloc);
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
radix_tree_iter_replace(&tree, &iter, slot,
|
|
item_create(iter.index, new_order));
|
|
}
|
|
radix_tree_preload_end();
|
|
|
|
item_kill_tree(&tree);
|
|
free(item);
|
|
}
|
|
|
|
static void __multiorder_split2(int old_order, int new_order)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
void **slot;
|
|
struct radix_tree_iter iter;
|
|
struct radix_tree_node *node;
|
|
void *item;
|
|
|
|
__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item == (void *)0x12);
|
|
assert(node->exceptional > 0);
|
|
|
|
radix_tree_split(&tree, 0, new_order);
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
radix_tree_iter_replace(&tree, &iter, slot,
|
|
item_create(iter.index, new_order));
|
|
}
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item != (void *)0x12);
|
|
assert(node->exceptional == 0);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void __multiorder_split3(int old_order, int new_order)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
void **slot;
|
|
struct radix_tree_iter iter;
|
|
struct radix_tree_node *node;
|
|
void *item;
|
|
|
|
__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item == (void *)0x12);
|
|
assert(node->exceptional > 0);
|
|
|
|
radix_tree_split(&tree, 0, new_order);
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
|
|
}
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item == (void *)0x16);
|
|
assert(node->exceptional > 0);
|
|
|
|
item_kill_tree(&tree);
|
|
|
|
__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item == (void *)0x12);
|
|
assert(node->exceptional > 0);
|
|
|
|
radix_tree_split(&tree, 0, new_order);
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
if (iter.index == (1 << new_order))
|
|
radix_tree_iter_replace(&tree, &iter, slot,
|
|
(void *)0x16);
|
|
else
|
|
radix_tree_iter_replace(&tree, &iter, slot, NULL);
|
|
}
|
|
|
|
item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
|
|
assert(item == (void *)0x16);
|
|
assert(node->count == node->exceptional);
|
|
do {
|
|
node = node->parent;
|
|
if (!node)
|
|
break;
|
|
assert(node->count == 1);
|
|
assert(node->exceptional == 0);
|
|
} while (1);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void multiorder_split(void)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 3; i < 11; i++)
|
|
for (j = 0; j < i; j++) {
|
|
__multiorder_split(i, j);
|
|
__multiorder_split2(i, j);
|
|
__multiorder_split3(i, j);
|
|
}
|
|
}
|
|
|
|
static void multiorder_account(void)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_node *node;
|
|
void **slot;
|
|
|
|
item_insert_order(&tree, 0, 5);
|
|
|
|
__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
|
|
__radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(node->count == node->exceptional * 2);
|
|
radix_tree_delete(&tree, 1 << 5);
|
|
assert(node->exceptional == 0);
|
|
|
|
__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
|
|
__radix_tree_lookup(&tree, 1 << 5, &node, &slot);
|
|
assert(node->count == node->exceptional * 2);
|
|
__radix_tree_replace(&tree, node, slot, NULL, NULL);
|
|
assert(node->exceptional == 0);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
bool stop_iteration = false;
|
|
|
|
static void *creator_func(void *ptr)
|
|
{
|
|
/* 'order' is set up to ensure we have sibling entries */
|
|
unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
|
|
struct radix_tree_root *tree = ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
item_insert_order(tree, 0, order);
|
|
item_delete_rcu(tree, 0);
|
|
}
|
|
|
|
stop_iteration = true;
|
|
return NULL;
|
|
}
|
|
|
|
static void *iterator_func(void *ptr)
|
|
{
|
|
struct radix_tree_root *tree = ptr;
|
|
struct radix_tree_iter iter;
|
|
struct item *item;
|
|
void **slot;
|
|
|
|
while (!stop_iteration) {
|
|
rcu_read_lock();
|
|
radix_tree_for_each_slot(slot, tree, &iter, 0) {
|
|
item = radix_tree_deref_slot(slot);
|
|
|
|
if (!item)
|
|
continue;
|
|
if (radix_tree_deref_retry(item)) {
|
|
slot = radix_tree_iter_retry(&iter);
|
|
continue;
|
|
}
|
|
|
|
item_sanity(item, iter.index);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void multiorder_iteration_race(void)
|
|
{
|
|
const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
|
|
pthread_t worker_thread[num_threads];
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
int i;
|
|
|
|
pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
|
|
for (i = 1; i < num_threads; i++)
|
|
pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);
|
|
|
|
for (i = 0; i < num_threads; i++)
|
|
pthread_join(worker_thread[i], NULL);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
void multiorder_checks(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 20; i++) {
|
|
multiorder_check(200, i);
|
|
multiorder_check(0, i);
|
|
multiorder_check((1UL << i) + 1, i);
|
|
}
|
|
|
|
for (i = 0; i < 15; i++)
|
|
multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
|
|
|
|
multiorder_insert_bug();
|
|
multiorder_tag_tests();
|
|
multiorder_iteration();
|
|
multiorder_tagged_iteration();
|
|
multiorder_join();
|
|
multiorder_split();
|
|
multiorder_account();
|
|
multiorder_iteration_race();
|
|
|
|
radix_tree_cpu_dead(0);
|
|
}
|
|
|
|
int __weak main(void)
|
|
{
|
|
radix_tree_init();
|
|
multiorder_checks();
|
|
return 0;
|
|
}
|