WSL2-Linux-Kernel/drivers/gpu/drm/vmwgfx/vmwgfx_bo.c

1175 строки
32 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/**************************************************************************
*
* Copyright © 2011-2018 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include <drm/ttm/ttm_placement.h>
#include "vmwgfx_drv.h"
#include "ttm_object.h"
/**
* struct vmw_user_buffer_object - User-space-visible buffer object
*
* @prime: The prime object providing user visibility.
* @vbo: The struct vmw_buffer_object
*/
struct vmw_user_buffer_object {
struct ttm_prime_object prime;
struct vmw_buffer_object vbo;
};
/**
* vmw_buffer_object - Convert a struct ttm_buffer_object to a struct
* vmw_buffer_object.
*
* @bo: Pointer to the TTM buffer object.
* Return: Pointer to the struct vmw_buffer_object embedding the
* TTM buffer object.
*/
static struct vmw_buffer_object *
vmw_buffer_object(struct ttm_buffer_object *bo)
{
return container_of(bo, struct vmw_buffer_object, base);
}
/**
* vmw_user_buffer_object - Convert a struct ttm_buffer_object to a struct
* vmw_user_buffer_object.
*
* @bo: Pointer to the TTM buffer object.
* Return: Pointer to the struct vmw_buffer_object embedding the TTM buffer
* object.
*/
static struct vmw_user_buffer_object *
vmw_user_buffer_object(struct ttm_buffer_object *bo)
{
struct vmw_buffer_object *vmw_bo = vmw_buffer_object(bo);
return container_of(vmw_bo, struct vmw_user_buffer_object, vbo);
}
/**
* vmw_bo_pin_in_placement - Validate a buffer to placement.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to move.
* @placement: The placement to pin it.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_pin_in_placement(struct vmw_private *dev_priv,
struct vmw_buffer_object *buf,
struct ttm_placement *placement,
bool interruptible)
{
struct ttm_operation_ctx ctx = {interruptible, false };
struct ttm_buffer_object *bo = &buf->base;
int ret;
uint32_t new_flags;
ret = ttm_write_lock(&dev_priv->reservation_sem, interruptible);
if (unlikely(ret != 0))
return ret;
vmw_execbuf_release_pinned_bo(dev_priv);
ret = ttm_bo_reserve(bo, interruptible, false, NULL);
if (unlikely(ret != 0))
goto err;
if (buf->pin_count > 0)
ret = ttm_bo_mem_compat(placement, &bo->mem,
&new_flags) == true ? 0 : -EINVAL;
else
ret = ttm_bo_validate(bo, placement, &ctx);
if (!ret)
vmw_bo_pin_reserved(buf, true);
ttm_bo_unreserve(bo);
err:
ttm_write_unlock(&dev_priv->reservation_sem);
return ret;
}
/**
* vmw_bo_pin_in_vram_or_gmr - Move a buffer to vram or gmr.
*
* This function takes the reservation_sem in write mode.
* Flushes and unpins the query bo to avoid failures.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to move.
* @pin: Pin buffer if true.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_pin_in_vram_or_gmr(struct vmw_private *dev_priv,
struct vmw_buffer_object *buf,
bool interruptible)
{
struct ttm_operation_ctx ctx = {interruptible, false };
struct ttm_buffer_object *bo = &buf->base;
int ret;
uint32_t new_flags;
ret = ttm_write_lock(&dev_priv->reservation_sem, interruptible);
if (unlikely(ret != 0))
return ret;
vmw_execbuf_release_pinned_bo(dev_priv);
ret = ttm_bo_reserve(bo, interruptible, false, NULL);
if (unlikely(ret != 0))
goto err;
if (buf->pin_count > 0) {
ret = ttm_bo_mem_compat(&vmw_vram_gmr_placement, &bo->mem,
&new_flags) == true ? 0 : -EINVAL;
goto out_unreserve;
}
ret = ttm_bo_validate(bo, &vmw_vram_gmr_placement, &ctx);
if (likely(ret == 0) || ret == -ERESTARTSYS)
goto out_unreserve;
ret = ttm_bo_validate(bo, &vmw_vram_placement, &ctx);
out_unreserve:
if (!ret)
vmw_bo_pin_reserved(buf, true);
ttm_bo_unreserve(bo);
err:
ttm_write_unlock(&dev_priv->reservation_sem);
return ret;
}
/**
* vmw_bo_pin_in_vram - Move a buffer to vram.
*
* This function takes the reservation_sem in write mode.
* Flushes and unpins the query bo to avoid failures.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to move.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_pin_in_vram(struct vmw_private *dev_priv,
struct vmw_buffer_object *buf,
bool interruptible)
{
return vmw_bo_pin_in_placement(dev_priv, buf, &vmw_vram_placement,
interruptible);
}
/**
* vmw_bo_pin_in_start_of_vram - Move a buffer to start of vram.
*
* This function takes the reservation_sem in write mode.
* Flushes and unpins the query bo to avoid failures.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to pin.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_pin_in_start_of_vram(struct vmw_private *dev_priv,
struct vmw_buffer_object *buf,
bool interruptible)
{
struct ttm_operation_ctx ctx = {interruptible, false };
struct ttm_buffer_object *bo = &buf->base;
struct ttm_placement placement;
struct ttm_place place;
int ret = 0;
uint32_t new_flags;
place = vmw_vram_placement.placement[0];
place.lpfn = bo->num_pages;
placement.num_placement = 1;
placement.placement = &place;
placement.num_busy_placement = 1;
placement.busy_placement = &place;
ret = ttm_write_lock(&dev_priv->reservation_sem, interruptible);
if (unlikely(ret != 0))
return ret;
vmw_execbuf_release_pinned_bo(dev_priv);
ret = ttm_bo_reserve(bo, interruptible, false, NULL);
if (unlikely(ret != 0))
goto err_unlock;
/*
* Is this buffer already in vram but not at the start of it?
* In that case, evict it first because TTM isn't good at handling
* that situation.
*/
if (bo->mem.mem_type == TTM_PL_VRAM &&
bo->mem.start < bo->num_pages &&
bo->mem.start > 0 &&
buf->pin_count == 0) {
ctx.interruptible = false;
(void) ttm_bo_validate(bo, &vmw_sys_placement, &ctx);
}
if (buf->pin_count > 0)
ret = ttm_bo_mem_compat(&placement, &bo->mem,
&new_flags) == true ? 0 : -EINVAL;
else
ret = ttm_bo_validate(bo, &placement, &ctx);
/* For some reason we didn't end up at the start of vram */
WARN_ON(ret == 0 && bo->offset != 0);
if (!ret)
vmw_bo_pin_reserved(buf, true);
ttm_bo_unreserve(bo);
err_unlock:
ttm_write_unlock(&dev_priv->reservation_sem);
return ret;
}
/**
* vmw_bo_unpin - Unpin the buffer given buffer, does not move the buffer.
*
* This function takes the reservation_sem in write mode.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to unpin.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_unpin(struct vmw_private *dev_priv,
struct vmw_buffer_object *buf,
bool interruptible)
{
struct ttm_buffer_object *bo = &buf->base;
int ret;
ret = ttm_read_lock(&dev_priv->reservation_sem, interruptible);
if (unlikely(ret != 0))
return ret;
ret = ttm_bo_reserve(bo, interruptible, false, NULL);
if (unlikely(ret != 0))
goto err;
vmw_bo_pin_reserved(buf, false);
ttm_bo_unreserve(bo);
err:
ttm_read_unlock(&dev_priv->reservation_sem);
return ret;
}
/**
* vmw_bo_get_guest_ptr - Get the guest ptr representing the current placement
* of a buffer.
*
* @bo: Pointer to a struct ttm_buffer_object. Must be pinned or reserved.
* @ptr: SVGAGuestPtr returning the result.
*/
void vmw_bo_get_guest_ptr(const struct ttm_buffer_object *bo,
SVGAGuestPtr *ptr)
{
if (bo->mem.mem_type == TTM_PL_VRAM) {
ptr->gmrId = SVGA_GMR_FRAMEBUFFER;
ptr->offset = bo->offset;
} else {
ptr->gmrId = bo->mem.start;
ptr->offset = 0;
}
}
/**
* vmw_bo_pin_reserved - Pin or unpin a buffer object without moving it.
*
* @vbo: The buffer object. Must be reserved.
* @pin: Whether to pin or unpin.
*
*/
void vmw_bo_pin_reserved(struct vmw_buffer_object *vbo, bool pin)
{
struct ttm_operation_ctx ctx = { false, true };
struct ttm_place pl;
struct ttm_placement placement;
struct ttm_buffer_object *bo = &vbo->base;
uint32_t old_mem_type = bo->mem.mem_type;
int ret;
dma_resv_assert_held(bo->base.resv);
if (pin) {
if (vbo->pin_count++ > 0)
return;
} else {
WARN_ON(vbo->pin_count <= 0);
if (--vbo->pin_count > 0)
return;
}
pl.fpfn = 0;
pl.lpfn = 0;
pl.flags = TTM_PL_FLAG_VRAM | VMW_PL_FLAG_GMR | VMW_PL_FLAG_MOB
| TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
if (pin)
pl.flags |= TTM_PL_FLAG_NO_EVICT;
memset(&placement, 0, sizeof(placement));
placement.num_placement = 1;
placement.placement = &pl;
ret = ttm_bo_validate(bo, &placement, &ctx);
BUG_ON(ret != 0 || bo->mem.mem_type != old_mem_type);
}
/**
* vmw_bo_map_and_cache - Map a buffer object and cache the map
*
* @vbo: The buffer object to map
* Return: A kernel virtual address or NULL if mapping failed.
*
* This function maps a buffer object into the kernel address space, or
* returns the virtual kernel address of an already existing map. The virtual
* address remains valid as long as the buffer object is pinned or reserved.
* The cached map is torn down on either
* 1) Buffer object move
* 2) Buffer object swapout
* 3) Buffer object destruction
*
*/
void *vmw_bo_map_and_cache(struct vmw_buffer_object *vbo)
{
struct ttm_buffer_object *bo = &vbo->base;
bool not_used;
void *virtual;
int ret;
virtual = ttm_kmap_obj_virtual(&vbo->map, &not_used);
if (virtual)
return virtual;
ret = ttm_bo_kmap(bo, 0, bo->num_pages, &vbo->map);
if (ret)
DRM_ERROR("Buffer object map failed: %d.\n", ret);
return ttm_kmap_obj_virtual(&vbo->map, &not_used);
}
/**
* vmw_bo_unmap - Tear down a cached buffer object map.
*
* @vbo: The buffer object whose map we are tearing down.
*
* This function tears down a cached map set up using
* vmw_buffer_object_map_and_cache().
*/
void vmw_bo_unmap(struct vmw_buffer_object *vbo)
{
if (vbo->map.bo == NULL)
return;
ttm_bo_kunmap(&vbo->map);
}
/**
* vmw_bo_acc_size - Calculate the pinned memory usage of buffers
*
* @dev_priv: Pointer to a struct vmw_private identifying the device.
* @size: The requested buffer size.
* @user: Whether this is an ordinary dma buffer or a user dma buffer.
*/
static size_t vmw_bo_acc_size(struct vmw_private *dev_priv, size_t size,
bool user)
{
static size_t struct_size, user_struct_size;
size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
if (unlikely(struct_size == 0)) {
size_t backend_size = ttm_round_pot(vmw_tt_size);
struct_size = backend_size +
ttm_round_pot(sizeof(struct vmw_buffer_object));
user_struct_size = backend_size +
ttm_round_pot(sizeof(struct vmw_user_buffer_object)) +
TTM_OBJ_EXTRA_SIZE;
}
if (dev_priv->map_mode == vmw_dma_alloc_coherent)
page_array_size +=
ttm_round_pot(num_pages * sizeof(dma_addr_t));
return ((user) ? user_struct_size : struct_size) +
page_array_size;
}
/**
* vmw_bo_bo_free - vmw buffer object destructor
*
* @bo: Pointer to the embedded struct ttm_buffer_object
*/
void vmw_bo_bo_free(struct ttm_buffer_object *bo)
{
struct vmw_buffer_object *vmw_bo = vmw_buffer_object(bo);
WARN_ON(vmw_bo->dirty);
WARN_ON(!RB_EMPTY_ROOT(&vmw_bo->res_tree));
vmw_bo_unmap(vmw_bo);
kfree(vmw_bo);
}
/**
* vmw_user_bo_destroy - vmw buffer object destructor
*
* @bo: Pointer to the embedded struct ttm_buffer_object
*/
static void vmw_user_bo_destroy(struct ttm_buffer_object *bo)
{
struct vmw_user_buffer_object *vmw_user_bo = vmw_user_buffer_object(bo);
struct vmw_buffer_object *vbo = &vmw_user_bo->vbo;
WARN_ON(vbo->dirty);
WARN_ON(!RB_EMPTY_ROOT(&vbo->res_tree));
vmw_bo_unmap(vbo);
ttm_prime_object_kfree(vmw_user_bo, prime);
}
/**
* vmw_bo_init - Initialize a vmw buffer object
*
* @dev_priv: Pointer to the device private struct
* @vmw_bo: Pointer to the struct vmw_buffer_object to initialize.
* @size: Buffer object size in bytes.
* @placement: Initial placement.
* @interruptible: Whether waits should be performed interruptible.
* @bo_free: The buffer object destructor.
* Returns: Zero on success, negative error code on error.
*
* Note that on error, the code will free the buffer object.
*/
int vmw_bo_init(struct vmw_private *dev_priv,
struct vmw_buffer_object *vmw_bo,
size_t size, struct ttm_placement *placement,
bool interruptible,
void (*bo_free)(struct ttm_buffer_object *bo))
{
struct ttm_bo_device *bdev = &dev_priv->bdev;
size_t acc_size;
int ret;
bool user = (bo_free == &vmw_user_bo_destroy);
WARN_ON_ONCE(!bo_free && (!user && (bo_free != vmw_bo_bo_free)));
acc_size = vmw_bo_acc_size(dev_priv, size, user);
memset(vmw_bo, 0, sizeof(*vmw_bo));
BUILD_BUG_ON(TTM_MAX_BO_PRIORITY <= 3);
vmw_bo->base.priority = 3;
vmw_bo->res_tree = RB_ROOT;
ret = ttm_bo_init(bdev, &vmw_bo->base, size,
ttm_bo_type_device, placement,
0, interruptible, acc_size,
NULL, NULL, bo_free);
return ret;
}
/**
* vmw_user_bo_release - TTM reference base object release callback for
* vmw user buffer objects
*
* @p_base: The TTM base object pointer about to be unreferenced.
*
* Clears the TTM base object pointer and drops the reference the
* base object has on the underlying struct vmw_buffer_object.
*/
static void vmw_user_bo_release(struct ttm_base_object **p_base)
{
struct vmw_user_buffer_object *vmw_user_bo;
struct ttm_base_object *base = *p_base;
*p_base = NULL;
if (unlikely(base == NULL))
return;
vmw_user_bo = container_of(base, struct vmw_user_buffer_object,
prime.base);
ttm_bo_put(&vmw_user_bo->vbo.base);
}
/**
* vmw_user_bo_ref_obj-release - TTM synccpu reference object release callback
* for vmw user buffer objects
*
* @base: Pointer to the TTM base object
* @ref_type: Reference type of the reference reaching zero.
*
* Called when user-space drops its last synccpu reference on the buffer
* object, Either explicitly or as part of a cleanup file close.
*/
static void vmw_user_bo_ref_obj_release(struct ttm_base_object *base,
enum ttm_ref_type ref_type)
{
struct vmw_user_buffer_object *user_bo;
user_bo = container_of(base, struct vmw_user_buffer_object, prime.base);
switch (ref_type) {
case TTM_REF_SYNCCPU_WRITE:
atomic_dec(&user_bo->vbo.cpu_writers);
break;
default:
WARN_ONCE(true, "Undefined buffer object reference release.\n");
}
}
/**
* vmw_user_bo_alloc - Allocate a user buffer object
*
* @dev_priv: Pointer to a struct device private.
* @tfile: Pointer to a struct ttm_object_file on which to register the user
* object.
* @size: Size of the buffer object.
* @shareable: Boolean whether the buffer is shareable with other open files.
* @handle: Pointer to where the handle value should be assigned.
* @p_vbo: Pointer to where the refcounted struct vmw_buffer_object pointer
* should be assigned.
* Return: Zero on success, negative error code on error.
*/
int vmw_user_bo_alloc(struct vmw_private *dev_priv,
struct ttm_object_file *tfile,
uint32_t size,
bool shareable,
uint32_t *handle,
struct vmw_buffer_object **p_vbo,
struct ttm_base_object **p_base)
{
struct vmw_user_buffer_object *user_bo;
int ret;
user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
if (unlikely(!user_bo)) {
DRM_ERROR("Failed to allocate a buffer.\n");
return -ENOMEM;
}
ret = vmw_bo_init(dev_priv, &user_bo->vbo, size,
(dev_priv->has_mob) ?
&vmw_sys_placement :
&vmw_vram_sys_placement, true,
&vmw_user_bo_destroy);
if (unlikely(ret != 0))
return ret;
ttm_bo_get(&user_bo->vbo.base);
ret = ttm_prime_object_init(tfile,
size,
&user_bo->prime,
shareable,
ttm_buffer_type,
&vmw_user_bo_release,
&vmw_user_bo_ref_obj_release);
if (unlikely(ret != 0)) {
ttm_bo_put(&user_bo->vbo.base);
goto out_no_base_object;
}
*p_vbo = &user_bo->vbo;
if (p_base) {
*p_base = &user_bo->prime.base;
kref_get(&(*p_base)->refcount);
}
*handle = user_bo->prime.base.handle;
out_no_base_object:
return ret;
}
/**
* vmw_user_bo_verify_access - verify access permissions on this
* buffer object.
*
* @bo: Pointer to the buffer object being accessed
* @tfile: Identifying the caller.
*/
int vmw_user_bo_verify_access(struct ttm_buffer_object *bo,
struct ttm_object_file *tfile)
{
struct vmw_user_buffer_object *vmw_user_bo;
if (unlikely(bo->destroy != vmw_user_bo_destroy))
return -EPERM;
vmw_user_bo = vmw_user_buffer_object(bo);
/* Check that the caller has opened the object. */
if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
return 0;
DRM_ERROR("Could not grant buffer access.\n");
return -EPERM;
}
/**
* vmw_user_bo_synccpu_grab - Grab a struct vmw_user_buffer_object for cpu
* access, idling previous GPU operations on the buffer and optionally
* blocking it for further command submissions.
*
* @user_bo: Pointer to the buffer object being grabbed for CPU access
* @tfile: Identifying the caller.
* @flags: Flags indicating how the grab should be performed.
* Return: Zero on success, Negative error code on error. In particular,
* -EBUSY will be returned if a dontblock operation is requested and the
* buffer object is busy, and -ERESTARTSYS will be returned if a wait is
* interrupted by a signal.
*
* A blocking grab will be automatically released when @tfile is closed.
*/
static int vmw_user_bo_synccpu_grab(struct vmw_user_buffer_object *user_bo,
struct ttm_object_file *tfile,
uint32_t flags)
{
bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
struct ttm_buffer_object *bo = &user_bo->vbo.base;
bool existed;
int ret;
if (flags & drm_vmw_synccpu_allow_cs) {
long lret;
lret = dma_resv_wait_timeout_rcu
(bo->base.resv, true, true,
nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
if (!lret)
return -EBUSY;
else if (lret < 0)
return lret;
return 0;
}
ret = ttm_bo_reserve(bo, true, nonblock, NULL);
if (unlikely(ret != 0))
return ret;
ret = ttm_bo_wait(bo, true, nonblock);
if (likely(ret == 0))
atomic_inc(&user_bo->vbo.cpu_writers);
ttm_bo_unreserve(bo);
if (unlikely(ret != 0))
return ret;
ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
TTM_REF_SYNCCPU_WRITE, &existed, false);
if (ret != 0 || existed)
atomic_dec(&user_bo->vbo.cpu_writers);
return ret;
}
/**
* vmw_user_bo_synccpu_release - Release a previous grab for CPU access,
* and unblock command submission on the buffer if blocked.
*
* @handle: Handle identifying the buffer object.
* @tfile: Identifying the caller.
* @flags: Flags indicating the type of release.
*/
static int vmw_user_bo_synccpu_release(uint32_t handle,
struct ttm_object_file *tfile,
uint32_t flags)
{
if (!(flags & drm_vmw_synccpu_allow_cs))
return ttm_ref_object_base_unref(tfile, handle,
TTM_REF_SYNCCPU_WRITE);
return 0;
}
/**
* vmw_user_bo_synccpu_ioctl - ioctl function implementing the synccpu
* functionality.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller.
* Return: Zero on success, negative error code on error.
*
* This function checks the ioctl arguments for validity and calls the
* relevant synccpu functions.
*/
int vmw_user_bo_synccpu_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_synccpu_arg *arg =
(struct drm_vmw_synccpu_arg *) data;
struct vmw_buffer_object *vbo;
struct vmw_user_buffer_object *user_bo;
struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
struct ttm_base_object *buffer_base;
int ret;
if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
|| (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
drm_vmw_synccpu_dontblock |
drm_vmw_synccpu_allow_cs)) != 0) {
DRM_ERROR("Illegal synccpu flags.\n");
return -EINVAL;
}
switch (arg->op) {
case drm_vmw_synccpu_grab:
ret = vmw_user_bo_lookup(tfile, arg->handle, &vbo,
&buffer_base);
if (unlikely(ret != 0))
return ret;
user_bo = container_of(vbo, struct vmw_user_buffer_object,
vbo);
ret = vmw_user_bo_synccpu_grab(user_bo, tfile, arg->flags);
vmw_bo_unreference(&vbo);
ttm_base_object_unref(&buffer_base);
if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
ret != -EBUSY)) {
DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
(unsigned int) arg->handle);
return ret;
}
break;
case drm_vmw_synccpu_release:
ret = vmw_user_bo_synccpu_release(arg->handle, tfile,
arg->flags);
if (unlikely(ret != 0)) {
DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
(unsigned int) arg->handle);
return ret;
}
break;
default:
DRM_ERROR("Invalid synccpu operation.\n");
return -EINVAL;
}
return 0;
}
/**
* vmw_bo_alloc_ioctl - ioctl function implementing the buffer object
* allocation functionality.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller.
* Return: Zero on success, negative error code on error.
*
* This function checks the ioctl arguments for validity and allocates a
* struct vmw_user_buffer_object bo.
*/
int vmw_bo_alloc_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct vmw_private *dev_priv = vmw_priv(dev);
union drm_vmw_alloc_dmabuf_arg *arg =
(union drm_vmw_alloc_dmabuf_arg *)data;
struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
struct drm_vmw_dmabuf_rep *rep = &arg->rep;
struct vmw_buffer_object *vbo;
uint32_t handle;
int ret;
ret = ttm_read_lock(&dev_priv->reservation_sem, true);
if (unlikely(ret != 0))
return ret;
ret = vmw_user_bo_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
req->size, false, &handle, &vbo,
NULL);
if (unlikely(ret != 0))
goto out_no_bo;
rep->handle = handle;
rep->map_handle = drm_vma_node_offset_addr(&vbo->base.base.vma_node);
rep->cur_gmr_id = handle;
rep->cur_gmr_offset = 0;
vmw_bo_unreference(&vbo);
out_no_bo:
ttm_read_unlock(&dev_priv->reservation_sem);
return ret;
}
/**
* vmw_bo_unref_ioctl - Generic handle close ioctl.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller.
* Return: Zero on success, negative error code on error.
*
* This function checks the ioctl arguments for validity and closes a
* handle to a TTM base object, optionally freeing the object.
*/
int vmw_bo_unref_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_unref_dmabuf_arg *arg =
(struct drm_vmw_unref_dmabuf_arg *)data;
return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
arg->handle,
TTM_REF_USAGE);
}
/**
* vmw_user_bo_lookup - Look up a vmw user buffer object from a handle.
*
* @tfile: The TTM object file the handle is registered with.
* @handle: The user buffer object handle
* @out: Pointer to a where a pointer to the embedded
* struct vmw_buffer_object should be placed.
* @p_base: Pointer to where a pointer to the TTM base object should be
* placed, or NULL if no such pointer is required.
* Return: Zero on success, Negative error code on error.
*
* Both the output base object pointer and the vmw buffer object pointer
* will be refcounted.
*/
int vmw_user_bo_lookup(struct ttm_object_file *tfile,
uint32_t handle, struct vmw_buffer_object **out,
struct ttm_base_object **p_base)
{
struct vmw_user_buffer_object *vmw_user_bo;
struct ttm_base_object *base;
base = ttm_base_object_lookup(tfile, handle);
if (unlikely(base == NULL)) {
DRM_ERROR("Invalid buffer object handle 0x%08lx.\n",
(unsigned long)handle);
return -ESRCH;
}
if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
ttm_base_object_unref(&base);
DRM_ERROR("Invalid buffer object handle 0x%08lx.\n",
(unsigned long)handle);
return -EINVAL;
}
vmw_user_bo = container_of(base, struct vmw_user_buffer_object,
prime.base);
ttm_bo_get(&vmw_user_bo->vbo.base);
if (p_base)
*p_base = base;
else
ttm_base_object_unref(&base);
*out = &vmw_user_bo->vbo;
return 0;
}
/**
* vmw_user_bo_noref_lookup - Look up a vmw user buffer object without reference
* @tfile: The TTM object file the handle is registered with.
* @handle: The user buffer object handle.
*
* This function looks up a struct vmw_user_bo and returns a pointer to the
* struct vmw_buffer_object it derives from without refcounting the pointer.
* The returned pointer is only valid until vmw_user_bo_noref_release() is
* called, and the object pointed to by the returned pointer may be doomed.
* Any persistent usage of the object requires a refcount to be taken using
* ttm_bo_reference_unless_doomed(). Iff this function returns successfully it
* needs to be paired with vmw_user_bo_noref_release() and no sleeping-
* or scheduling functions may be called inbetween these function calls.
*
* Return: A struct vmw_buffer_object pointer if successful or negative
* error pointer on failure.
*/
struct vmw_buffer_object *
vmw_user_bo_noref_lookup(struct ttm_object_file *tfile, u32 handle)
{
struct vmw_user_buffer_object *vmw_user_bo;
struct ttm_base_object *base;
base = ttm_base_object_noref_lookup(tfile, handle);
if (!base) {
DRM_ERROR("Invalid buffer object handle 0x%08lx.\n",
(unsigned long)handle);
return ERR_PTR(-ESRCH);
}
if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
ttm_base_object_noref_release();
DRM_ERROR("Invalid buffer object handle 0x%08lx.\n",
(unsigned long)handle);
return ERR_PTR(-EINVAL);
}
vmw_user_bo = container_of(base, struct vmw_user_buffer_object,
prime.base);
return &vmw_user_bo->vbo;
}
/**
* vmw_user_bo_reference - Open a handle to a vmw user buffer object.
*
* @tfile: The TTM object file to register the handle with.
* @vbo: The embedded vmw buffer object.
* @handle: Pointer to where the new handle should be placed.
* Return: Zero on success, Negative error code on error.
*/
int vmw_user_bo_reference(struct ttm_object_file *tfile,
struct vmw_buffer_object *vbo,
uint32_t *handle)
{
struct vmw_user_buffer_object *user_bo;
if (vbo->base.destroy != vmw_user_bo_destroy)
return -EINVAL;
user_bo = container_of(vbo, struct vmw_user_buffer_object, vbo);
*handle = user_bo->prime.base.handle;
return ttm_ref_object_add(tfile, &user_bo->prime.base,
TTM_REF_USAGE, NULL, false);
}
/**
* vmw_bo_fence_single - Utility function to fence a single TTM buffer
* object without unreserving it.
*
* @bo: Pointer to the struct ttm_buffer_object to fence.
* @fence: Pointer to the fence. If NULL, this function will
* insert a fence into the command stream..
*
* Contrary to the ttm_eu version of this function, it takes only
* a single buffer object instead of a list, and it also doesn't
* unreserve the buffer object, which needs to be done separately.
*/
void vmw_bo_fence_single(struct ttm_buffer_object *bo,
struct vmw_fence_obj *fence)
{
struct ttm_bo_device *bdev = bo->bdev;
struct vmw_private *dev_priv =
container_of(bdev, struct vmw_private, bdev);
if (fence == NULL) {
vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
dma_resv_add_excl_fence(bo->base.resv, &fence->base);
dma_fence_put(&fence->base);
} else
dma_resv_add_excl_fence(bo->base.resv, &fence->base);
}
/**
* vmw_dumb_create - Create a dumb kms buffer
*
* @file_priv: Pointer to a struct drm_file identifying the caller.
* @dev: Pointer to the drm device.
* @args: Pointer to a struct drm_mode_create_dumb structure
* Return: Zero on success, negative error code on failure.
*
* This is a driver callback for the core drm create_dumb functionality.
* Note that this is very similar to the vmw_bo_alloc ioctl, except
* that the arguments have a different format.
*/
int vmw_dumb_create(struct drm_file *file_priv,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
struct vmw_private *dev_priv = vmw_priv(dev);
struct vmw_buffer_object *vbo;
int ret;
args->pitch = args->width * ((args->bpp + 7) / 8);
args->size = args->pitch * args->height;
ret = ttm_read_lock(&dev_priv->reservation_sem, true);
if (unlikely(ret != 0))
return ret;
ret = vmw_user_bo_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
args->size, false, &args->handle,
&vbo, NULL);
if (unlikely(ret != 0))
goto out_no_bo;
vmw_bo_unreference(&vbo);
out_no_bo:
ttm_read_unlock(&dev_priv->reservation_sem);
return ret;
}
/**
* vmw_dumb_map_offset - Return the address space offset of a dumb buffer
*
* @file_priv: Pointer to a struct drm_file identifying the caller.
* @dev: Pointer to the drm device.
* @handle: Handle identifying the dumb buffer.
* @offset: The address space offset returned.
* Return: Zero on success, negative error code on failure.
*
* This is a driver callback for the core drm dumb_map_offset functionality.
*/
int vmw_dumb_map_offset(struct drm_file *file_priv,
struct drm_device *dev, uint32_t handle,
uint64_t *offset)
{
struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
struct vmw_buffer_object *out_buf;
int ret;
ret = vmw_user_bo_lookup(tfile, handle, &out_buf, NULL);
if (ret != 0)
return -EINVAL;
*offset = drm_vma_node_offset_addr(&out_buf->base.base.vma_node);
vmw_bo_unreference(&out_buf);
return 0;
}
/**
* vmw_dumb_destroy - Destroy a dumb boffer
*
* @file_priv: Pointer to a struct drm_file identifying the caller.
* @dev: Pointer to the drm device.
* @handle: Handle identifying the dumb buffer.
* Return: Zero on success, negative error code on failure.
*
* This is a driver callback for the core drm dumb_destroy functionality.
*/
int vmw_dumb_destroy(struct drm_file *file_priv,
struct drm_device *dev,
uint32_t handle)
{
return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
handle, TTM_REF_USAGE);
}
/**
* vmw_bo_swap_notify - swapout notify callback.
*
* @bo: The buffer object to be swapped out.
*/
void vmw_bo_swap_notify(struct ttm_buffer_object *bo)
{
/* Is @bo embedded in a struct vmw_buffer_object? */
if (bo->destroy != vmw_bo_bo_free &&
bo->destroy != vmw_user_bo_destroy)
return;
/* Kill any cached kernel maps before swapout */
vmw_bo_unmap(vmw_buffer_object(bo));
}
/**
* vmw_bo_move_notify - TTM move_notify_callback
*
* @bo: The TTM buffer object about to move.
* @mem: The struct ttm_mem_reg indicating to what memory
* region the move is taking place.
*
* Detaches cached maps and device bindings that require that the
* buffer doesn't move.
*/
void vmw_bo_move_notify(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem)
{
struct vmw_buffer_object *vbo;
if (mem == NULL)
return;
/* Make sure @bo is embedded in a struct vmw_buffer_object? */
if (bo->destroy != vmw_bo_bo_free &&
bo->destroy != vmw_user_bo_destroy)
return;
vbo = container_of(bo, struct vmw_buffer_object, base);
/*
* Kill any cached kernel maps before move to or from VRAM.
* With other types of moves, the underlying pages stay the same,
* and the map can be kept.
*/
if (mem->mem_type == TTM_PL_VRAM || bo->mem.mem_type == TTM_PL_VRAM)
vmw_bo_unmap(vbo);
/*
* If we're moving a backup MOB out of MOB placement, then make sure we
* read back all resource content first, and unbind the MOB from
* the resource.
*/
if (mem->mem_type != VMW_PL_MOB && bo->mem.mem_type == VMW_PL_MOB)
vmw_resource_unbind_list(vbo);
}