1412 строки
40 KiB
C
1412 строки
40 KiB
C
/*
|
|
* Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
|
|
*
|
|
* mtd nand driver for M-Systems DiskOnChip G4
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus
|
|
* P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
|
|
* Should work on these as well. Let me know!
|
|
*
|
|
* TODO:
|
|
*
|
|
* Mechanism for management of password-protected areas
|
|
*
|
|
* Hamming ecc when reading oob only
|
|
*
|
|
* According to the M-Sys documentation, this device is also available in a
|
|
* "dual-die" configuration having a 256MB capacity, but no mechanism for
|
|
* detecting this variant is documented. Currently this driver assumes 128MB
|
|
* capacity.
|
|
*
|
|
* Support for multiple cascaded devices ("floors"). Not sure which gadgets
|
|
* contain multiple G4s in a cascaded configuration, if any.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/io.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/bch.h>
|
|
#include <linux/bitrev.h>
|
|
#include <linux/jiffies.h>
|
|
|
|
/*
|
|
* In "reliable mode" consecutive 2k pages are used in parallel (in some
|
|
* fashion) to store the same data. The data can be read back from the
|
|
* even-numbered pages in the normal manner; odd-numbered pages will appear to
|
|
* contain junk. Systems that boot from the docg4 typically write the secondary
|
|
* program loader (SPL) code in this mode. The SPL is loaded by the initial
|
|
* program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
|
|
* to the reset vector address). This module parameter enables you to use this
|
|
* driver to write the SPL. When in this mode, no more than 2k of data can be
|
|
* written at a time, because the addresses do not increment in the normal
|
|
* manner, and the starting offset must be within an even-numbered 2k region;
|
|
* i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
|
|
* 0x1a00, ... Reliable mode is a special case and should not be used unless
|
|
* you know what you're doing.
|
|
*/
|
|
static bool reliable_mode;
|
|
module_param(reliable_mode, bool, 0);
|
|
MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
|
|
|
|
/*
|
|
* You'll want to ignore badblocks if you're reading a partition that contains
|
|
* data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
|
|
* it does not use mtd nand's method for marking bad blocks (using oob area).
|
|
* This will also skip the check of the "page written" flag.
|
|
*/
|
|
static bool ignore_badblocks;
|
|
module_param(ignore_badblocks, bool, 0);
|
|
MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
|
|
|
|
struct docg4_priv {
|
|
struct mtd_info *mtd;
|
|
struct device *dev;
|
|
void __iomem *virtadr;
|
|
int status;
|
|
struct {
|
|
unsigned int command;
|
|
int column;
|
|
int page;
|
|
} last_command;
|
|
uint8_t oob_buf[16];
|
|
uint8_t ecc_buf[7];
|
|
int oob_page;
|
|
struct bch_control *bch;
|
|
};
|
|
|
|
/*
|
|
* Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are
|
|
* shared with other diskonchip devices (P3, G3 at least).
|
|
*
|
|
* Functions with names prefixed with docg4_ are mtd / nand interface functions
|
|
* (though they may also be called internally). All others are internal.
|
|
*/
|
|
|
|
#define DOC_IOSPACE_DATA 0x0800
|
|
|
|
/* register offsets */
|
|
#define DOC_CHIPID 0x1000
|
|
#define DOC_DEVICESELECT 0x100a
|
|
#define DOC_ASICMODE 0x100c
|
|
#define DOC_DATAEND 0x101e
|
|
#define DOC_NOP 0x103e
|
|
|
|
#define DOC_FLASHSEQUENCE 0x1032
|
|
#define DOC_FLASHCOMMAND 0x1034
|
|
#define DOC_FLASHADDRESS 0x1036
|
|
#define DOC_FLASHCONTROL 0x1038
|
|
#define DOC_ECCCONF0 0x1040
|
|
#define DOC_ECCCONF1 0x1042
|
|
#define DOC_HAMMINGPARITY 0x1046
|
|
#define DOC_BCH_SYNDROM(idx) (0x1048 + idx)
|
|
|
|
#define DOC_ASICMODECONFIRM 0x1072
|
|
#define DOC_CHIPID_INV 0x1074
|
|
#define DOC_POWERMODE 0x107c
|
|
|
|
#define DOCG4_MYSTERY_REG 0x1050
|
|
|
|
/* apparently used only to write oob bytes 6 and 7 */
|
|
#define DOCG4_OOB_6_7 0x1052
|
|
|
|
/* DOC_FLASHSEQUENCE register commands */
|
|
#define DOC_SEQ_RESET 0x00
|
|
#define DOCG4_SEQ_PAGE_READ 0x03
|
|
#define DOCG4_SEQ_FLUSH 0x29
|
|
#define DOCG4_SEQ_PAGEWRITE 0x16
|
|
#define DOCG4_SEQ_PAGEPROG 0x1e
|
|
#define DOCG4_SEQ_BLOCKERASE 0x24
|
|
#define DOCG4_SEQ_SETMODE 0x45
|
|
|
|
/* DOC_FLASHCOMMAND register commands */
|
|
#define DOCG4_CMD_PAGE_READ 0x00
|
|
#define DOC_CMD_ERASECYCLE2 0xd0
|
|
#define DOCG4_CMD_FLUSH 0x70
|
|
#define DOCG4_CMD_READ2 0x30
|
|
#define DOC_CMD_PROG_BLOCK_ADDR 0x60
|
|
#define DOCG4_CMD_PAGEWRITE 0x80
|
|
#define DOC_CMD_PROG_CYCLE2 0x10
|
|
#define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */
|
|
#define DOC_CMD_RELIABLE_MODE 0x22
|
|
#define DOC_CMD_RESET 0xff
|
|
|
|
/* DOC_POWERMODE register bits */
|
|
#define DOC_POWERDOWN_READY 0x80
|
|
|
|
/* DOC_FLASHCONTROL register bits */
|
|
#define DOC_CTRL_CE 0x10
|
|
#define DOC_CTRL_UNKNOWN 0x40
|
|
#define DOC_CTRL_FLASHREADY 0x01
|
|
|
|
/* DOC_ECCCONF0 register bits */
|
|
#define DOC_ECCCONF0_READ_MODE 0x8000
|
|
#define DOC_ECCCONF0_UNKNOWN 0x2000
|
|
#define DOC_ECCCONF0_ECC_ENABLE 0x1000
|
|
#define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff
|
|
|
|
/* DOC_ECCCONF1 register bits */
|
|
#define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80
|
|
#define DOC_ECCCONF1_ECC_ENABLE 0x07
|
|
#define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20
|
|
|
|
/* DOC_ASICMODE register bits */
|
|
#define DOC_ASICMODE_RESET 0x00
|
|
#define DOC_ASICMODE_NORMAL 0x01
|
|
#define DOC_ASICMODE_POWERDOWN 0x02
|
|
#define DOC_ASICMODE_MDWREN 0x04
|
|
#define DOC_ASICMODE_BDETCT_RESET 0x08
|
|
#define DOC_ASICMODE_RSTIN_RESET 0x10
|
|
#define DOC_ASICMODE_RAM_WE 0x20
|
|
|
|
/* good status values read after read/write/erase operations */
|
|
#define DOCG4_PROGSTATUS_GOOD 0x51
|
|
#define DOCG4_PROGSTATUS_GOOD_2 0xe0
|
|
|
|
/*
|
|
* On read operations (page and oob-only), the first byte read from I/O reg is a
|
|
* status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read
|
|
* after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
|
|
*/
|
|
#define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */
|
|
|
|
/* anatomy of the device */
|
|
#define DOCG4_CHIP_SIZE 0x8000000
|
|
#define DOCG4_PAGE_SIZE 0x200
|
|
#define DOCG4_PAGES_PER_BLOCK 0x200
|
|
#define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
|
|
#define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
|
|
#define DOCG4_OOB_SIZE 0x10
|
|
#define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */
|
|
#define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */
|
|
#define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */
|
|
|
|
/* all but the last byte is included in ecc calculation */
|
|
#define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
|
|
|
|
#define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */
|
|
|
|
/* expected values from the ID registers */
|
|
#define DOCG4_IDREG1_VALUE 0x0400
|
|
#define DOCG4_IDREG2_VALUE 0xfbff
|
|
|
|
/* primitive polynomial used to build the Galois field used by hw ecc gen */
|
|
#define DOCG4_PRIMITIVE_POLY 0x4443
|
|
|
|
#define DOCG4_M 14 /* Galois field is of order 2^14 */
|
|
#define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */
|
|
|
|
#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
|
|
#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
|
|
|
|
/*
|
|
* Bytes 0, 1 are used as badblock marker.
|
|
* Bytes 2 - 6 are available to the user.
|
|
* Byte 7 is hamming ecc for first 7 oob bytes only.
|
|
* Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
|
|
* Byte 15 (the last) is used by the driver as a "page written" flag.
|
|
*/
|
|
static int docg4_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = 7;
|
|
oobregion->length = 9;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int docg4_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = 2;
|
|
oobregion->length = 5;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops docg4_ooblayout_ops = {
|
|
.ecc = docg4_ooblayout_ecc,
|
|
.free = docg4_ooblayout_free,
|
|
};
|
|
|
|
/*
|
|
* The device has a nop register which M-Sys claims is for the purpose of
|
|
* inserting precise delays. But beware; at least some operations fail if the
|
|
* nop writes are replaced with a generic delay!
|
|
*/
|
|
static inline void write_nop(void __iomem *docptr)
|
|
{
|
|
writew(0, docptr + DOC_NOP);
|
|
}
|
|
|
|
static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
uint16_t *p = (uint16_t *) buf;
|
|
len >>= 1;
|
|
|
|
for (i = 0; i < len; i++)
|
|
p[i] = readw(nand->IO_ADDR_R);
|
|
}
|
|
|
|
static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
uint16_t *p = (uint16_t *) buf;
|
|
len >>= 1;
|
|
|
|
for (i = 0; i < len; i++)
|
|
writew(p[i], nand->IO_ADDR_W);
|
|
}
|
|
|
|
static int poll_status(struct docg4_priv *doc)
|
|
{
|
|
/*
|
|
* Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
|
|
* register. Operations known to take a long time (e.g., block erase)
|
|
* should sleep for a while before calling this.
|
|
*/
|
|
|
|
uint16_t flash_status;
|
|
unsigned long timeo;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
dev_dbg(doc->dev, "%s...\n", __func__);
|
|
|
|
/* hardware quirk requires reading twice initially */
|
|
flash_status = readw(docptr + DOC_FLASHCONTROL);
|
|
|
|
timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
|
|
do {
|
|
cpu_relax();
|
|
flash_status = readb(docptr + DOC_FLASHCONTROL);
|
|
} while (!(flash_status & DOC_CTRL_FLASHREADY) &&
|
|
time_before(jiffies, timeo));
|
|
|
|
if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
|
|
dev_err(doc->dev, "%s: timed out!\n", __func__);
|
|
return NAND_STATUS_FAIL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
|
|
{
|
|
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
int status = NAND_STATUS_WP; /* inverse logic?? */
|
|
dev_dbg(doc->dev, "%s...\n", __func__);
|
|
|
|
/* report any previously unreported error */
|
|
if (doc->status) {
|
|
status |= doc->status;
|
|
doc->status = 0;
|
|
return status;
|
|
}
|
|
|
|
status |= poll_status(doc);
|
|
return status;
|
|
}
|
|
|
|
static void docg4_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
/*
|
|
* Select among multiple cascaded chips ("floors"). Multiple floors are
|
|
* not yet supported, so the only valid non-negative value is 0.
|
|
*/
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
|
|
|
|
if (chip < 0)
|
|
return; /* deselected */
|
|
|
|
if (chip > 0)
|
|
dev_warn(doc->dev, "multiple floors currently unsupported\n");
|
|
|
|
writew(0, docptr + DOC_DEVICESELECT);
|
|
}
|
|
|
|
static void reset(struct mtd_info *mtd)
|
|
{
|
|
/* full device reset */
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
|
|
docptr + DOC_ASICMODE);
|
|
writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
|
|
docptr + DOC_ASICMODECONFIRM);
|
|
write_nop(docptr);
|
|
|
|
writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
|
|
docptr + DOC_ASICMODE);
|
|
writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
|
|
docptr + DOC_ASICMODECONFIRM);
|
|
|
|
writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
|
|
|
|
poll_status(doc);
|
|
}
|
|
|
|
static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
|
|
{
|
|
/* read the 7 hw-generated ecc bytes */
|
|
|
|
int i;
|
|
for (i = 0; i < 7; i++) { /* hw quirk; read twice */
|
|
ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
|
|
ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
|
|
}
|
|
}
|
|
|
|
static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|
{
|
|
/*
|
|
* Called after a page read when hardware reports bitflips.
|
|
* Up to four bitflips can be corrected.
|
|
*/
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i, numerrs, errpos[4];
|
|
const uint8_t blank_read_hwecc[8] = {
|
|
0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
|
|
|
|
read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
|
|
|
|
/* check if read error is due to a blank page */
|
|
if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
|
|
return 0; /* yes */
|
|
|
|
/* skip additional check of "written flag" if ignore_badblocks */
|
|
if (ignore_badblocks == false) {
|
|
|
|
/*
|
|
* If the hw ecc bytes are not those of a blank page, there's
|
|
* still a chance that the page is blank, but was read with
|
|
* errors. Check the "written flag" in last oob byte, which
|
|
* is set to zero when a page is written. If more than half
|
|
* the bits are set, assume a blank page. Unfortunately, the
|
|
* bit flips(s) are not reported in stats.
|
|
*/
|
|
|
|
if (nand->oob_poi[15]) {
|
|
int bit, numsetbits = 0;
|
|
unsigned long written_flag = nand->oob_poi[15];
|
|
for_each_set_bit(bit, &written_flag, 8)
|
|
numsetbits++;
|
|
if (numsetbits > 4) { /* assume blank */
|
|
dev_warn(doc->dev,
|
|
"error(s) in blank page "
|
|
"at offset %08x\n",
|
|
page * DOCG4_PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
|
|
* algorithm is used to decode this. However the hw operates on page
|
|
* data in a bit order that is the reverse of that of the bch alg,
|
|
* requiring that the bits be reversed on the result. Thanks to Ivan
|
|
* Djelic for his analysis!
|
|
*/
|
|
for (i = 0; i < 7; i++)
|
|
doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
|
|
|
|
numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
|
|
doc->ecc_buf, NULL, errpos);
|
|
|
|
if (numerrs == -EBADMSG) {
|
|
dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
|
|
page * DOCG4_PAGE_SIZE);
|
|
return -EBADMSG;
|
|
}
|
|
|
|
BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */
|
|
|
|
/* undo last step in BCH alg (modulo mirroring not needed) */
|
|
for (i = 0; i < numerrs; i++)
|
|
errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
|
|
|
|
/* fix the errors */
|
|
for (i = 0; i < numerrs; i++) {
|
|
|
|
/* ignore if error within oob ecc bytes */
|
|
if (errpos[i] > DOCG4_USERDATA_LEN * 8)
|
|
continue;
|
|
|
|
/* if error within oob area preceeding ecc bytes... */
|
|
if (errpos[i] > DOCG4_PAGE_SIZE * 8)
|
|
change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
|
|
(unsigned long *)nand->oob_poi);
|
|
|
|
else /* error in page data */
|
|
change_bit(errpos[i], (unsigned long *)buf);
|
|
}
|
|
|
|
dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
|
|
numerrs, page * DOCG4_PAGE_SIZE);
|
|
|
|
return numerrs;
|
|
}
|
|
|
|
static uint8_t docg4_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
|
|
dev_dbg(doc->dev, "%s\n", __func__);
|
|
|
|
if (doc->last_command.command == NAND_CMD_STATUS) {
|
|
int status;
|
|
|
|
/*
|
|
* Previous nand command was status request, so nand
|
|
* infrastructure code expects to read the status here. If an
|
|
* error occurred in a previous operation, report it.
|
|
*/
|
|
doc->last_command.command = 0;
|
|
|
|
if (doc->status) {
|
|
status = doc->status;
|
|
doc->status = 0;
|
|
}
|
|
|
|
/* why is NAND_STATUS_WP inverse logic?? */
|
|
else
|
|
status = NAND_STATUS_WP | NAND_STATUS_READY;
|
|
|
|
return status;
|
|
}
|
|
|
|
dev_warn(doc->dev, "unexpected call to read_byte()\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
|
|
{
|
|
/* write the four address bytes packed in docg4_addr to the device */
|
|
|
|
void __iomem *docptr = doc->virtadr;
|
|
writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
|
|
docg4_addr >>= 8;
|
|
writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
|
|
docg4_addr >>= 8;
|
|
writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
|
|
docg4_addr >>= 8;
|
|
writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
|
|
}
|
|
|
|
static int read_progstatus(struct docg4_priv *doc)
|
|
{
|
|
/*
|
|
* This apparently checks the status of programming. Done after an
|
|
* erasure, and after page data is written. On error, the status is
|
|
* saved, to be later retrieved by the nand infrastructure code.
|
|
*/
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
/* status is read from the I/O reg */
|
|
uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
|
|
uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
|
|
uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
|
|
|
|
dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
|
|
__func__, status1, status2, status3);
|
|
|
|
if (status1 != DOCG4_PROGSTATUS_GOOD
|
|
|| status2 != DOCG4_PROGSTATUS_GOOD_2
|
|
|| status3 != DOCG4_PROGSTATUS_GOOD_2) {
|
|
doc->status = NAND_STATUS_FAIL;
|
|
dev_warn(doc->dev, "read_progstatus failed: "
|
|
"%02x, %02x, %02x\n", status1, status2, status3);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pageprog(struct mtd_info *mtd)
|
|
{
|
|
/*
|
|
* Final step in writing a page. Writes the contents of its
|
|
* internal buffer out to the flash array, or some such.
|
|
*/
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
int retval = 0;
|
|
|
|
dev_dbg(doc->dev, "docg4: %s\n", __func__);
|
|
|
|
writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
|
|
writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
|
|
/* Just busy-wait; usleep_range() slows things down noticeably. */
|
|
poll_status(doc);
|
|
|
|
writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
|
|
writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
|
|
writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
|
|
retval = read_progstatus(doc);
|
|
writew(0, docptr + DOC_DATAEND);
|
|
write_nop(docptr);
|
|
poll_status(doc);
|
|
write_nop(docptr);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void sequence_reset(struct mtd_info *mtd)
|
|
{
|
|
/* common starting sequence for all operations */
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
|
|
writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
|
|
writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
poll_status(doc);
|
|
write_nop(docptr);
|
|
}
|
|
|
|
static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
|
|
{
|
|
/* first step in reading a page */
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
dev_dbg(doc->dev,
|
|
"docg4: %s: g4 page %08x\n", __func__, docg4_addr);
|
|
|
|
sequence_reset(mtd);
|
|
|
|
writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
|
|
writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
|
|
write_nop(docptr);
|
|
|
|
write_addr(doc, docg4_addr);
|
|
|
|
write_nop(docptr);
|
|
writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
|
|
poll_status(doc);
|
|
}
|
|
|
|
static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
|
|
{
|
|
/* first step in writing a page */
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
dev_dbg(doc->dev,
|
|
"docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
|
|
sequence_reset(mtd);
|
|
|
|
if (unlikely(reliable_mode)) {
|
|
writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
|
|
writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
|
|
writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
|
|
write_nop(docptr);
|
|
}
|
|
|
|
writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
|
|
writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
|
|
write_nop(docptr);
|
|
write_addr(doc, docg4_addr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
poll_status(doc);
|
|
}
|
|
|
|
static uint32_t mtd_to_docg4_address(int page, int column)
|
|
{
|
|
/*
|
|
* Convert mtd address to format used by the device, 32 bit packed.
|
|
*
|
|
* Some notes on G4 addressing... The M-Sys documentation on this device
|
|
* claims that pages are 2K in length, and indeed, the format of the
|
|
* address used by the device reflects that. But within each page are
|
|
* four 512 byte "sub-pages", each with its own oob data that is
|
|
* read/written immediately after the 512 bytes of page data. This oob
|
|
* data contains the ecc bytes for the preceeding 512 bytes.
|
|
*
|
|
* Rather than tell the mtd nand infrastructure that page size is 2k,
|
|
* with four sub-pages each, we engage in a little subterfuge and tell
|
|
* the infrastructure code that pages are 512 bytes in size. This is
|
|
* done because during the course of reverse-engineering the device, I
|
|
* never observed an instance where an entire 2K "page" was read or
|
|
* written as a unit. Each "sub-page" is always addressed individually,
|
|
* its data read/written, and ecc handled before the next "sub-page" is
|
|
* addressed.
|
|
*
|
|
* This requires us to convert addresses passed by the mtd nand
|
|
* infrastructure code to those used by the device.
|
|
*
|
|
* The address that is written to the device consists of four bytes: the
|
|
* first two are the 2k page number, and the second is the index into
|
|
* the page. The index is in terms of 16-bit half-words and includes
|
|
* the preceeding oob data, so e.g., the index into the second
|
|
* "sub-page" is 0x108, and the full device address of the start of mtd
|
|
* page 0x201 is 0x00800108.
|
|
*/
|
|
int g4_page = page / 4; /* device's 2K page */
|
|
int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
|
|
return (g4_page << 16) | g4_index; /* pack */
|
|
}
|
|
|
|
static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
|
|
int page_addr)
|
|
{
|
|
/* handle standard nand commands */
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
|
|
|
|
dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
|
|
__func__, command, page_addr, column);
|
|
|
|
/*
|
|
* Save the command and its arguments. This enables emulation of
|
|
* standard flash devices, and also some optimizations.
|
|
*/
|
|
doc->last_command.command = command;
|
|
doc->last_command.column = column;
|
|
doc->last_command.page = page_addr;
|
|
|
|
switch (command) {
|
|
|
|
case NAND_CMD_RESET:
|
|
reset(mtd);
|
|
break;
|
|
|
|
case NAND_CMD_READ0:
|
|
read_page_prologue(mtd, g4_addr);
|
|
break;
|
|
|
|
case NAND_CMD_STATUS:
|
|
/* next call to read_byte() will expect a status */
|
|
break;
|
|
|
|
case NAND_CMD_SEQIN:
|
|
if (unlikely(reliable_mode)) {
|
|
uint16_t g4_page = g4_addr >> 16;
|
|
|
|
/* writes to odd-numbered 2k pages are invalid */
|
|
if (g4_page & 0x01)
|
|
dev_warn(doc->dev,
|
|
"invalid reliable mode address\n");
|
|
}
|
|
|
|
write_page_prologue(mtd, g4_addr);
|
|
|
|
/* hack for deferred write of oob bytes */
|
|
if (doc->oob_page == page_addr)
|
|
memcpy(nand->oob_poi, doc->oob_buf, 16);
|
|
break;
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
pageprog(mtd);
|
|
break;
|
|
|
|
/* we don't expect these, based on review of nand_base.c */
|
|
case NAND_CMD_READOOB:
|
|
case NAND_CMD_READID:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
dev_warn(doc->dev, "docg4_command: "
|
|
"unexpected nand command 0x%x\n", command);
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
|
|
uint8_t *buf, int page, bool use_ecc)
|
|
{
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
uint16_t status, edc_err, *buf16;
|
|
int bits_corrected = 0;
|
|
|
|
dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
|
|
|
|
writew(DOC_ECCCONF0_READ_MODE |
|
|
DOC_ECCCONF0_ECC_ENABLE |
|
|
DOC_ECCCONF0_UNKNOWN |
|
|
DOCG4_BCH_SIZE,
|
|
docptr + DOC_ECCCONF0);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
|
|
/* the 1st byte from the I/O reg is a status; the rest is page data */
|
|
status = readw(docptr + DOC_IOSPACE_DATA);
|
|
if (status & DOCG4_READ_ERROR) {
|
|
dev_err(doc->dev,
|
|
"docg4_read_page: bad status: 0x%02x\n", status);
|
|
writew(0, docptr + DOC_DATAEND);
|
|
return -EIO;
|
|
}
|
|
|
|
dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
|
|
|
|
docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
|
|
|
|
/* this device always reads oob after page data */
|
|
/* first 14 oob bytes read from I/O reg */
|
|
docg4_read_buf(mtd, nand->oob_poi, 14);
|
|
|
|
/* last 2 read from another reg */
|
|
buf16 = (uint16_t *)(nand->oob_poi + 14);
|
|
*buf16 = readw(docptr + DOCG4_MYSTERY_REG);
|
|
|
|
write_nop(docptr);
|
|
|
|
if (likely(use_ecc == true)) {
|
|
|
|
/* read the register that tells us if bitflip(s) detected */
|
|
edc_err = readw(docptr + DOC_ECCCONF1);
|
|
edc_err = readw(docptr + DOC_ECCCONF1);
|
|
dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
|
|
|
|
/* If bitflips are reported, attempt to correct with ecc */
|
|
if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
|
|
bits_corrected = correct_data(mtd, buf, page);
|
|
if (bits_corrected == -EBADMSG)
|
|
mtd->ecc_stats.failed++;
|
|
else
|
|
mtd->ecc_stats.corrected += bits_corrected;
|
|
}
|
|
}
|
|
|
|
writew(0, docptr + DOC_DATAEND);
|
|
if (bits_corrected == -EBADMSG) /* uncorrectable errors */
|
|
return 0;
|
|
return bits_corrected;
|
|
}
|
|
|
|
|
|
static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
return read_page(mtd, nand, buf, page, false);
|
|
}
|
|
|
|
static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
return read_page(mtd, nand, buf, page, true);
|
|
}
|
|
|
|
static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
|
|
int page)
|
|
{
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
uint16_t status;
|
|
|
|
dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
|
|
|
|
docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
|
|
|
|
writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
|
|
/* the 1st byte from the I/O reg is a status; the rest is oob data */
|
|
status = readw(docptr + DOC_IOSPACE_DATA);
|
|
if (status & DOCG4_READ_ERROR) {
|
|
dev_warn(doc->dev,
|
|
"docg4_read_oob failed: status = 0x%02x\n", status);
|
|
return -EIO;
|
|
}
|
|
|
|
dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
|
|
|
|
docg4_read_buf(mtd, nand->oob_poi, 16);
|
|
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
writew(0, docptr + DOC_DATAEND);
|
|
write_nop(docptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int docg4_erase_block(struct mtd_info *mtd, int page)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
uint16_t g4_page;
|
|
|
|
dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
|
|
|
|
sequence_reset(mtd);
|
|
|
|
writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
|
|
writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
|
|
write_nop(docptr);
|
|
|
|
/* only 2 bytes of address are written to specify erase block */
|
|
g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */
|
|
writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
|
|
g4_page >>= 8;
|
|
writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
|
|
write_nop(docptr);
|
|
|
|
/* start the erasure */
|
|
writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
|
|
usleep_range(500, 1000); /* erasure is long; take a snooze */
|
|
poll_status(doc);
|
|
writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
|
|
writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
|
|
writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
|
|
read_progstatus(doc);
|
|
|
|
writew(0, docptr + DOC_DATAEND);
|
|
write_nop(docptr);
|
|
poll_status(doc);
|
|
write_nop(docptr);
|
|
|
|
return nand->waitfunc(mtd, nand);
|
|
}
|
|
|
|
static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
|
|
const uint8_t *buf, bool use_ecc)
|
|
{
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
uint8_t ecc_buf[8];
|
|
|
|
dev_dbg(doc->dev, "%s...\n", __func__);
|
|
|
|
writew(DOC_ECCCONF0_ECC_ENABLE |
|
|
DOC_ECCCONF0_UNKNOWN |
|
|
DOCG4_BCH_SIZE,
|
|
docptr + DOC_ECCCONF0);
|
|
write_nop(docptr);
|
|
|
|
/* write the page data */
|
|
docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
|
|
|
|
/* oob bytes 0 through 5 are written to I/O reg */
|
|
docg4_write_buf16(mtd, nand->oob_poi, 6);
|
|
|
|
/* oob byte 6 written to a separate reg */
|
|
writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
|
|
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
|
|
/* write hw-generated ecc bytes to oob */
|
|
if (likely(use_ecc == true)) {
|
|
/* oob byte 7 is hamming code */
|
|
uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
|
|
hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
|
|
writew(hamming, docptr + DOCG4_OOB_6_7);
|
|
write_nop(docptr);
|
|
|
|
/* read the 7 bch bytes from ecc regs */
|
|
read_hw_ecc(docptr, ecc_buf);
|
|
ecc_buf[7] = 0; /* clear the "page written" flag */
|
|
}
|
|
|
|
/* write user-supplied bytes to oob */
|
|
else {
|
|
writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
|
|
write_nop(docptr);
|
|
memcpy(ecc_buf, &nand->oob_poi[8], 8);
|
|
}
|
|
|
|
docg4_write_buf16(mtd, ecc_buf, 8);
|
|
write_nop(docptr);
|
|
write_nop(docptr);
|
|
writew(0, docptr + DOC_DATAEND);
|
|
write_nop(docptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
return write_page(mtd, nand, buf, false);
|
|
}
|
|
|
|
static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
return write_page(mtd, nand, buf, true);
|
|
}
|
|
|
|
static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
|
|
int page)
|
|
{
|
|
/*
|
|
* Writing oob-only is not really supported, because MLC nand must write
|
|
* oob bytes at the same time as page data. Nonetheless, we save the
|
|
* oob buffer contents here, and then write it along with the page data
|
|
* if the same page is subsequently written. This allows user space
|
|
* utilities that write the oob data prior to the page data to work
|
|
* (e.g., nandwrite). The disdvantage is that, if the intention was to
|
|
* write oob only, the operation is quietly ignored. Also, oob can get
|
|
* corrupted if two concurrent processes are running nandwrite.
|
|
*/
|
|
|
|
/* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
doc->oob_page = page;
|
|
memcpy(doc->oob_buf, nand->oob_poi, 16);
|
|
return 0;
|
|
}
|
|
|
|
static int __init read_factory_bbt(struct mtd_info *mtd)
|
|
{
|
|
/*
|
|
* The device contains a read-only factory bad block table. Read it and
|
|
* update the memory-based bbt accordingly.
|
|
*/
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
|
|
uint8_t *buf;
|
|
int i, block;
|
|
__u32 eccfailed_stats = mtd->ecc_stats.failed;
|
|
|
|
buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
|
|
if (buf == NULL)
|
|
return -ENOMEM;
|
|
|
|
read_page_prologue(mtd, g4_addr);
|
|
docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
|
|
|
|
/*
|
|
* If no memory-based bbt was created, exit. This will happen if module
|
|
* parameter ignore_badblocks is set. Then why even call this function?
|
|
* For an unknown reason, block erase always fails if it's the first
|
|
* operation after device power-up. The above read ensures it never is.
|
|
* Ugly, I know.
|
|
*/
|
|
if (nand->bbt == NULL) /* no memory-based bbt */
|
|
goto exit;
|
|
|
|
if (mtd->ecc_stats.failed > eccfailed_stats) {
|
|
/*
|
|
* Whoops, an ecc failure ocurred reading the factory bbt.
|
|
* It is stored redundantly, so we get another chance.
|
|
*/
|
|
eccfailed_stats = mtd->ecc_stats.failed;
|
|
docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
|
|
if (mtd->ecc_stats.failed > eccfailed_stats) {
|
|
dev_warn(doc->dev,
|
|
"The factory bbt could not be read!\n");
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse factory bbt and update memory-based bbt. Factory bbt format is
|
|
* simple: one bit per block, block numbers increase left to right (msb
|
|
* to lsb). Bit clear means bad block.
|
|
*/
|
|
for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
|
|
int bitnum;
|
|
unsigned long bits = ~buf[i];
|
|
for_each_set_bit(bitnum, &bits, 8) {
|
|
int badblock = block + 7 - bitnum;
|
|
nand->bbt[badblock / 4] |=
|
|
0x03 << ((badblock % 4) * 2);
|
|
mtd->ecc_stats.badblocks++;
|
|
dev_notice(doc->dev, "factory-marked bad block: %d\n",
|
|
badblock);
|
|
}
|
|
}
|
|
exit:
|
|
kfree(buf);
|
|
return 0;
|
|
}
|
|
|
|
static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
/*
|
|
* Mark a block as bad. Bad blocks are marked in the oob area of the
|
|
* first page of the block. The default scan_bbt() in the nand
|
|
* infrastructure code works fine for building the memory-based bbt
|
|
* during initialization, as does the nand infrastructure function that
|
|
* checks if a block is bad by reading the bbt. This function replaces
|
|
* the nand default because writes to oob-only are not supported.
|
|
*/
|
|
|
|
int ret, i;
|
|
uint8_t *buf;
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
struct nand_bbt_descr *bbtd = nand->badblock_pattern;
|
|
int page = (int)(ofs >> nand->page_shift);
|
|
uint32_t g4_addr = mtd_to_docg4_address(page, 0);
|
|
|
|
dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
|
|
|
|
if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
|
|
dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
|
|
__func__, ofs);
|
|
|
|
/* allocate blank buffer for page data */
|
|
buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
|
|
if (buf == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* write bit-wise negation of pattern to oob buffer */
|
|
memset(nand->oob_poi, 0xff, mtd->oobsize);
|
|
for (i = 0; i < bbtd->len; i++)
|
|
nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
|
|
|
|
/* write first page of block */
|
|
write_page_prologue(mtd, g4_addr);
|
|
docg4_write_page(mtd, nand, buf, 1, page);
|
|
ret = pageprog(mtd);
|
|
|
|
kfree(buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
/* only called when module_param ignore_badblocks is set */
|
|
return 0;
|
|
}
|
|
|
|
static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
|
|
{
|
|
/*
|
|
* Put the device into "deep power-down" mode. Note that CE# must be
|
|
* deasserted for this to take effect. The xscale, e.g., can be
|
|
* configured to float this signal when the processor enters power-down,
|
|
* and a suitable pull-up ensures its deassertion.
|
|
*/
|
|
|
|
int i;
|
|
uint8_t pwr_down;
|
|
struct docg4_priv *doc = platform_get_drvdata(pdev);
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
dev_dbg(doc->dev, "%s...\n", __func__);
|
|
|
|
/* poll the register that tells us we're ready to go to sleep */
|
|
for (i = 0; i < 10; i++) {
|
|
pwr_down = readb(docptr + DOC_POWERMODE);
|
|
if (pwr_down & DOC_POWERDOWN_READY)
|
|
break;
|
|
usleep_range(1000, 4000);
|
|
}
|
|
|
|
if (pwr_down & DOC_POWERDOWN_READY) {
|
|
dev_err(doc->dev, "suspend failed; "
|
|
"timeout polling DOC_POWERDOWN_READY\n");
|
|
return -EIO;
|
|
}
|
|
|
|
writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
|
|
docptr + DOC_ASICMODE);
|
|
writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
|
|
docptr + DOC_ASICMODECONFIRM);
|
|
|
|
write_nop(docptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int docg4_resume(struct platform_device *pdev)
|
|
{
|
|
|
|
/*
|
|
* Exit power-down. Twelve consecutive reads of the address below
|
|
* accomplishes this, assuming CE# has been asserted.
|
|
*/
|
|
|
|
struct docg4_priv *doc = platform_get_drvdata(pdev);
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
dev_dbg(doc->dev, "%s...\n", __func__);
|
|
|
|
for (i = 0; i < 12; i++)
|
|
readb(docptr + 0x1fff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init init_mtd_structs(struct mtd_info *mtd)
|
|
{
|
|
/* initialize mtd and nand data structures */
|
|
|
|
/*
|
|
* Note that some of the following initializations are not usually
|
|
* required within a nand driver because they are performed by the nand
|
|
* infrastructure code as part of nand_scan(). In this case they need
|
|
* to be initialized here because we skip call to nand_scan_ident() (the
|
|
* first half of nand_scan()). The call to nand_scan_ident() is skipped
|
|
* because for this device the chip id is not read in the manner of a
|
|
* standard nand device. Unfortunately, nand_scan_ident() does other
|
|
* things as well, such as call nand_set_defaults().
|
|
*/
|
|
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
|
|
mtd->size = DOCG4_CHIP_SIZE;
|
|
mtd->name = "Msys_Diskonchip_G4";
|
|
mtd->writesize = DOCG4_PAGE_SIZE;
|
|
mtd->erasesize = DOCG4_BLOCK_SIZE;
|
|
mtd->oobsize = DOCG4_OOB_SIZE;
|
|
mtd_set_ooblayout(mtd, &docg4_ooblayout_ops);
|
|
nand->chipsize = DOCG4_CHIP_SIZE;
|
|
nand->chip_shift = DOCG4_CHIP_SHIFT;
|
|
nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
|
|
nand->chip_delay = 20;
|
|
nand->page_shift = DOCG4_PAGE_SHIFT;
|
|
nand->pagemask = 0x3ffff;
|
|
nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
|
|
nand->badblockbits = 8;
|
|
nand->ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
nand->ecc.size = DOCG4_PAGE_SIZE;
|
|
nand->ecc.prepad = 8;
|
|
nand->ecc.bytes = 8;
|
|
nand->ecc.strength = DOCG4_T;
|
|
nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
|
|
nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
|
|
nand->controller = &nand->hwcontrol;
|
|
spin_lock_init(&nand->controller->lock);
|
|
init_waitqueue_head(&nand->controller->wq);
|
|
|
|
/* methods */
|
|
nand->cmdfunc = docg4_command;
|
|
nand->waitfunc = docg4_wait;
|
|
nand->select_chip = docg4_select_chip;
|
|
nand->read_byte = docg4_read_byte;
|
|
nand->block_markbad = docg4_block_markbad;
|
|
nand->read_buf = docg4_read_buf;
|
|
nand->write_buf = docg4_write_buf16;
|
|
nand->erase = docg4_erase_block;
|
|
nand->ecc.read_page = docg4_read_page;
|
|
nand->ecc.write_page = docg4_write_page;
|
|
nand->ecc.read_page_raw = docg4_read_page_raw;
|
|
nand->ecc.write_page_raw = docg4_write_page_raw;
|
|
nand->ecc.read_oob = docg4_read_oob;
|
|
nand->ecc.write_oob = docg4_write_oob;
|
|
|
|
/*
|
|
* The way the nand infrastructure code is written, a memory-based bbt
|
|
* is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt,
|
|
* nand->block_bad() is used. So when ignoring bad blocks, we skip the
|
|
* scan and define a dummy block_bad() which always returns 0.
|
|
*/
|
|
if (ignore_badblocks) {
|
|
nand->options |= NAND_SKIP_BBTSCAN;
|
|
nand->block_bad = docg4_block_neverbad;
|
|
}
|
|
|
|
}
|
|
|
|
static int __init read_id_reg(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct docg4_priv *doc = nand_get_controller_data(nand);
|
|
void __iomem *docptr = doc->virtadr;
|
|
uint16_t id1, id2;
|
|
|
|
/* check for presence of g4 chip by reading id registers */
|
|
id1 = readw(docptr + DOC_CHIPID);
|
|
id1 = readw(docptr + DOCG4_MYSTERY_REG);
|
|
id2 = readw(docptr + DOC_CHIPID_INV);
|
|
id2 = readw(docptr + DOCG4_MYSTERY_REG);
|
|
|
|
if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
|
|
dev_info(doc->dev,
|
|
"NAND device: 128MiB Diskonchip G4 detected\n");
|
|
return 0;
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
|
|
|
|
static int __init probe_docg4(struct platform_device *pdev)
|
|
{
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *nand;
|
|
void __iomem *virtadr;
|
|
struct docg4_priv *doc;
|
|
int len, retval;
|
|
struct resource *r;
|
|
struct device *dev = &pdev->dev;
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (r == NULL) {
|
|
dev_err(dev, "no io memory resource defined!\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
virtadr = ioremap(r->start, resource_size(r));
|
|
if (!virtadr) {
|
|
dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
|
|
return -EIO;
|
|
}
|
|
|
|
len = sizeof(struct nand_chip) + sizeof(struct docg4_priv);
|
|
nand = kzalloc(len, GFP_KERNEL);
|
|
if (nand == NULL) {
|
|
retval = -ENOMEM;
|
|
goto fail_unmap;
|
|
}
|
|
|
|
mtd = nand_to_mtd(nand);
|
|
doc = (struct docg4_priv *) (nand + 1);
|
|
nand_set_controller_data(nand, doc);
|
|
mtd->dev.parent = &pdev->dev;
|
|
doc->virtadr = virtadr;
|
|
doc->dev = dev;
|
|
|
|
init_mtd_structs(mtd);
|
|
|
|
/* initialize kernel bch algorithm */
|
|
doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
|
|
if (doc->bch == NULL) {
|
|
retval = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, doc);
|
|
|
|
reset(mtd);
|
|
retval = read_id_reg(mtd);
|
|
if (retval == -ENODEV) {
|
|
dev_warn(dev, "No diskonchip G4 device found.\n");
|
|
goto fail;
|
|
}
|
|
|
|
retval = nand_scan_tail(mtd);
|
|
if (retval)
|
|
goto fail;
|
|
|
|
retval = read_factory_bbt(mtd);
|
|
if (retval)
|
|
goto fail;
|
|
|
|
retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
|
|
if (retval)
|
|
goto fail;
|
|
|
|
doc->mtd = mtd;
|
|
return 0;
|
|
|
|
fail:
|
|
nand_release(mtd); /* deletes partitions and mtd devices */
|
|
free_bch(doc->bch);
|
|
kfree(nand);
|
|
|
|
fail_unmap:
|
|
iounmap(virtadr);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int __exit cleanup_docg4(struct platform_device *pdev)
|
|
{
|
|
struct docg4_priv *doc = platform_get_drvdata(pdev);
|
|
nand_release(doc->mtd);
|
|
free_bch(doc->bch);
|
|
kfree(mtd_to_nand(doc->mtd));
|
|
iounmap(doc->virtadr);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver docg4_driver = {
|
|
.driver = {
|
|
.name = "docg4",
|
|
},
|
|
.suspend = docg4_suspend,
|
|
.resume = docg4_resume,
|
|
.remove = __exit_p(cleanup_docg4),
|
|
};
|
|
|
|
module_platform_driver_probe(docg4_driver, probe_docg4);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mike Dunn");
|
|
MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
|