800 строки
20 KiB
C
800 строки
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* High memory handling common code and variables.
|
|
*
|
|
* (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
|
|
* Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
|
|
*
|
|
*
|
|
* Redesigned the x86 32-bit VM architecture to deal with
|
|
* 64-bit physical space. With current x86 CPUs this
|
|
* means up to 64 Gigabytes physical RAM.
|
|
*
|
|
* Rewrote high memory support to move the page cache into
|
|
* high memory. Implemented permanent (schedulable) kmaps
|
|
* based on Linus' idea.
|
|
*
|
|
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/init.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/kgdb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
/*
|
|
* Virtual_count is not a pure "count".
|
|
* 0 means that it is not mapped, and has not been mapped
|
|
* since a TLB flush - it is usable.
|
|
* 1 means that there are no users, but it has been mapped
|
|
* since the last TLB flush - so we can't use it.
|
|
* n means that there are (n-1) current users of it.
|
|
*/
|
|
#ifdef CONFIG_HIGHMEM
|
|
|
|
/*
|
|
* Architecture with aliasing data cache may define the following family of
|
|
* helper functions in its asm/highmem.h to control cache color of virtual
|
|
* addresses where physical memory pages are mapped by kmap.
|
|
*/
|
|
#ifndef get_pkmap_color
|
|
|
|
/*
|
|
* Determine color of virtual address where the page should be mapped.
|
|
*/
|
|
static inline unsigned int get_pkmap_color(struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
#define get_pkmap_color get_pkmap_color
|
|
|
|
/*
|
|
* Get next index for mapping inside PKMAP region for page with given color.
|
|
*/
|
|
static inline unsigned int get_next_pkmap_nr(unsigned int color)
|
|
{
|
|
static unsigned int last_pkmap_nr;
|
|
|
|
last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
|
|
return last_pkmap_nr;
|
|
}
|
|
|
|
/*
|
|
* Determine if page index inside PKMAP region (pkmap_nr) of given color
|
|
* has wrapped around PKMAP region end. When this happens an attempt to
|
|
* flush all unused PKMAP slots is made.
|
|
*/
|
|
static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
|
|
{
|
|
return pkmap_nr == 0;
|
|
}
|
|
|
|
/*
|
|
* Get the number of PKMAP entries of the given color. If no free slot is
|
|
* found after checking that many entries, kmap will sleep waiting for
|
|
* someone to call kunmap and free PKMAP slot.
|
|
*/
|
|
static inline int get_pkmap_entries_count(unsigned int color)
|
|
{
|
|
return LAST_PKMAP;
|
|
}
|
|
|
|
/*
|
|
* Get head of a wait queue for PKMAP entries of the given color.
|
|
* Wait queues for different mapping colors should be independent to avoid
|
|
* unnecessary wakeups caused by freeing of slots of other colors.
|
|
*/
|
|
static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
|
|
{
|
|
static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
|
|
|
|
return &pkmap_map_wait;
|
|
}
|
|
#endif
|
|
|
|
atomic_long_t _totalhigh_pages __read_mostly;
|
|
EXPORT_SYMBOL(_totalhigh_pages);
|
|
|
|
unsigned int __nr_free_highpages(void)
|
|
{
|
|
struct zone *zone;
|
|
unsigned int pages = 0;
|
|
|
|
for_each_populated_zone(zone) {
|
|
if (is_highmem(zone))
|
|
pages += zone_page_state(zone, NR_FREE_PAGES);
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int pkmap_count[LAST_PKMAP];
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
|
|
|
|
pte_t *pkmap_page_table;
|
|
|
|
/*
|
|
* Most architectures have no use for kmap_high_get(), so let's abstract
|
|
* the disabling of IRQ out of the locking in that case to save on a
|
|
* potential useless overhead.
|
|
*/
|
|
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
|
|
#define lock_kmap() spin_lock_irq(&kmap_lock)
|
|
#define unlock_kmap() spin_unlock_irq(&kmap_lock)
|
|
#define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags)
|
|
#define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags)
|
|
#else
|
|
#define lock_kmap() spin_lock(&kmap_lock)
|
|
#define unlock_kmap() spin_unlock(&kmap_lock)
|
|
#define lock_kmap_any(flags) \
|
|
do { spin_lock(&kmap_lock); (void)(flags); } while (0)
|
|
#define unlock_kmap_any(flags) \
|
|
do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
|
|
#endif
|
|
|
|
struct page *__kmap_to_page(void *vaddr)
|
|
{
|
|
unsigned long addr = (unsigned long)vaddr;
|
|
|
|
if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
|
|
int i = PKMAP_NR(addr);
|
|
|
|
return pte_page(pkmap_page_table[i]);
|
|
}
|
|
|
|
return virt_to_page(addr);
|
|
}
|
|
EXPORT_SYMBOL(__kmap_to_page);
|
|
|
|
static void flush_all_zero_pkmaps(void)
|
|
{
|
|
int i;
|
|
int need_flush = 0;
|
|
|
|
flush_cache_kmaps();
|
|
|
|
for (i = 0; i < LAST_PKMAP; i++) {
|
|
struct page *page;
|
|
|
|
/*
|
|
* zero means we don't have anything to do,
|
|
* >1 means that it is still in use. Only
|
|
* a count of 1 means that it is free but
|
|
* needs to be unmapped
|
|
*/
|
|
if (pkmap_count[i] != 1)
|
|
continue;
|
|
pkmap_count[i] = 0;
|
|
|
|
/* sanity check */
|
|
BUG_ON(pte_none(pkmap_page_table[i]));
|
|
|
|
/*
|
|
* Don't need an atomic fetch-and-clear op here;
|
|
* no-one has the page mapped, and cannot get at
|
|
* its virtual address (and hence PTE) without first
|
|
* getting the kmap_lock (which is held here).
|
|
* So no dangers, even with speculative execution.
|
|
*/
|
|
page = pte_page(pkmap_page_table[i]);
|
|
pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
|
|
|
|
set_page_address(page, NULL);
|
|
need_flush = 1;
|
|
}
|
|
if (need_flush)
|
|
flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
|
|
}
|
|
|
|
void __kmap_flush_unused(void)
|
|
{
|
|
lock_kmap();
|
|
flush_all_zero_pkmaps();
|
|
unlock_kmap();
|
|
}
|
|
|
|
static inline unsigned long map_new_virtual(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
int count;
|
|
unsigned int last_pkmap_nr;
|
|
unsigned int color = get_pkmap_color(page);
|
|
|
|
start:
|
|
count = get_pkmap_entries_count(color);
|
|
/* Find an empty entry */
|
|
for (;;) {
|
|
last_pkmap_nr = get_next_pkmap_nr(color);
|
|
if (no_more_pkmaps(last_pkmap_nr, color)) {
|
|
flush_all_zero_pkmaps();
|
|
count = get_pkmap_entries_count(color);
|
|
}
|
|
if (!pkmap_count[last_pkmap_nr])
|
|
break; /* Found a usable entry */
|
|
if (--count)
|
|
continue;
|
|
|
|
/*
|
|
* Sleep for somebody else to unmap their entries
|
|
*/
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
wait_queue_head_t *pkmap_map_wait =
|
|
get_pkmap_wait_queue_head(color);
|
|
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(pkmap_map_wait, &wait);
|
|
unlock_kmap();
|
|
schedule();
|
|
remove_wait_queue(pkmap_map_wait, &wait);
|
|
lock_kmap();
|
|
|
|
/* Somebody else might have mapped it while we slept */
|
|
if (page_address(page))
|
|
return (unsigned long)page_address(page);
|
|
|
|
/* Re-start */
|
|
goto start;
|
|
}
|
|
}
|
|
vaddr = PKMAP_ADDR(last_pkmap_nr);
|
|
set_pte_at(&init_mm, vaddr,
|
|
&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
|
|
|
|
pkmap_count[last_pkmap_nr] = 1;
|
|
set_page_address(page, (void *)vaddr);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
/**
|
|
* kmap_high - map a highmem page into memory
|
|
* @page: &struct page to map
|
|
*
|
|
* Returns the page's virtual memory address.
|
|
*
|
|
* We cannot call this from interrupts, as it may block.
|
|
*/
|
|
void *kmap_high(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
|
|
/*
|
|
* For highmem pages, we can't trust "virtual" until
|
|
* after we have the lock.
|
|
*/
|
|
lock_kmap();
|
|
vaddr = (unsigned long)page_address(page);
|
|
if (!vaddr)
|
|
vaddr = map_new_virtual(page);
|
|
pkmap_count[PKMAP_NR(vaddr)]++;
|
|
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
|
|
unlock_kmap();
|
|
return (void *) vaddr;
|
|
}
|
|
EXPORT_SYMBOL(kmap_high);
|
|
|
|
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
|
|
/**
|
|
* kmap_high_get - pin a highmem page into memory
|
|
* @page: &struct page to pin
|
|
*
|
|
* Returns the page's current virtual memory address, or NULL if no mapping
|
|
* exists. If and only if a non null address is returned then a
|
|
* matching call to kunmap_high() is necessary.
|
|
*
|
|
* This can be called from any context.
|
|
*/
|
|
void *kmap_high_get(struct page *page)
|
|
{
|
|
unsigned long vaddr, flags;
|
|
|
|
lock_kmap_any(flags);
|
|
vaddr = (unsigned long)page_address(page);
|
|
if (vaddr) {
|
|
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
|
|
pkmap_count[PKMAP_NR(vaddr)]++;
|
|
}
|
|
unlock_kmap_any(flags);
|
|
return (void *) vaddr;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* kunmap_high - unmap a highmem page into memory
|
|
* @page: &struct page to unmap
|
|
*
|
|
* If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
|
|
* only from user context.
|
|
*/
|
|
void kunmap_high(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
unsigned long nr;
|
|
unsigned long flags;
|
|
int need_wakeup;
|
|
unsigned int color = get_pkmap_color(page);
|
|
wait_queue_head_t *pkmap_map_wait;
|
|
|
|
lock_kmap_any(flags);
|
|
vaddr = (unsigned long)page_address(page);
|
|
BUG_ON(!vaddr);
|
|
nr = PKMAP_NR(vaddr);
|
|
|
|
/*
|
|
* A count must never go down to zero
|
|
* without a TLB flush!
|
|
*/
|
|
need_wakeup = 0;
|
|
switch (--pkmap_count[nr]) {
|
|
case 0:
|
|
BUG();
|
|
case 1:
|
|
/*
|
|
* Avoid an unnecessary wake_up() function call.
|
|
* The common case is pkmap_count[] == 1, but
|
|
* no waiters.
|
|
* The tasks queued in the wait-queue are guarded
|
|
* by both the lock in the wait-queue-head and by
|
|
* the kmap_lock. As the kmap_lock is held here,
|
|
* no need for the wait-queue-head's lock. Simply
|
|
* test if the queue is empty.
|
|
*/
|
|
pkmap_map_wait = get_pkmap_wait_queue_head(color);
|
|
need_wakeup = waitqueue_active(pkmap_map_wait);
|
|
}
|
|
unlock_kmap_any(flags);
|
|
|
|
/* do wake-up, if needed, race-free outside of the spin lock */
|
|
if (need_wakeup)
|
|
wake_up(pkmap_map_wait);
|
|
}
|
|
EXPORT_SYMBOL(kunmap_high);
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
|
|
unsigned start2, unsigned end2)
|
|
{
|
|
unsigned int i;
|
|
|
|
BUG_ON(end1 > page_size(page) || end2 > page_size(page));
|
|
|
|
if (start1 >= end1)
|
|
start1 = end1 = 0;
|
|
if (start2 >= end2)
|
|
start2 = end2 = 0;
|
|
|
|
for (i = 0; i < compound_nr(page); i++) {
|
|
void *kaddr = NULL;
|
|
|
|
if (start1 >= PAGE_SIZE) {
|
|
start1 -= PAGE_SIZE;
|
|
end1 -= PAGE_SIZE;
|
|
} else {
|
|
unsigned this_end = min_t(unsigned, end1, PAGE_SIZE);
|
|
|
|
if (end1 > start1) {
|
|
kaddr = kmap_atomic(page + i);
|
|
memset(kaddr + start1, 0, this_end - start1);
|
|
}
|
|
end1 -= this_end;
|
|
start1 = 0;
|
|
}
|
|
|
|
if (start2 >= PAGE_SIZE) {
|
|
start2 -= PAGE_SIZE;
|
|
end2 -= PAGE_SIZE;
|
|
} else {
|
|
unsigned this_end = min_t(unsigned, end2, PAGE_SIZE);
|
|
|
|
if (end2 > start2) {
|
|
if (!kaddr)
|
|
kaddr = kmap_atomic(page + i);
|
|
memset(kaddr + start2, 0, this_end - start2);
|
|
}
|
|
end2 -= this_end;
|
|
start2 = 0;
|
|
}
|
|
|
|
if (kaddr) {
|
|
kunmap_atomic(kaddr);
|
|
flush_dcache_page(page + i);
|
|
}
|
|
|
|
if (!end1 && !end2)
|
|
break;
|
|
}
|
|
|
|
BUG_ON((start1 | start2 | end1 | end2) != 0);
|
|
}
|
|
EXPORT_SYMBOL(zero_user_segments);
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
#ifdef CONFIG_KMAP_LOCAL
|
|
|
|
#include <asm/kmap_size.h>
|
|
|
|
/*
|
|
* With DEBUG_KMAP_LOCAL the stack depth is doubled and every second
|
|
* slot is unused which acts as a guard page
|
|
*/
|
|
#ifdef CONFIG_DEBUG_KMAP_LOCAL
|
|
# define KM_INCR 2
|
|
#else
|
|
# define KM_INCR 1
|
|
#endif
|
|
|
|
static inline int kmap_local_idx_push(void)
|
|
{
|
|
WARN_ON_ONCE(in_hardirq() && !irqs_disabled());
|
|
current->kmap_ctrl.idx += KM_INCR;
|
|
BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX);
|
|
return current->kmap_ctrl.idx - 1;
|
|
}
|
|
|
|
static inline int kmap_local_idx(void)
|
|
{
|
|
return current->kmap_ctrl.idx - 1;
|
|
}
|
|
|
|
static inline void kmap_local_idx_pop(void)
|
|
{
|
|
current->kmap_ctrl.idx -= KM_INCR;
|
|
BUG_ON(current->kmap_ctrl.idx < 0);
|
|
}
|
|
|
|
#ifndef arch_kmap_local_post_map
|
|
# define arch_kmap_local_post_map(vaddr, pteval) do { } while (0)
|
|
#endif
|
|
|
|
#ifndef arch_kmap_local_pre_unmap
|
|
# define arch_kmap_local_pre_unmap(vaddr) do { } while (0)
|
|
#endif
|
|
|
|
#ifndef arch_kmap_local_post_unmap
|
|
# define arch_kmap_local_post_unmap(vaddr) do { } while (0)
|
|
#endif
|
|
|
|
#ifndef arch_kmap_local_map_idx
|
|
#define arch_kmap_local_map_idx(idx, pfn) kmap_local_calc_idx(idx)
|
|
#endif
|
|
|
|
#ifndef arch_kmap_local_unmap_idx
|
|
#define arch_kmap_local_unmap_idx(idx, vaddr) kmap_local_calc_idx(idx)
|
|
#endif
|
|
|
|
#ifndef arch_kmap_local_high_get
|
|
static inline void *arch_kmap_local_high_get(struct page *page)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_kmap_local_set_pte
|
|
#define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev) \
|
|
set_pte_at(mm, vaddr, ptep, ptev)
|
|
#endif
|
|
|
|
/* Unmap a local mapping which was obtained by kmap_high_get() */
|
|
static inline bool kmap_high_unmap_local(unsigned long vaddr)
|
|
{
|
|
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
|
|
if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
|
|
kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)]));
|
|
return true;
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
static inline int kmap_local_calc_idx(int idx)
|
|
{
|
|
return idx + KM_MAX_IDX * smp_processor_id();
|
|
}
|
|
|
|
static pte_t *__kmap_pte;
|
|
|
|
static pte_t *kmap_get_pte(unsigned long vaddr, int idx)
|
|
{
|
|
if (IS_ENABLED(CONFIG_KMAP_LOCAL_NON_LINEAR_PTE_ARRAY))
|
|
/*
|
|
* Set by the arch if __kmap_pte[-idx] does not produce
|
|
* the correct entry.
|
|
*/
|
|
return virt_to_kpte(vaddr);
|
|
if (!__kmap_pte)
|
|
__kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
|
|
return &__kmap_pte[-idx];
|
|
}
|
|
|
|
void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
|
|
{
|
|
pte_t pteval, *kmap_pte;
|
|
unsigned long vaddr;
|
|
int idx;
|
|
|
|
/*
|
|
* Disable migration so resulting virtual address is stable
|
|
* across preemption.
|
|
*/
|
|
migrate_disable();
|
|
preempt_disable();
|
|
idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn);
|
|
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
|
|
kmap_pte = kmap_get_pte(vaddr, idx);
|
|
BUG_ON(!pte_none(*kmap_pte));
|
|
pteval = pfn_pte(pfn, prot);
|
|
arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte, pteval);
|
|
arch_kmap_local_post_map(vaddr, pteval);
|
|
current->kmap_ctrl.pteval[kmap_local_idx()] = pteval;
|
|
preempt_enable();
|
|
|
|
return (void *)vaddr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot);
|
|
|
|
void *__kmap_local_page_prot(struct page *page, pgprot_t prot)
|
|
{
|
|
void *kmap;
|
|
|
|
/*
|
|
* To broaden the usage of the actual kmap_local() machinery always map
|
|
* pages when debugging is enabled and the architecture has no problems
|
|
* with alias mappings.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page))
|
|
return page_address(page);
|
|
|
|
/* Try kmap_high_get() if architecture has it enabled */
|
|
kmap = arch_kmap_local_high_get(page);
|
|
if (kmap)
|
|
return kmap;
|
|
|
|
return __kmap_local_pfn_prot(page_to_pfn(page), prot);
|
|
}
|
|
EXPORT_SYMBOL(__kmap_local_page_prot);
|
|
|
|
void kunmap_local_indexed(void *vaddr)
|
|
{
|
|
unsigned long addr = (unsigned long) vaddr & PAGE_MASK;
|
|
pte_t *kmap_pte;
|
|
int idx;
|
|
|
|
if (addr < __fix_to_virt(FIX_KMAP_END) ||
|
|
addr > __fix_to_virt(FIX_KMAP_BEGIN)) {
|
|
if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) {
|
|
/* This _should_ never happen! See above. */
|
|
WARN_ON_ONCE(1);
|
|
return;
|
|
}
|
|
/*
|
|
* Handle mappings which were obtained by kmap_high_get()
|
|
* first as the virtual address of such mappings is below
|
|
* PAGE_OFFSET. Warn for all other addresses which are in
|
|
* the user space part of the virtual address space.
|
|
*/
|
|
if (!kmap_high_unmap_local(addr))
|
|
WARN_ON_ONCE(addr < PAGE_OFFSET);
|
|
return;
|
|
}
|
|
|
|
preempt_disable();
|
|
idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr);
|
|
WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
|
|
|
|
kmap_pte = kmap_get_pte(addr, idx);
|
|
arch_kmap_local_pre_unmap(addr);
|
|
pte_clear(&init_mm, addr, kmap_pte);
|
|
arch_kmap_local_post_unmap(addr);
|
|
current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0);
|
|
kmap_local_idx_pop();
|
|
preempt_enable();
|
|
migrate_enable();
|
|
}
|
|
EXPORT_SYMBOL(kunmap_local_indexed);
|
|
|
|
/*
|
|
* Invoked before switch_to(). This is safe even when during or after
|
|
* clearing the maps an interrupt which needs a kmap_local happens because
|
|
* the task::kmap_ctrl.idx is not modified by the unmapping code so a
|
|
* nested kmap_local will use the next unused index and restore the index
|
|
* on unmap. The already cleared kmaps of the outgoing task are irrelevant
|
|
* because the interrupt context does not know about them. The same applies
|
|
* when scheduling back in for an interrupt which happens before the
|
|
* restore is complete.
|
|
*/
|
|
void __kmap_local_sched_out(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
pte_t *kmap_pte;
|
|
int i;
|
|
|
|
/* Clear kmaps */
|
|
for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
|
|
pte_t pteval = tsk->kmap_ctrl.pteval[i];
|
|
unsigned long addr;
|
|
int idx;
|
|
|
|
/* With debug all even slots are unmapped and act as guard */
|
|
if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
|
|
WARN_ON_ONCE(pte_val(pteval) != 0);
|
|
continue;
|
|
}
|
|
if (WARN_ON_ONCE(pte_none(pteval)))
|
|
continue;
|
|
|
|
/*
|
|
* This is a horrible hack for XTENSA to calculate the
|
|
* coloured PTE index. Uses the PFN encoded into the pteval
|
|
* and the map index calculation because the actual mapped
|
|
* virtual address is not stored in task::kmap_ctrl.
|
|
* For any sane architecture this is optimized out.
|
|
*/
|
|
idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
|
|
|
|
addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
|
|
kmap_pte = kmap_get_pte(addr, idx);
|
|
arch_kmap_local_pre_unmap(addr);
|
|
pte_clear(&init_mm, addr, kmap_pte);
|
|
arch_kmap_local_post_unmap(addr);
|
|
}
|
|
}
|
|
|
|
void __kmap_local_sched_in(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
pte_t *kmap_pte;
|
|
int i;
|
|
|
|
/* Restore kmaps */
|
|
for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
|
|
pte_t pteval = tsk->kmap_ctrl.pteval[i];
|
|
unsigned long addr;
|
|
int idx;
|
|
|
|
/* With debug all even slots are unmapped and act as guard */
|
|
if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
|
|
WARN_ON_ONCE(pte_val(pteval) != 0);
|
|
continue;
|
|
}
|
|
if (WARN_ON_ONCE(pte_none(pteval)))
|
|
continue;
|
|
|
|
/* See comment in __kmap_local_sched_out() */
|
|
idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
|
|
addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
|
|
kmap_pte = kmap_get_pte(addr, idx);
|
|
set_pte_at(&init_mm, addr, kmap_pte, pteval);
|
|
arch_kmap_local_post_map(addr, pteval);
|
|
}
|
|
}
|
|
|
|
void kmap_local_fork(struct task_struct *tsk)
|
|
{
|
|
if (WARN_ON_ONCE(tsk->kmap_ctrl.idx))
|
|
memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl));
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(HASHED_PAGE_VIRTUAL)
|
|
|
|
#define PA_HASH_ORDER 7
|
|
|
|
/*
|
|
* Describes one page->virtual association
|
|
*/
|
|
struct page_address_map {
|
|
struct page *page;
|
|
void *virtual;
|
|
struct list_head list;
|
|
};
|
|
|
|
static struct page_address_map page_address_maps[LAST_PKMAP];
|
|
|
|
/*
|
|
* Hash table bucket
|
|
*/
|
|
static struct page_address_slot {
|
|
struct list_head lh; /* List of page_address_maps */
|
|
spinlock_t lock; /* Protect this bucket's list */
|
|
} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
|
|
|
|
static struct page_address_slot *page_slot(const struct page *page)
|
|
{
|
|
return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
|
|
}
|
|
|
|
/**
|
|
* page_address - get the mapped virtual address of a page
|
|
* @page: &struct page to get the virtual address of
|
|
*
|
|
* Returns the page's virtual address.
|
|
*/
|
|
void *page_address(const struct page *page)
|
|
{
|
|
unsigned long flags;
|
|
void *ret;
|
|
struct page_address_slot *pas;
|
|
|
|
if (!PageHighMem(page))
|
|
return lowmem_page_address(page);
|
|
|
|
pas = page_slot(page);
|
|
ret = NULL;
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
if (!list_empty(&pas->lh)) {
|
|
struct page_address_map *pam;
|
|
|
|
list_for_each_entry(pam, &pas->lh, list) {
|
|
if (pam->page == page) {
|
|
ret = pam->virtual;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(page_address);
|
|
|
|
/**
|
|
* set_page_address - set a page's virtual address
|
|
* @page: &struct page to set
|
|
* @virtual: virtual address to use
|
|
*/
|
|
void set_page_address(struct page *page, void *virtual)
|
|
{
|
|
unsigned long flags;
|
|
struct page_address_slot *pas;
|
|
struct page_address_map *pam;
|
|
|
|
BUG_ON(!PageHighMem(page));
|
|
|
|
pas = page_slot(page);
|
|
if (virtual) { /* Add */
|
|
pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
|
|
pam->page = page;
|
|
pam->virtual = virtual;
|
|
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
list_add_tail(&pam->list, &pas->lh);
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
} else { /* Remove */
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
list_for_each_entry(pam, &pas->lh, list) {
|
|
if (pam->page == page) {
|
|
list_del(&pam->list);
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
goto done;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
}
|
|
done:
|
|
return;
|
|
}
|
|
|
|
void __init page_address_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
|
|
INIT_LIST_HEAD(&page_address_htable[i].lh);
|
|
spin_lock_init(&page_address_htable[i].lock);
|
|
}
|
|
}
|
|
|
|
#endif /* defined(HASHED_PAGE_VIRTUAL) */
|