702 строки
23 KiB
C
702 строки
23 KiB
C
/*
|
|
* Copyright (c) 2001 The Regents of the University of Michigan.
|
|
* All rights reserved.
|
|
*
|
|
* Kendrick Smith <kmsmith@umich.edu>
|
|
* Andy Adamson <andros@umich.edu>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#ifndef _NFSD4_STATE_H
|
|
#define _NFSD4_STATE_H
|
|
|
|
#include <linux/idr.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/sunrpc/svc_xprt.h>
|
|
#include "nfsfh.h"
|
|
#include "nfsd.h"
|
|
|
|
typedef struct {
|
|
u32 cl_boot;
|
|
u32 cl_id;
|
|
} clientid_t;
|
|
|
|
typedef struct {
|
|
clientid_t so_clid;
|
|
u32 so_id;
|
|
} stateid_opaque_t;
|
|
|
|
typedef struct {
|
|
u32 si_generation;
|
|
stateid_opaque_t si_opaque;
|
|
} stateid_t;
|
|
|
|
#define STATEID_FMT "(%08x/%08x/%08x/%08x)"
|
|
#define STATEID_VAL(s) \
|
|
(s)->si_opaque.so_clid.cl_boot, \
|
|
(s)->si_opaque.so_clid.cl_id, \
|
|
(s)->si_opaque.so_id, \
|
|
(s)->si_generation
|
|
|
|
struct nfsd4_callback {
|
|
struct nfs4_client *cb_clp;
|
|
struct rpc_message cb_msg;
|
|
const struct nfsd4_callback_ops *cb_ops;
|
|
struct work_struct cb_work;
|
|
int cb_seq_status;
|
|
int cb_status;
|
|
bool cb_need_restart;
|
|
bool cb_holds_slot;
|
|
};
|
|
|
|
struct nfsd4_callback_ops {
|
|
void (*prepare)(struct nfsd4_callback *);
|
|
int (*done)(struct nfsd4_callback *, struct rpc_task *);
|
|
void (*release)(struct nfsd4_callback *);
|
|
};
|
|
|
|
/*
|
|
* A core object that represents a "common" stateid. These are generally
|
|
* embedded within the different (more specific) stateid objects and contain
|
|
* fields that are of general use to any stateid.
|
|
*/
|
|
struct nfs4_stid {
|
|
refcount_t sc_count;
|
|
#define NFS4_OPEN_STID 1
|
|
#define NFS4_LOCK_STID 2
|
|
#define NFS4_DELEG_STID 4
|
|
/* For an open stateid kept around *only* to process close replays: */
|
|
#define NFS4_CLOSED_STID 8
|
|
/* For a deleg stateid kept around only to process free_stateid's: */
|
|
#define NFS4_REVOKED_DELEG_STID 16
|
|
#define NFS4_CLOSED_DELEG_STID 32
|
|
#define NFS4_LAYOUT_STID 64
|
|
unsigned char sc_type;
|
|
stateid_t sc_stateid;
|
|
spinlock_t sc_lock;
|
|
struct nfs4_client *sc_client;
|
|
struct nfs4_file *sc_file;
|
|
void (*sc_free)(struct nfs4_stid *);
|
|
};
|
|
|
|
/*
|
|
* Represents a delegation stateid. The nfs4_client holds references to these
|
|
* and they are put when it is being destroyed or when the delegation is
|
|
* returned by the client:
|
|
*
|
|
* o 1 reference as long as a delegation is still in force (taken when it's
|
|
* alloc'd, put when it's returned or revoked)
|
|
*
|
|
* o 1 reference as long as a recall rpc is in progress (taken when the lease
|
|
* is broken, put when the rpc exits)
|
|
*
|
|
* o 1 more ephemeral reference for each nfsd thread currently doing something
|
|
* with that delegation without holding the cl_lock
|
|
*
|
|
* If the server attempts to recall a delegation and the client doesn't do so
|
|
* before a timeout, the server may also revoke the delegation. In that case,
|
|
* the object will either be destroyed (v4.0) or moved to a per-client list of
|
|
* revoked delegations (v4.1+).
|
|
*
|
|
* This object is a superset of the nfs4_stid.
|
|
*/
|
|
struct nfs4_delegation {
|
|
struct nfs4_stid dl_stid; /* must be first field */
|
|
struct list_head dl_perfile;
|
|
struct list_head dl_perclnt;
|
|
struct list_head dl_recall_lru; /* delegation recalled */
|
|
struct nfs4_clnt_odstate *dl_clnt_odstate;
|
|
u32 dl_type;
|
|
time_t dl_time;
|
|
/* For recall: */
|
|
int dl_retries;
|
|
struct nfsd4_callback dl_recall;
|
|
};
|
|
|
|
#define cb_to_delegation(cb) \
|
|
container_of(cb, struct nfs4_delegation, dl_recall)
|
|
|
|
/* client delegation callback info */
|
|
struct nfs4_cb_conn {
|
|
/* SETCLIENTID info */
|
|
struct sockaddr_storage cb_addr;
|
|
struct sockaddr_storage cb_saddr;
|
|
size_t cb_addrlen;
|
|
u32 cb_prog; /* used only in 4.0 case;
|
|
per-session otherwise */
|
|
u32 cb_ident; /* minorversion 0 only */
|
|
struct svc_xprt *cb_xprt; /* minorversion 1 only */
|
|
};
|
|
|
|
static inline struct nfs4_delegation *delegstateid(struct nfs4_stid *s)
|
|
{
|
|
return container_of(s, struct nfs4_delegation, dl_stid);
|
|
}
|
|
|
|
/* Maximum number of slots per session. 160 is useful for long haul TCP */
|
|
#define NFSD_MAX_SLOTS_PER_SESSION 160
|
|
/* Maximum number of operations per session compound */
|
|
#define NFSD_MAX_OPS_PER_COMPOUND 16
|
|
/* Maximum session per slot cache size */
|
|
#define NFSD_SLOT_CACHE_SIZE 2048
|
|
/* Maximum number of NFSD_SLOT_CACHE_SIZE slots per session */
|
|
#define NFSD_CACHE_SIZE_SLOTS_PER_SESSION 32
|
|
#define NFSD_MAX_MEM_PER_SESSION \
|
|
(NFSD_CACHE_SIZE_SLOTS_PER_SESSION * NFSD_SLOT_CACHE_SIZE)
|
|
|
|
struct nfsd4_slot {
|
|
u32 sl_seqid;
|
|
__be32 sl_status;
|
|
struct svc_cred sl_cred;
|
|
u32 sl_datalen;
|
|
u16 sl_opcnt;
|
|
#define NFSD4_SLOT_INUSE (1 << 0)
|
|
#define NFSD4_SLOT_CACHETHIS (1 << 1)
|
|
#define NFSD4_SLOT_INITIALIZED (1 << 2)
|
|
#define NFSD4_SLOT_CACHED (1 << 3)
|
|
u8 sl_flags;
|
|
char sl_data[];
|
|
};
|
|
|
|
struct nfsd4_channel_attrs {
|
|
u32 headerpadsz;
|
|
u32 maxreq_sz;
|
|
u32 maxresp_sz;
|
|
u32 maxresp_cached;
|
|
u32 maxops;
|
|
u32 maxreqs;
|
|
u32 nr_rdma_attrs;
|
|
u32 rdma_attrs;
|
|
};
|
|
|
|
struct nfsd4_cb_sec {
|
|
u32 flavor; /* (u32)(-1) used to mean "no valid flavor" */
|
|
kuid_t uid;
|
|
kgid_t gid;
|
|
};
|
|
|
|
struct nfsd4_create_session {
|
|
clientid_t clientid;
|
|
struct nfs4_sessionid sessionid;
|
|
u32 seqid;
|
|
u32 flags;
|
|
struct nfsd4_channel_attrs fore_channel;
|
|
struct nfsd4_channel_attrs back_channel;
|
|
u32 callback_prog;
|
|
struct nfsd4_cb_sec cb_sec;
|
|
};
|
|
|
|
struct nfsd4_backchannel_ctl {
|
|
u32 bc_cb_program;
|
|
struct nfsd4_cb_sec bc_cb_sec;
|
|
};
|
|
|
|
struct nfsd4_bind_conn_to_session {
|
|
struct nfs4_sessionid sessionid;
|
|
u32 dir;
|
|
};
|
|
|
|
/* The single slot clientid cache structure */
|
|
struct nfsd4_clid_slot {
|
|
u32 sl_seqid;
|
|
__be32 sl_status;
|
|
struct nfsd4_create_session sl_cr_ses;
|
|
};
|
|
|
|
struct nfsd4_conn {
|
|
struct list_head cn_persession;
|
|
struct svc_xprt *cn_xprt;
|
|
struct svc_xpt_user cn_xpt_user;
|
|
struct nfsd4_session *cn_session;
|
|
/* CDFC4_FORE, CDFC4_BACK: */
|
|
unsigned char cn_flags;
|
|
};
|
|
|
|
/*
|
|
* Representation of a v4.1+ session. These are refcounted in a similar fashion
|
|
* to the nfs4_client. References are only taken when the server is actively
|
|
* working on the object (primarily during the processing of compounds).
|
|
*/
|
|
struct nfsd4_session {
|
|
atomic_t se_ref;
|
|
struct list_head se_hash; /* hash by sessionid */
|
|
struct list_head se_perclnt;
|
|
/* See SESSION4_PERSIST, etc. for standard flags; this is internal-only: */
|
|
#define NFS4_SESSION_DEAD 0x010
|
|
u32 se_flags;
|
|
struct nfs4_client *se_client;
|
|
struct nfs4_sessionid se_sessionid;
|
|
struct nfsd4_channel_attrs se_fchannel;
|
|
struct nfsd4_channel_attrs se_bchannel;
|
|
struct nfsd4_cb_sec se_cb_sec;
|
|
struct list_head se_conns;
|
|
u32 se_cb_prog;
|
|
u32 se_cb_seq_nr;
|
|
struct nfsd4_slot *se_slots[]; /* forward channel slots */
|
|
};
|
|
|
|
/* formatted contents of nfs4_sessionid */
|
|
struct nfsd4_sessionid {
|
|
clientid_t clientid;
|
|
u32 sequence;
|
|
u32 reserved;
|
|
};
|
|
|
|
#define HEXDIR_LEN 33 /* hex version of 16 byte md5 of cl_name plus '\0' */
|
|
|
|
/*
|
|
* struct nfs4_client - one per client. Clientids live here.
|
|
*
|
|
* The initial object created by an NFS client using SETCLIENTID (for NFSv4.0)
|
|
* or EXCHANGE_ID (for NFSv4.1+). These objects are refcounted and timestamped.
|
|
* Each nfsd_net_ns object contains a set of these and they are tracked via
|
|
* short and long form clientid. They are hashed and searched for under the
|
|
* per-nfsd_net client_lock spinlock.
|
|
*
|
|
* References to it are only held during the processing of compounds, and in
|
|
* certain other operations. In their "resting state" they have a refcount of
|
|
* 0. If they are not renewed within a lease period, they become eligible for
|
|
* destruction by the laundromat.
|
|
*
|
|
* These objects can also be destroyed prematurely by the fault injection code,
|
|
* or if the client sends certain forms of SETCLIENTID or EXCHANGE_ID updates.
|
|
* Care is taken *not* to do this however when the objects have an elevated
|
|
* refcount.
|
|
*
|
|
* o Each nfs4_client is hashed by clientid
|
|
*
|
|
* o Each nfs4_clients is also hashed by name (the opaque quantity initially
|
|
* sent by the client to identify itself).
|
|
*
|
|
* o cl_perclient list is used to ensure no dangling stateowner references
|
|
* when we expire the nfs4_client
|
|
*/
|
|
struct nfs4_client {
|
|
struct list_head cl_idhash; /* hash by cl_clientid.id */
|
|
struct rb_node cl_namenode; /* link into by-name trees */
|
|
struct list_head *cl_ownerstr_hashtbl;
|
|
struct list_head cl_openowners;
|
|
struct idr cl_stateids; /* stateid lookup */
|
|
struct list_head cl_delegations;
|
|
struct list_head cl_revoked; /* unacknowledged, revoked 4.1 state */
|
|
struct list_head cl_lru; /* tail queue */
|
|
#ifdef CONFIG_NFSD_PNFS
|
|
struct list_head cl_lo_states; /* outstanding layout states */
|
|
#endif
|
|
struct xdr_netobj cl_name; /* id generated by client */
|
|
nfs4_verifier cl_verifier; /* generated by client */
|
|
time_t cl_time; /* time of last lease renewal */
|
|
struct sockaddr_storage cl_addr; /* client ipaddress */
|
|
bool cl_mach_cred; /* SP4_MACH_CRED in force */
|
|
struct svc_cred cl_cred; /* setclientid principal */
|
|
clientid_t cl_clientid; /* generated by server */
|
|
nfs4_verifier cl_confirm; /* generated by server */
|
|
u32 cl_minorversion;
|
|
/* NFSv4.1 client implementation id: */
|
|
struct xdr_netobj cl_nii_domain;
|
|
struct xdr_netobj cl_nii_name;
|
|
struct timespec cl_nii_time;
|
|
|
|
/* for v4.0 and v4.1 callbacks: */
|
|
struct nfs4_cb_conn cl_cb_conn;
|
|
#define NFSD4_CLIENT_CB_UPDATE (0)
|
|
#define NFSD4_CLIENT_CB_KILL (1)
|
|
#define NFSD4_CLIENT_STABLE (2) /* client on stable storage */
|
|
#define NFSD4_CLIENT_RECLAIM_COMPLETE (3) /* reclaim_complete done */
|
|
#define NFSD4_CLIENT_CONFIRMED (4) /* client is confirmed */
|
|
#define NFSD4_CLIENT_UPCALL_LOCK (5) /* upcall serialization */
|
|
#define NFSD4_CLIENT_CB_FLAG_MASK (1 << NFSD4_CLIENT_CB_UPDATE | \
|
|
1 << NFSD4_CLIENT_CB_KILL)
|
|
unsigned long cl_flags;
|
|
const struct cred *cl_cb_cred;
|
|
struct rpc_clnt *cl_cb_client;
|
|
u32 cl_cb_ident;
|
|
#define NFSD4_CB_UP 0
|
|
#define NFSD4_CB_UNKNOWN 1
|
|
#define NFSD4_CB_DOWN 2
|
|
#define NFSD4_CB_FAULT 3
|
|
int cl_cb_state;
|
|
struct nfsd4_callback cl_cb_null;
|
|
struct nfsd4_session *cl_cb_session;
|
|
|
|
/* for all client information that callback code might need: */
|
|
spinlock_t cl_lock;
|
|
|
|
/* for nfs41 */
|
|
struct list_head cl_sessions;
|
|
struct nfsd4_clid_slot cl_cs_slot; /* create_session slot */
|
|
u32 cl_exchange_flags;
|
|
/* number of rpc's in progress over an associated session: */
|
|
atomic_t cl_rpc_users;
|
|
struct nfsdfs_client cl_nfsdfs;
|
|
struct nfs4_op_map cl_spo_must_allow;
|
|
|
|
/* debugging info directory under nfsd/clients/ : */
|
|
struct dentry *cl_nfsd_dentry;
|
|
|
|
/* for nfs41 callbacks */
|
|
/* We currently support a single back channel with a single slot */
|
|
unsigned long cl_cb_slot_busy;
|
|
struct rpc_wait_queue cl_cb_waitq; /* backchannel callers may */
|
|
/* wait here for slots */
|
|
struct net *net;
|
|
struct list_head async_copies; /* list of async copies */
|
|
spinlock_t async_lock; /* lock for async copies */
|
|
};
|
|
|
|
/* struct nfs4_client_reset
|
|
* one per old client. Populates reset_str_hashtbl. Filled from conf_id_hashtbl
|
|
* upon lease reset, or from upcall to state_daemon (to read in state
|
|
* from non-volitile storage) upon reboot.
|
|
*/
|
|
struct nfs4_client_reclaim {
|
|
struct list_head cr_strhash; /* hash by cr_name */
|
|
struct nfs4_client *cr_clp; /* pointer to associated clp */
|
|
struct xdr_netobj cr_name; /* recovery dir name */
|
|
struct xdr_netobj cr_princhash;
|
|
};
|
|
|
|
/* A reasonable value for REPLAY_ISIZE was estimated as follows:
|
|
* The OPEN response, typically the largest, requires
|
|
* 4(status) + 8(stateid) + 20(changeinfo) + 4(rflags) + 8(verifier) +
|
|
* 4(deleg. type) + 8(deleg. stateid) + 4(deleg. recall flag) +
|
|
* 20(deleg. space limit) + ~32(deleg. ace) = 112 bytes
|
|
*/
|
|
|
|
#define NFSD4_REPLAY_ISIZE 112
|
|
|
|
/*
|
|
* Replay buffer, where the result of the last seqid-mutating operation
|
|
* is cached.
|
|
*/
|
|
struct nfs4_replay {
|
|
__be32 rp_status;
|
|
unsigned int rp_buflen;
|
|
char *rp_buf;
|
|
struct knfsd_fh rp_openfh;
|
|
struct mutex rp_mutex;
|
|
char rp_ibuf[NFSD4_REPLAY_ISIZE];
|
|
};
|
|
|
|
struct nfs4_stateowner;
|
|
|
|
struct nfs4_stateowner_operations {
|
|
void (*so_unhash)(struct nfs4_stateowner *);
|
|
void (*so_free)(struct nfs4_stateowner *);
|
|
};
|
|
|
|
/*
|
|
* A core object that represents either an open or lock owner. The object and
|
|
* lock owner objects have one of these embedded within them. Refcounts and
|
|
* other fields common to both owner types are contained within these
|
|
* structures.
|
|
*/
|
|
struct nfs4_stateowner {
|
|
struct list_head so_strhash;
|
|
struct list_head so_stateids;
|
|
struct nfs4_client *so_client;
|
|
const struct nfs4_stateowner_operations *so_ops;
|
|
/* after increment in nfsd4_bump_seqid, represents the next
|
|
* sequence id expected from the client: */
|
|
atomic_t so_count;
|
|
u32 so_seqid;
|
|
struct xdr_netobj so_owner; /* open owner name */
|
|
struct nfs4_replay so_replay;
|
|
bool so_is_open_owner;
|
|
};
|
|
|
|
/*
|
|
* When a file is opened, the client provides an open state owner opaque string
|
|
* that indicates the "owner" of that open. These objects are refcounted.
|
|
* References to it are held by each open state associated with it. This object
|
|
* is a superset of the nfs4_stateowner struct.
|
|
*/
|
|
struct nfs4_openowner {
|
|
struct nfs4_stateowner oo_owner; /* must be first field */
|
|
struct list_head oo_perclient;
|
|
/*
|
|
* We keep around openowners a little while after last close,
|
|
* which saves clients from having to confirm, and allows us to
|
|
* handle close replays if they come soon enough. The close_lru
|
|
* is a list of such openowners, to be reaped by the laundromat
|
|
* thread eventually if they remain unused:
|
|
*/
|
|
struct list_head oo_close_lru;
|
|
struct nfs4_ol_stateid *oo_last_closed_stid;
|
|
time_t oo_time; /* time of placement on so_close_lru */
|
|
#define NFS4_OO_CONFIRMED 1
|
|
unsigned char oo_flags;
|
|
};
|
|
|
|
/*
|
|
* Represents a generic "lockowner". Similar to an openowner. References to it
|
|
* are held by the lock stateids that are created on its behalf. This object is
|
|
* a superset of the nfs4_stateowner struct.
|
|
*/
|
|
struct nfs4_lockowner {
|
|
struct nfs4_stateowner lo_owner; /* must be first element */
|
|
struct list_head lo_blocked; /* blocked file_locks */
|
|
};
|
|
|
|
static inline struct nfs4_openowner * openowner(struct nfs4_stateowner *so)
|
|
{
|
|
return container_of(so, struct nfs4_openowner, oo_owner);
|
|
}
|
|
|
|
static inline struct nfs4_lockowner * lockowner(struct nfs4_stateowner *so)
|
|
{
|
|
return container_of(so, struct nfs4_lockowner, lo_owner);
|
|
}
|
|
|
|
/*
|
|
* Per-client state indicating no. of opens and outstanding delegations
|
|
* on a file from a particular client.'od' stands for 'open & delegation'
|
|
*/
|
|
struct nfs4_clnt_odstate {
|
|
struct nfs4_client *co_client;
|
|
struct nfs4_file *co_file;
|
|
struct list_head co_perfile;
|
|
refcount_t co_odcount;
|
|
};
|
|
|
|
/*
|
|
* nfs4_file: a file opened by some number of (open) nfs4_stateowners.
|
|
*
|
|
* These objects are global. nfsd keeps one instance of a nfs4_file per
|
|
* filehandle (though it may keep multiple file descriptors for each). Each
|
|
* inode can have multiple filehandles associated with it, so there is
|
|
* (potentially) a many to one relationship between this struct and struct
|
|
* inode.
|
|
*
|
|
* These are hashed by filehandle in the file_hashtbl, which is protected by
|
|
* the global state_lock spinlock.
|
|
*/
|
|
struct nfs4_file {
|
|
refcount_t fi_ref;
|
|
spinlock_t fi_lock;
|
|
struct hlist_node fi_hash; /* hash on fi_fhandle */
|
|
struct list_head fi_stateids;
|
|
union {
|
|
struct list_head fi_delegations;
|
|
struct rcu_head fi_rcu;
|
|
};
|
|
struct list_head fi_clnt_odstate;
|
|
/* One each for O_RDONLY, O_WRONLY, O_RDWR: */
|
|
struct nfsd_file *fi_fds[3];
|
|
/*
|
|
* Each open or lock stateid contributes 0-4 to the counts
|
|
* below depending on which bits are set in st_access_bitmap:
|
|
* 1 to fi_access[O_RDONLY] if NFS4_SHARE_ACCES_READ is set
|
|
* + 1 to fi_access[O_WRONLY] if NFS4_SHARE_ACCESS_WRITE is set
|
|
* + 1 to both of the above if NFS4_SHARE_ACCESS_BOTH is set.
|
|
*/
|
|
atomic_t fi_access[2];
|
|
u32 fi_share_deny;
|
|
struct nfsd_file *fi_deleg_file;
|
|
int fi_delegees;
|
|
struct knfsd_fh fi_fhandle;
|
|
bool fi_had_conflict;
|
|
#ifdef CONFIG_NFSD_PNFS
|
|
struct list_head fi_lo_states;
|
|
atomic_t fi_lo_recalls;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* A generic struct representing either a open or lock stateid. The nfs4_client
|
|
* holds a reference to each of these objects, and they in turn hold a
|
|
* reference to their respective stateowners. The client's reference is
|
|
* released in response to a close or unlock (depending on whether it's an open
|
|
* or lock stateid) or when the client is being destroyed.
|
|
*
|
|
* In the case of v4.0 open stateids, these objects are preserved for a little
|
|
* while after close in order to handle CLOSE replays. Those are eventually
|
|
* reclaimed via a LRU scheme by the laundromat.
|
|
*
|
|
* This object is a superset of the nfs4_stid. "ol" stands for "Open or Lock".
|
|
* Better suggestions welcome.
|
|
*/
|
|
struct nfs4_ol_stateid {
|
|
struct nfs4_stid st_stid;
|
|
struct list_head st_perfile;
|
|
struct list_head st_perstateowner;
|
|
struct list_head st_locks;
|
|
struct nfs4_stateowner *st_stateowner;
|
|
struct nfs4_clnt_odstate *st_clnt_odstate;
|
|
unsigned char st_access_bmap;
|
|
unsigned char st_deny_bmap;
|
|
struct nfs4_ol_stateid *st_openstp;
|
|
struct mutex st_mutex;
|
|
};
|
|
|
|
static inline struct nfs4_ol_stateid *openlockstateid(struct nfs4_stid *s)
|
|
{
|
|
return container_of(s, struct nfs4_ol_stateid, st_stid);
|
|
}
|
|
|
|
struct nfs4_layout_stateid {
|
|
struct nfs4_stid ls_stid;
|
|
struct list_head ls_perclnt;
|
|
struct list_head ls_perfile;
|
|
spinlock_t ls_lock;
|
|
struct list_head ls_layouts;
|
|
u32 ls_layout_type;
|
|
struct nfsd_file *ls_file;
|
|
struct nfsd4_callback ls_recall;
|
|
stateid_t ls_recall_sid;
|
|
bool ls_recalled;
|
|
struct mutex ls_mutex;
|
|
};
|
|
|
|
static inline struct nfs4_layout_stateid *layoutstateid(struct nfs4_stid *s)
|
|
{
|
|
return container_of(s, struct nfs4_layout_stateid, ls_stid);
|
|
}
|
|
|
|
/* flags for preprocess_seqid_op() */
|
|
#define RD_STATE 0x00000010
|
|
#define WR_STATE 0x00000020
|
|
|
|
enum nfsd4_cb_op {
|
|
NFSPROC4_CLNT_CB_NULL = 0,
|
|
NFSPROC4_CLNT_CB_RECALL,
|
|
NFSPROC4_CLNT_CB_LAYOUT,
|
|
NFSPROC4_CLNT_CB_OFFLOAD,
|
|
NFSPROC4_CLNT_CB_SEQUENCE,
|
|
NFSPROC4_CLNT_CB_NOTIFY_LOCK,
|
|
};
|
|
|
|
/* Returns true iff a is later than b: */
|
|
static inline bool nfsd4_stateid_generation_after(stateid_t *a, stateid_t *b)
|
|
{
|
|
return (s32)(a->si_generation - b->si_generation) > 0;
|
|
}
|
|
|
|
/*
|
|
* When a client tries to get a lock on a file, we set one of these objects
|
|
* on the blocking lock. When the lock becomes free, we can then issue a
|
|
* CB_NOTIFY_LOCK to the server.
|
|
*/
|
|
struct nfsd4_blocked_lock {
|
|
struct list_head nbl_list;
|
|
struct list_head nbl_lru;
|
|
unsigned long nbl_time;
|
|
struct file_lock nbl_lock;
|
|
struct knfsd_fh nbl_fh;
|
|
struct nfsd4_callback nbl_cb;
|
|
};
|
|
|
|
struct nfsd4_compound_state;
|
|
struct nfsd_net;
|
|
struct nfsd4_copy;
|
|
|
|
extern __be32 nfs4_preprocess_stateid_op(struct svc_rqst *rqstp,
|
|
struct nfsd4_compound_state *cstate, struct svc_fh *fhp,
|
|
stateid_t *stateid, int flags, struct nfsd_file **filp);
|
|
__be32 nfsd4_lookup_stateid(struct nfsd4_compound_state *cstate,
|
|
stateid_t *stateid, unsigned char typemask,
|
|
struct nfs4_stid **s, struct nfsd_net *nn);
|
|
struct nfs4_stid *nfs4_alloc_stid(struct nfs4_client *cl, struct kmem_cache *slab,
|
|
void (*sc_free)(struct nfs4_stid *));
|
|
int nfs4_init_cp_state(struct nfsd_net *nn, struct nfsd4_copy *copy);
|
|
void nfs4_free_cp_state(struct nfsd4_copy *copy);
|
|
void nfs4_unhash_stid(struct nfs4_stid *s);
|
|
void nfs4_put_stid(struct nfs4_stid *s);
|
|
void nfs4_inc_and_copy_stateid(stateid_t *dst, struct nfs4_stid *stid);
|
|
void nfs4_remove_reclaim_record(struct nfs4_client_reclaim *, struct nfsd_net *);
|
|
extern void nfs4_release_reclaim(struct nfsd_net *);
|
|
extern struct nfs4_client_reclaim *nfsd4_find_reclaim_client(struct xdr_netobj name,
|
|
struct nfsd_net *nn);
|
|
extern __be32 nfs4_check_open_reclaim(clientid_t *clid,
|
|
struct nfsd4_compound_state *cstate, struct nfsd_net *nn);
|
|
extern void nfsd4_probe_callback(struct nfs4_client *clp);
|
|
extern void nfsd4_probe_callback_sync(struct nfs4_client *clp);
|
|
extern void nfsd4_change_callback(struct nfs4_client *clp, struct nfs4_cb_conn *);
|
|
extern void nfsd4_init_cb(struct nfsd4_callback *cb, struct nfs4_client *clp,
|
|
const struct nfsd4_callback_ops *ops, enum nfsd4_cb_op op);
|
|
extern void nfsd4_run_cb(struct nfsd4_callback *cb);
|
|
extern int nfsd4_create_callback_queue(void);
|
|
extern void nfsd4_destroy_callback_queue(void);
|
|
extern void nfsd4_shutdown_callback(struct nfs4_client *);
|
|
extern void nfsd4_shutdown_copy(struct nfs4_client *clp);
|
|
extern void nfsd4_prepare_cb_recall(struct nfs4_delegation *dp);
|
|
extern struct nfs4_client_reclaim *nfs4_client_to_reclaim(struct xdr_netobj name,
|
|
struct xdr_netobj princhash, struct nfsd_net *nn);
|
|
extern bool nfs4_has_reclaimed_state(struct xdr_netobj name, struct nfsd_net *nn);
|
|
|
|
struct nfs4_file *find_file(struct knfsd_fh *fh);
|
|
void put_nfs4_file(struct nfs4_file *fi);
|
|
extern void nfs4_put_copy(struct nfsd4_copy *copy);
|
|
extern struct nfsd4_copy *
|
|
find_async_copy(struct nfs4_client *clp, stateid_t *staetid);
|
|
static inline void get_nfs4_file(struct nfs4_file *fi)
|
|
{
|
|
refcount_inc(&fi->fi_ref);
|
|
}
|
|
struct nfsd_file *find_any_file(struct nfs4_file *f);
|
|
|
|
/* grace period management */
|
|
void nfsd4_end_grace(struct nfsd_net *nn);
|
|
|
|
/* nfs4recover operations */
|
|
extern int nfsd4_client_tracking_init(struct net *net);
|
|
extern void nfsd4_client_tracking_exit(struct net *net);
|
|
extern void nfsd4_client_record_create(struct nfs4_client *clp);
|
|
extern void nfsd4_client_record_remove(struct nfs4_client *clp);
|
|
extern int nfsd4_client_record_check(struct nfs4_client *clp);
|
|
extern void nfsd4_record_grace_done(struct nfsd_net *nn);
|
|
|
|
/* nfs fault injection functions */
|
|
#ifdef CONFIG_NFSD_FAULT_INJECTION
|
|
void nfsd_fault_inject_init(void);
|
|
void nfsd_fault_inject_cleanup(void);
|
|
|
|
u64 nfsd_inject_print_clients(void);
|
|
u64 nfsd_inject_forget_client(struct sockaddr_storage *, size_t);
|
|
u64 nfsd_inject_forget_clients(u64);
|
|
|
|
u64 nfsd_inject_print_locks(void);
|
|
u64 nfsd_inject_forget_client_locks(struct sockaddr_storage *, size_t);
|
|
u64 nfsd_inject_forget_locks(u64);
|
|
|
|
u64 nfsd_inject_print_openowners(void);
|
|
u64 nfsd_inject_forget_client_openowners(struct sockaddr_storage *, size_t);
|
|
u64 nfsd_inject_forget_openowners(u64);
|
|
|
|
u64 nfsd_inject_print_delegations(void);
|
|
u64 nfsd_inject_forget_client_delegations(struct sockaddr_storage *, size_t);
|
|
u64 nfsd_inject_forget_delegations(u64);
|
|
u64 nfsd_inject_recall_client_delegations(struct sockaddr_storage *, size_t);
|
|
u64 nfsd_inject_recall_delegations(u64);
|
|
#else /* CONFIG_NFSD_FAULT_INJECTION */
|
|
static inline void nfsd_fault_inject_init(void) {}
|
|
static inline void nfsd_fault_inject_cleanup(void) {}
|
|
#endif /* CONFIG_NFSD_FAULT_INJECTION */
|
|
|
|
#endif /* NFSD4_STATE_H */
|