2998 строки
76 KiB
C
2998 строки
76 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NVM Express device driver
|
|
* Copyright (c) 2011-2014, Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/aer.h>
|
|
#include <linux/async.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/blk-mq-pci.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/once.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/t10-pi.h>
|
|
#include <linux/types.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#include <linux/sed-opal.h>
|
|
#include <linux/pci-p2pdma.h>
|
|
|
|
#include "trace.h"
|
|
#include "nvme.h"
|
|
|
|
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
|
|
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
|
|
|
|
#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
|
|
|
|
/*
|
|
* These can be higher, but we need to ensure that any command doesn't
|
|
* require an sg allocation that needs more than a page of data.
|
|
*/
|
|
#define NVME_MAX_KB_SZ 4096
|
|
#define NVME_MAX_SEGS 127
|
|
|
|
static int use_threaded_interrupts;
|
|
module_param(use_threaded_interrupts, int, 0);
|
|
|
|
static bool use_cmb_sqes = true;
|
|
module_param(use_cmb_sqes, bool, 0444);
|
|
MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
|
|
|
|
static unsigned int max_host_mem_size_mb = 128;
|
|
module_param(max_host_mem_size_mb, uint, 0444);
|
|
MODULE_PARM_DESC(max_host_mem_size_mb,
|
|
"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
|
|
|
|
static unsigned int sgl_threshold = SZ_32K;
|
|
module_param(sgl_threshold, uint, 0644);
|
|
MODULE_PARM_DESC(sgl_threshold,
|
|
"Use SGLs when average request segment size is larger or equal to "
|
|
"this size. Use 0 to disable SGLs.");
|
|
|
|
static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
|
|
static const struct kernel_param_ops io_queue_depth_ops = {
|
|
.set = io_queue_depth_set,
|
|
.get = param_get_int,
|
|
};
|
|
|
|
static int io_queue_depth = 1024;
|
|
module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
|
|
MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
|
|
|
|
static int queue_count_set(const char *val, const struct kernel_param *kp);
|
|
static const struct kernel_param_ops queue_count_ops = {
|
|
.set = queue_count_set,
|
|
.get = param_get_int,
|
|
};
|
|
|
|
static int write_queues;
|
|
module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
|
|
MODULE_PARM_DESC(write_queues,
|
|
"Number of queues to use for writes. If not set, reads and writes "
|
|
"will share a queue set.");
|
|
|
|
static int poll_queues = 0;
|
|
module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
|
|
MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
|
|
|
|
struct nvme_dev;
|
|
struct nvme_queue;
|
|
|
|
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
|
|
static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
|
|
|
|
/*
|
|
* Represents an NVM Express device. Each nvme_dev is a PCI function.
|
|
*/
|
|
struct nvme_dev {
|
|
struct nvme_queue *queues;
|
|
struct blk_mq_tag_set tagset;
|
|
struct blk_mq_tag_set admin_tagset;
|
|
u32 __iomem *dbs;
|
|
struct device *dev;
|
|
struct dma_pool *prp_page_pool;
|
|
struct dma_pool *prp_small_pool;
|
|
unsigned online_queues;
|
|
unsigned max_qid;
|
|
unsigned io_queues[HCTX_MAX_TYPES];
|
|
unsigned int num_vecs;
|
|
int q_depth;
|
|
u32 db_stride;
|
|
void __iomem *bar;
|
|
unsigned long bar_mapped_size;
|
|
struct work_struct remove_work;
|
|
struct mutex shutdown_lock;
|
|
bool subsystem;
|
|
u64 cmb_size;
|
|
bool cmb_use_sqes;
|
|
u32 cmbsz;
|
|
u32 cmbloc;
|
|
struct nvme_ctrl ctrl;
|
|
|
|
mempool_t *iod_mempool;
|
|
|
|
/* shadow doorbell buffer support: */
|
|
u32 *dbbuf_dbs;
|
|
dma_addr_t dbbuf_dbs_dma_addr;
|
|
u32 *dbbuf_eis;
|
|
dma_addr_t dbbuf_eis_dma_addr;
|
|
|
|
/* host memory buffer support: */
|
|
u64 host_mem_size;
|
|
u32 nr_host_mem_descs;
|
|
dma_addr_t host_mem_descs_dma;
|
|
struct nvme_host_mem_buf_desc *host_mem_descs;
|
|
void **host_mem_desc_bufs;
|
|
};
|
|
|
|
static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
|
|
{
|
|
int n = 0, ret;
|
|
|
|
ret = kstrtoint(val, 10, &n);
|
|
if (ret != 0 || n < 2)
|
|
return -EINVAL;
|
|
|
|
return param_set_int(val, kp);
|
|
}
|
|
|
|
static int queue_count_set(const char *val, const struct kernel_param *kp)
|
|
{
|
|
int n = 0, ret;
|
|
|
|
ret = kstrtoint(val, 10, &n);
|
|
if (ret)
|
|
return ret;
|
|
if (n > num_possible_cpus())
|
|
n = num_possible_cpus();
|
|
|
|
return param_set_int(val, kp);
|
|
}
|
|
|
|
static inline unsigned int sq_idx(unsigned int qid, u32 stride)
|
|
{
|
|
return qid * 2 * stride;
|
|
}
|
|
|
|
static inline unsigned int cq_idx(unsigned int qid, u32 stride)
|
|
{
|
|
return (qid * 2 + 1) * stride;
|
|
}
|
|
|
|
static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
|
|
{
|
|
return container_of(ctrl, struct nvme_dev, ctrl);
|
|
}
|
|
|
|
/*
|
|
* An NVM Express queue. Each device has at least two (one for admin
|
|
* commands and one for I/O commands).
|
|
*/
|
|
struct nvme_queue {
|
|
struct device *q_dmadev;
|
|
struct nvme_dev *dev;
|
|
spinlock_t sq_lock;
|
|
struct nvme_command *sq_cmds;
|
|
/* only used for poll queues: */
|
|
spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
|
|
volatile struct nvme_completion *cqes;
|
|
struct blk_mq_tags **tags;
|
|
dma_addr_t sq_dma_addr;
|
|
dma_addr_t cq_dma_addr;
|
|
u32 __iomem *q_db;
|
|
u16 q_depth;
|
|
s16 cq_vector;
|
|
u16 sq_tail;
|
|
u16 last_sq_tail;
|
|
u16 cq_head;
|
|
u16 last_cq_head;
|
|
u16 qid;
|
|
u8 cq_phase;
|
|
unsigned long flags;
|
|
#define NVMEQ_ENABLED 0
|
|
#define NVMEQ_SQ_CMB 1
|
|
#define NVMEQ_DELETE_ERROR 2
|
|
u32 *dbbuf_sq_db;
|
|
u32 *dbbuf_cq_db;
|
|
u32 *dbbuf_sq_ei;
|
|
u32 *dbbuf_cq_ei;
|
|
struct completion delete_done;
|
|
};
|
|
|
|
/*
|
|
* The nvme_iod describes the data in an I/O, including the list of PRP
|
|
* entries. You can't see it in this data structure because C doesn't let
|
|
* me express that. Use nvme_init_iod to ensure there's enough space
|
|
* allocated to store the PRP list.
|
|
*/
|
|
struct nvme_iod {
|
|
struct nvme_request req;
|
|
struct nvme_queue *nvmeq;
|
|
bool use_sgl;
|
|
int aborted;
|
|
int npages; /* In the PRP list. 0 means small pool in use */
|
|
int nents; /* Used in scatterlist */
|
|
int length; /* Of data, in bytes */
|
|
dma_addr_t first_dma;
|
|
struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
|
|
struct scatterlist *sg;
|
|
struct scatterlist inline_sg[0];
|
|
};
|
|
|
|
/*
|
|
* Check we didin't inadvertently grow the command struct
|
|
*/
|
|
static inline void _nvme_check_size(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
|
|
BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
|
|
}
|
|
|
|
static unsigned int max_io_queues(void)
|
|
{
|
|
return num_possible_cpus() + write_queues + poll_queues;
|
|
}
|
|
|
|
static unsigned int max_queue_count(void)
|
|
{
|
|
/* IO queues + admin queue */
|
|
return 1 + max_io_queues();
|
|
}
|
|
|
|
static inline unsigned int nvme_dbbuf_size(u32 stride)
|
|
{
|
|
return (max_queue_count() * 8 * stride);
|
|
}
|
|
|
|
static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
|
|
{
|
|
unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
|
|
|
|
if (dev->dbbuf_dbs)
|
|
return 0;
|
|
|
|
dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
|
|
&dev->dbbuf_dbs_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!dev->dbbuf_dbs)
|
|
return -ENOMEM;
|
|
dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
|
|
&dev->dbbuf_eis_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!dev->dbbuf_eis) {
|
|
dma_free_coherent(dev->dev, mem_size,
|
|
dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
|
|
dev->dbbuf_dbs = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
|
|
{
|
|
unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
|
|
|
|
if (dev->dbbuf_dbs) {
|
|
dma_free_coherent(dev->dev, mem_size,
|
|
dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
|
|
dev->dbbuf_dbs = NULL;
|
|
}
|
|
if (dev->dbbuf_eis) {
|
|
dma_free_coherent(dev->dev, mem_size,
|
|
dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
|
|
dev->dbbuf_eis = NULL;
|
|
}
|
|
}
|
|
|
|
static void nvme_dbbuf_init(struct nvme_dev *dev,
|
|
struct nvme_queue *nvmeq, int qid)
|
|
{
|
|
if (!dev->dbbuf_dbs || !qid)
|
|
return;
|
|
|
|
nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
|
|
nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
|
|
nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
|
|
nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
|
|
}
|
|
|
|
static void nvme_dbbuf_set(struct nvme_dev *dev)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
if (!dev->dbbuf_dbs)
|
|
return;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.dbbuf.opcode = nvme_admin_dbbuf;
|
|
c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
|
|
c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
|
|
|
|
if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
|
|
dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
|
|
/* Free memory and continue on */
|
|
nvme_dbbuf_dma_free(dev);
|
|
}
|
|
}
|
|
|
|
static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
|
|
{
|
|
return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
|
|
}
|
|
|
|
/* Update dbbuf and return true if an MMIO is required */
|
|
static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
|
|
volatile u32 *dbbuf_ei)
|
|
{
|
|
if (dbbuf_db) {
|
|
u16 old_value;
|
|
|
|
/*
|
|
* Ensure that the queue is written before updating
|
|
* the doorbell in memory
|
|
*/
|
|
wmb();
|
|
|
|
old_value = *dbbuf_db;
|
|
*dbbuf_db = value;
|
|
|
|
/*
|
|
* Ensure that the doorbell is updated before reading the event
|
|
* index from memory. The controller needs to provide similar
|
|
* ordering to ensure the envent index is updated before reading
|
|
* the doorbell.
|
|
*/
|
|
mb();
|
|
|
|
if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Max size of iod being embedded in the request payload
|
|
*/
|
|
#define NVME_INT_PAGES 2
|
|
#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
|
|
|
|
/*
|
|
* Will slightly overestimate the number of pages needed. This is OK
|
|
* as it only leads to a small amount of wasted memory for the lifetime of
|
|
* the I/O.
|
|
*/
|
|
static int nvme_npages(unsigned size, struct nvme_dev *dev)
|
|
{
|
|
unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
|
|
dev->ctrl.page_size);
|
|
return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
|
|
}
|
|
|
|
/*
|
|
* Calculates the number of pages needed for the SGL segments. For example a 4k
|
|
* page can accommodate 256 SGL descriptors.
|
|
*/
|
|
static int nvme_pci_npages_sgl(unsigned int num_seg)
|
|
{
|
|
return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
|
|
}
|
|
|
|
static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
|
|
unsigned int size, unsigned int nseg, bool use_sgl)
|
|
{
|
|
size_t alloc_size;
|
|
|
|
if (use_sgl)
|
|
alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
|
|
else
|
|
alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
|
|
|
|
return alloc_size + sizeof(struct scatterlist) * nseg;
|
|
}
|
|
|
|
static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
|
|
{
|
|
unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
|
|
NVME_INT_BYTES(dev), NVME_INT_PAGES,
|
|
use_sgl);
|
|
|
|
return sizeof(struct nvme_iod) + alloc_size;
|
|
}
|
|
|
|
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_dev *dev = data;
|
|
struct nvme_queue *nvmeq = &dev->queues[0];
|
|
|
|
WARN_ON(hctx_idx != 0);
|
|
WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
|
|
WARN_ON(nvmeq->tags);
|
|
|
|
hctx->driver_data = nvmeq;
|
|
nvmeq->tags = &dev->admin_tagset.tags[0];
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
|
|
{
|
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
|
|
|
nvmeq->tags = NULL;
|
|
}
|
|
|
|
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_dev *dev = data;
|
|
struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
|
|
|
|
if (!nvmeq->tags)
|
|
nvmeq->tags = &dev->tagset.tags[hctx_idx];
|
|
|
|
WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
|
|
hctx->driver_data = nvmeq;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
|
|
unsigned int hctx_idx, unsigned int numa_node)
|
|
{
|
|
struct nvme_dev *dev = set->driver_data;
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
|
|
struct nvme_queue *nvmeq = &dev->queues[queue_idx];
|
|
|
|
BUG_ON(!nvmeq);
|
|
iod->nvmeq = nvmeq;
|
|
|
|
nvme_req(req)->ctrl = &dev->ctrl;
|
|
return 0;
|
|
}
|
|
|
|
static int queue_irq_offset(struct nvme_dev *dev)
|
|
{
|
|
/* if we have more than 1 vec, admin queue offsets us by 1 */
|
|
if (dev->num_vecs > 1)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
|
|
{
|
|
struct nvme_dev *dev = set->driver_data;
|
|
int i, qoff, offset;
|
|
|
|
offset = queue_irq_offset(dev);
|
|
for (i = 0, qoff = 0; i < set->nr_maps; i++) {
|
|
struct blk_mq_queue_map *map = &set->map[i];
|
|
|
|
map->nr_queues = dev->io_queues[i];
|
|
if (!map->nr_queues) {
|
|
BUG_ON(i == HCTX_TYPE_DEFAULT);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The poll queue(s) doesn't have an IRQ (and hence IRQ
|
|
* affinity), so use the regular blk-mq cpu mapping
|
|
*/
|
|
map->queue_offset = qoff;
|
|
if (i != HCTX_TYPE_POLL)
|
|
blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
|
|
else
|
|
blk_mq_map_queues(map);
|
|
qoff += map->nr_queues;
|
|
offset += map->nr_queues;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write sq tail if we are asked to, or if the next command would wrap.
|
|
*/
|
|
static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
|
|
{
|
|
if (!write_sq) {
|
|
u16 next_tail = nvmeq->sq_tail + 1;
|
|
|
|
if (next_tail == nvmeq->q_depth)
|
|
next_tail = 0;
|
|
if (next_tail != nvmeq->last_sq_tail)
|
|
return;
|
|
}
|
|
|
|
if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
|
|
nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
|
|
writel(nvmeq->sq_tail, nvmeq->q_db);
|
|
nvmeq->last_sq_tail = nvmeq->sq_tail;
|
|
}
|
|
|
|
/**
|
|
* nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
|
|
* @nvmeq: The queue to use
|
|
* @cmd: The command to send
|
|
* @write_sq: whether to write to the SQ doorbell
|
|
*/
|
|
static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
|
|
bool write_sq)
|
|
{
|
|
spin_lock(&nvmeq->sq_lock);
|
|
memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
|
|
if (++nvmeq->sq_tail == nvmeq->q_depth)
|
|
nvmeq->sq_tail = 0;
|
|
nvme_write_sq_db(nvmeq, write_sq);
|
|
spin_unlock(&nvmeq->sq_lock);
|
|
}
|
|
|
|
static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
|
|
|
spin_lock(&nvmeq->sq_lock);
|
|
if (nvmeq->sq_tail != nvmeq->last_sq_tail)
|
|
nvme_write_sq_db(nvmeq, true);
|
|
spin_unlock(&nvmeq->sq_lock);
|
|
}
|
|
|
|
static void **nvme_pci_iod_list(struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
|
|
}
|
|
|
|
static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
int nseg = blk_rq_nr_phys_segments(req);
|
|
unsigned int avg_seg_size;
|
|
|
|
if (nseg == 0)
|
|
return false;
|
|
|
|
avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
|
|
|
|
if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
|
|
return false;
|
|
if (!iod->nvmeq->qid)
|
|
return false;
|
|
if (!sgl_threshold || avg_seg_size < sgl_threshold)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
|
|
int nseg = blk_rq_nr_phys_segments(rq);
|
|
unsigned int size = blk_rq_payload_bytes(rq);
|
|
|
|
iod->use_sgl = nvme_pci_use_sgls(dev, rq);
|
|
|
|
if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
|
|
iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
|
|
if (!iod->sg)
|
|
return BLK_STS_RESOURCE;
|
|
} else {
|
|
iod->sg = iod->inline_sg;
|
|
}
|
|
|
|
iod->aborted = 0;
|
|
iod->npages = -1;
|
|
iod->nents = 0;
|
|
iod->length = size;
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
|
|
dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
|
|
|
|
int i;
|
|
|
|
if (iod->npages == 0)
|
|
dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
|
|
dma_addr);
|
|
|
|
for (i = 0; i < iod->npages; i++) {
|
|
void *addr = nvme_pci_iod_list(req)[i];
|
|
|
|
if (iod->use_sgl) {
|
|
struct nvme_sgl_desc *sg_list = addr;
|
|
|
|
next_dma_addr =
|
|
le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
|
|
} else {
|
|
__le64 *prp_list = addr;
|
|
|
|
next_dma_addr = le64_to_cpu(prp_list[last_prp]);
|
|
}
|
|
|
|
dma_pool_free(dev->prp_page_pool, addr, dma_addr);
|
|
dma_addr = next_dma_addr;
|
|
}
|
|
|
|
if (iod->sg != iod->inline_sg)
|
|
mempool_free(iod->sg, dev->iod_mempool);
|
|
}
|
|
|
|
static void nvme_print_sgl(struct scatterlist *sgl, int nents)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sgl, sg, nents, i) {
|
|
dma_addr_t phys = sg_phys(sg);
|
|
pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
|
|
"dma_address:%pad dma_length:%d\n",
|
|
i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
|
|
sg_dma_len(sg));
|
|
}
|
|
}
|
|
|
|
static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
|
|
struct request *req, struct nvme_rw_command *cmnd)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct dma_pool *pool;
|
|
int length = blk_rq_payload_bytes(req);
|
|
struct scatterlist *sg = iod->sg;
|
|
int dma_len = sg_dma_len(sg);
|
|
u64 dma_addr = sg_dma_address(sg);
|
|
u32 page_size = dev->ctrl.page_size;
|
|
int offset = dma_addr & (page_size - 1);
|
|
__le64 *prp_list;
|
|
void **list = nvme_pci_iod_list(req);
|
|
dma_addr_t prp_dma;
|
|
int nprps, i;
|
|
|
|
length -= (page_size - offset);
|
|
if (length <= 0) {
|
|
iod->first_dma = 0;
|
|
goto done;
|
|
}
|
|
|
|
dma_len -= (page_size - offset);
|
|
if (dma_len) {
|
|
dma_addr += (page_size - offset);
|
|
} else {
|
|
sg = sg_next(sg);
|
|
dma_addr = sg_dma_address(sg);
|
|
dma_len = sg_dma_len(sg);
|
|
}
|
|
|
|
if (length <= page_size) {
|
|
iod->first_dma = dma_addr;
|
|
goto done;
|
|
}
|
|
|
|
nprps = DIV_ROUND_UP(length, page_size);
|
|
if (nprps <= (256 / 8)) {
|
|
pool = dev->prp_small_pool;
|
|
iod->npages = 0;
|
|
} else {
|
|
pool = dev->prp_page_pool;
|
|
iod->npages = 1;
|
|
}
|
|
|
|
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
|
|
if (!prp_list) {
|
|
iod->first_dma = dma_addr;
|
|
iod->npages = -1;
|
|
return BLK_STS_RESOURCE;
|
|
}
|
|
list[0] = prp_list;
|
|
iod->first_dma = prp_dma;
|
|
i = 0;
|
|
for (;;) {
|
|
if (i == page_size >> 3) {
|
|
__le64 *old_prp_list = prp_list;
|
|
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
|
|
if (!prp_list)
|
|
return BLK_STS_RESOURCE;
|
|
list[iod->npages++] = prp_list;
|
|
prp_list[0] = old_prp_list[i - 1];
|
|
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
|
|
i = 1;
|
|
}
|
|
prp_list[i++] = cpu_to_le64(dma_addr);
|
|
dma_len -= page_size;
|
|
dma_addr += page_size;
|
|
length -= page_size;
|
|
if (length <= 0)
|
|
break;
|
|
if (dma_len > 0)
|
|
continue;
|
|
if (unlikely(dma_len < 0))
|
|
goto bad_sgl;
|
|
sg = sg_next(sg);
|
|
dma_addr = sg_dma_address(sg);
|
|
dma_len = sg_dma_len(sg);
|
|
}
|
|
|
|
done:
|
|
cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
|
|
cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
|
|
|
|
return BLK_STS_OK;
|
|
|
|
bad_sgl:
|
|
WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
|
|
"Invalid SGL for payload:%d nents:%d\n",
|
|
blk_rq_payload_bytes(req), iod->nents);
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
|
|
struct scatterlist *sg)
|
|
{
|
|
sge->addr = cpu_to_le64(sg_dma_address(sg));
|
|
sge->length = cpu_to_le32(sg_dma_len(sg));
|
|
sge->type = NVME_SGL_FMT_DATA_DESC << 4;
|
|
}
|
|
|
|
static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
|
|
dma_addr_t dma_addr, int entries)
|
|
{
|
|
sge->addr = cpu_to_le64(dma_addr);
|
|
if (entries < SGES_PER_PAGE) {
|
|
sge->length = cpu_to_le32(entries * sizeof(*sge));
|
|
sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
|
|
} else {
|
|
sge->length = cpu_to_le32(PAGE_SIZE);
|
|
sge->type = NVME_SGL_FMT_SEG_DESC << 4;
|
|
}
|
|
}
|
|
|
|
static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
|
|
struct request *req, struct nvme_rw_command *cmd, int entries)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct dma_pool *pool;
|
|
struct nvme_sgl_desc *sg_list;
|
|
struct scatterlist *sg = iod->sg;
|
|
dma_addr_t sgl_dma;
|
|
int i = 0;
|
|
|
|
/* setting the transfer type as SGL */
|
|
cmd->flags = NVME_CMD_SGL_METABUF;
|
|
|
|
if (entries == 1) {
|
|
nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
|
|
pool = dev->prp_small_pool;
|
|
iod->npages = 0;
|
|
} else {
|
|
pool = dev->prp_page_pool;
|
|
iod->npages = 1;
|
|
}
|
|
|
|
sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
|
|
if (!sg_list) {
|
|
iod->npages = -1;
|
|
return BLK_STS_RESOURCE;
|
|
}
|
|
|
|
nvme_pci_iod_list(req)[0] = sg_list;
|
|
iod->first_dma = sgl_dma;
|
|
|
|
nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
|
|
|
|
do {
|
|
if (i == SGES_PER_PAGE) {
|
|
struct nvme_sgl_desc *old_sg_desc = sg_list;
|
|
struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
|
|
|
|
sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
|
|
if (!sg_list)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
i = 0;
|
|
nvme_pci_iod_list(req)[iod->npages++] = sg_list;
|
|
sg_list[i++] = *link;
|
|
nvme_pci_sgl_set_seg(link, sgl_dma, entries);
|
|
}
|
|
|
|
nvme_pci_sgl_set_data(&sg_list[i++], sg);
|
|
sg = sg_next(sg);
|
|
} while (--entries > 0);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
|
|
struct nvme_command *cmnd)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct request_queue *q = req->q;
|
|
enum dma_data_direction dma_dir = rq_data_dir(req) ?
|
|
DMA_TO_DEVICE : DMA_FROM_DEVICE;
|
|
blk_status_t ret = BLK_STS_IOERR;
|
|
int nr_mapped;
|
|
|
|
sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
|
|
iod->nents = blk_rq_map_sg(q, req, iod->sg);
|
|
if (!iod->nents)
|
|
goto out;
|
|
|
|
ret = BLK_STS_RESOURCE;
|
|
|
|
if (is_pci_p2pdma_page(sg_page(iod->sg)))
|
|
nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
|
|
dma_dir);
|
|
else
|
|
nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
|
|
dma_dir, DMA_ATTR_NO_WARN);
|
|
if (!nr_mapped)
|
|
goto out;
|
|
|
|
if (iod->use_sgl)
|
|
ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
|
|
else
|
|
ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
|
|
|
|
if (ret != BLK_STS_OK)
|
|
goto out_unmap;
|
|
|
|
ret = BLK_STS_IOERR;
|
|
if (blk_integrity_rq(req)) {
|
|
if (blk_rq_count_integrity_sg(q, req->bio) != 1)
|
|
goto out_unmap;
|
|
|
|
sg_init_table(&iod->meta_sg, 1);
|
|
if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
|
|
goto out_unmap;
|
|
|
|
if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
|
|
goto out_unmap;
|
|
|
|
cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
|
|
}
|
|
|
|
return BLK_STS_OK;
|
|
|
|
out_unmap:
|
|
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
enum dma_data_direction dma_dir = rq_data_dir(req) ?
|
|
DMA_TO_DEVICE : DMA_FROM_DEVICE;
|
|
|
|
if (iod->nents) {
|
|
/* P2PDMA requests do not need to be unmapped */
|
|
if (!is_pci_p2pdma_page(sg_page(iod->sg)))
|
|
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
|
|
|
|
if (blk_integrity_rq(req))
|
|
dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
|
|
}
|
|
|
|
nvme_cleanup_cmd(req);
|
|
nvme_free_iod(dev, req);
|
|
}
|
|
|
|
/*
|
|
* NOTE: ns is NULL when called on the admin queue.
|
|
*/
|
|
static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
|
|
const struct blk_mq_queue_data *bd)
|
|
{
|
|
struct nvme_ns *ns = hctx->queue->queuedata;
|
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
struct request *req = bd->rq;
|
|
struct nvme_command cmnd;
|
|
blk_status_t ret;
|
|
|
|
/*
|
|
* We should not need to do this, but we're still using this to
|
|
* ensure we can drain requests on a dying queue.
|
|
*/
|
|
if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
|
|
return BLK_STS_IOERR;
|
|
|
|
ret = nvme_setup_cmd(ns, req, &cmnd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvme_init_iod(req, dev);
|
|
if (ret)
|
|
goto out_free_cmd;
|
|
|
|
if (blk_rq_nr_phys_segments(req)) {
|
|
ret = nvme_map_data(dev, req, &cmnd);
|
|
if (ret)
|
|
goto out_cleanup_iod;
|
|
}
|
|
|
|
blk_mq_start_request(req);
|
|
nvme_submit_cmd(nvmeq, &cmnd, bd->last);
|
|
return BLK_STS_OK;
|
|
out_cleanup_iod:
|
|
nvme_free_iod(dev, req);
|
|
out_free_cmd:
|
|
nvme_cleanup_cmd(req);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_pci_complete_rq(struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
|
|
nvme_unmap_data(iod->nvmeq->dev, req);
|
|
nvme_complete_rq(req);
|
|
}
|
|
|
|
/* We read the CQE phase first to check if the rest of the entry is valid */
|
|
static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
|
|
{
|
|
return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
|
|
nvmeq->cq_phase;
|
|
}
|
|
|
|
static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
|
|
{
|
|
u16 head = nvmeq->cq_head;
|
|
|
|
if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
|
|
nvmeq->dbbuf_cq_ei))
|
|
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
|
|
}
|
|
|
|
static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
|
|
{
|
|
volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
|
|
struct request *req;
|
|
|
|
if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
|
|
dev_warn(nvmeq->dev->ctrl.device,
|
|
"invalid id %d completed on queue %d\n",
|
|
cqe->command_id, le16_to_cpu(cqe->sq_id));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* AEN requests are special as they don't time out and can
|
|
* survive any kind of queue freeze and often don't respond to
|
|
* aborts. We don't even bother to allocate a struct request
|
|
* for them but rather special case them here.
|
|
*/
|
|
if (unlikely(nvmeq->qid == 0 &&
|
|
cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
|
|
nvme_complete_async_event(&nvmeq->dev->ctrl,
|
|
cqe->status, &cqe->result);
|
|
return;
|
|
}
|
|
|
|
req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
|
|
trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
|
|
nvme_end_request(req, cqe->status, cqe->result);
|
|
}
|
|
|
|
static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
|
|
{
|
|
while (start != end) {
|
|
nvme_handle_cqe(nvmeq, start);
|
|
if (++start == nvmeq->q_depth)
|
|
start = 0;
|
|
}
|
|
}
|
|
|
|
static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
|
|
{
|
|
if (nvmeq->cq_head == nvmeq->q_depth - 1) {
|
|
nvmeq->cq_head = 0;
|
|
nvmeq->cq_phase = !nvmeq->cq_phase;
|
|
} else {
|
|
nvmeq->cq_head++;
|
|
}
|
|
}
|
|
|
|
static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
|
|
u16 *end, unsigned int tag)
|
|
{
|
|
int found = 0;
|
|
|
|
*start = nvmeq->cq_head;
|
|
while (nvme_cqe_pending(nvmeq)) {
|
|
if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
|
|
found++;
|
|
nvme_update_cq_head(nvmeq);
|
|
}
|
|
*end = nvmeq->cq_head;
|
|
|
|
if (*start != *end)
|
|
nvme_ring_cq_doorbell(nvmeq);
|
|
return found;
|
|
}
|
|
|
|
static irqreturn_t nvme_irq(int irq, void *data)
|
|
{
|
|
struct nvme_queue *nvmeq = data;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
u16 start, end;
|
|
|
|
/*
|
|
* The rmb/wmb pair ensures we see all updates from a previous run of
|
|
* the irq handler, even if that was on another CPU.
|
|
*/
|
|
rmb();
|
|
if (nvmeq->cq_head != nvmeq->last_cq_head)
|
|
ret = IRQ_HANDLED;
|
|
nvme_process_cq(nvmeq, &start, &end, -1);
|
|
nvmeq->last_cq_head = nvmeq->cq_head;
|
|
wmb();
|
|
|
|
if (start != end) {
|
|
nvme_complete_cqes(nvmeq, start, end);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t nvme_irq_check(int irq, void *data)
|
|
{
|
|
struct nvme_queue *nvmeq = data;
|
|
if (nvme_cqe_pending(nvmeq))
|
|
return IRQ_WAKE_THREAD;
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/*
|
|
* Poll for completions any queue, including those not dedicated to polling.
|
|
* Can be called from any context.
|
|
*/
|
|
static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
|
|
u16 start, end;
|
|
int found;
|
|
|
|
/*
|
|
* For a poll queue we need to protect against the polling thread
|
|
* using the CQ lock. For normal interrupt driven threads we have
|
|
* to disable the interrupt to avoid racing with it.
|
|
*/
|
|
if (nvmeq->cq_vector == -1) {
|
|
spin_lock(&nvmeq->cq_poll_lock);
|
|
found = nvme_process_cq(nvmeq, &start, &end, tag);
|
|
spin_unlock(&nvmeq->cq_poll_lock);
|
|
} else {
|
|
disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
|
|
found = nvme_process_cq(nvmeq, &start, &end, tag);
|
|
enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
|
|
}
|
|
|
|
nvme_complete_cqes(nvmeq, start, end);
|
|
return found;
|
|
}
|
|
|
|
static int nvme_poll(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
|
u16 start, end;
|
|
bool found;
|
|
|
|
if (!nvme_cqe_pending(nvmeq))
|
|
return 0;
|
|
|
|
spin_lock(&nvmeq->cq_poll_lock);
|
|
found = nvme_process_cq(nvmeq, &start, &end, -1);
|
|
spin_unlock(&nvmeq->cq_poll_lock);
|
|
|
|
nvme_complete_cqes(nvmeq, start, end);
|
|
return found;
|
|
}
|
|
|
|
static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
|
struct nvme_queue *nvmeq = &dev->queues[0];
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.common.opcode = nvme_admin_async_event;
|
|
c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
|
|
nvme_submit_cmd(nvmeq, &c, true);
|
|
}
|
|
|
|
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.delete_queue.opcode = opcode;
|
|
c.delete_queue.qid = cpu_to_le16(id);
|
|
|
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
|
}
|
|
|
|
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
|
|
struct nvme_queue *nvmeq, s16 vector)
|
|
{
|
|
struct nvme_command c;
|
|
int flags = NVME_QUEUE_PHYS_CONTIG;
|
|
|
|
if (vector != -1)
|
|
flags |= NVME_CQ_IRQ_ENABLED;
|
|
|
|
/*
|
|
* Note: we (ab)use the fact that the prp fields survive if no data
|
|
* is attached to the request.
|
|
*/
|
|
memset(&c, 0, sizeof(c));
|
|
c.create_cq.opcode = nvme_admin_create_cq;
|
|
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
|
|
c.create_cq.cqid = cpu_to_le16(qid);
|
|
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
|
c.create_cq.cq_flags = cpu_to_le16(flags);
|
|
if (vector != -1)
|
|
c.create_cq.irq_vector = cpu_to_le16(vector);
|
|
else
|
|
c.create_cq.irq_vector = 0;
|
|
|
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
|
}
|
|
|
|
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
|
|
struct nvme_queue *nvmeq)
|
|
{
|
|
struct nvme_ctrl *ctrl = &dev->ctrl;
|
|
struct nvme_command c;
|
|
int flags = NVME_QUEUE_PHYS_CONTIG;
|
|
|
|
/*
|
|
* Some drives have a bug that auto-enables WRRU if MEDIUM isn't
|
|
* set. Since URGENT priority is zeroes, it makes all queues
|
|
* URGENT.
|
|
*/
|
|
if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
|
|
flags |= NVME_SQ_PRIO_MEDIUM;
|
|
|
|
/*
|
|
* Note: we (ab)use the fact that the prp fields survive if no data
|
|
* is attached to the request.
|
|
*/
|
|
memset(&c, 0, sizeof(c));
|
|
c.create_sq.opcode = nvme_admin_create_sq;
|
|
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
|
|
c.create_sq.sqid = cpu_to_le16(qid);
|
|
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
|
c.create_sq.sq_flags = cpu_to_le16(flags);
|
|
c.create_sq.cqid = cpu_to_le16(qid);
|
|
|
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
|
}
|
|
|
|
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
|
|
{
|
|
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
|
|
}
|
|
|
|
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
|
|
{
|
|
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
|
|
}
|
|
|
|
static void abort_endio(struct request *req, blk_status_t error)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct nvme_queue *nvmeq = iod->nvmeq;
|
|
|
|
dev_warn(nvmeq->dev->ctrl.device,
|
|
"Abort status: 0x%x", nvme_req(req)->status);
|
|
atomic_inc(&nvmeq->dev->ctrl.abort_limit);
|
|
blk_mq_free_request(req);
|
|
}
|
|
|
|
static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
|
|
{
|
|
|
|
/* If true, indicates loss of adapter communication, possibly by a
|
|
* NVMe Subsystem reset.
|
|
*/
|
|
bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
|
|
|
|
/* If there is a reset/reinit ongoing, we shouldn't reset again. */
|
|
switch (dev->ctrl.state) {
|
|
case NVME_CTRL_RESETTING:
|
|
case NVME_CTRL_CONNECTING:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* We shouldn't reset unless the controller is on fatal error state
|
|
* _or_ if we lost the communication with it.
|
|
*/
|
|
if (!(csts & NVME_CSTS_CFS) && !nssro)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
|
|
{
|
|
/* Read a config register to help see what died. */
|
|
u16 pci_status;
|
|
int result;
|
|
|
|
result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
|
|
&pci_status);
|
|
if (result == PCIBIOS_SUCCESSFUL)
|
|
dev_warn(dev->ctrl.device,
|
|
"controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
|
|
csts, pci_status);
|
|
else
|
|
dev_warn(dev->ctrl.device,
|
|
"controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
|
|
csts, result);
|
|
}
|
|
|
|
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct nvme_queue *nvmeq = iod->nvmeq;
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
struct request *abort_req;
|
|
struct nvme_command cmd;
|
|
u32 csts = readl(dev->bar + NVME_REG_CSTS);
|
|
|
|
/* If PCI error recovery process is happening, we cannot reset or
|
|
* the recovery mechanism will surely fail.
|
|
*/
|
|
mb();
|
|
if (pci_channel_offline(to_pci_dev(dev->dev)))
|
|
return BLK_EH_RESET_TIMER;
|
|
|
|
/*
|
|
* Reset immediately if the controller is failed
|
|
*/
|
|
if (nvme_should_reset(dev, csts)) {
|
|
nvme_warn_reset(dev, csts);
|
|
nvme_dev_disable(dev, false);
|
|
nvme_reset_ctrl(&dev->ctrl);
|
|
return BLK_EH_DONE;
|
|
}
|
|
|
|
/*
|
|
* Did we miss an interrupt?
|
|
*/
|
|
if (nvme_poll_irqdisable(nvmeq, req->tag)) {
|
|
dev_warn(dev->ctrl.device,
|
|
"I/O %d QID %d timeout, completion polled\n",
|
|
req->tag, nvmeq->qid);
|
|
return BLK_EH_DONE;
|
|
}
|
|
|
|
/*
|
|
* Shutdown immediately if controller times out while starting. The
|
|
* reset work will see the pci device disabled when it gets the forced
|
|
* cancellation error. All outstanding requests are completed on
|
|
* shutdown, so we return BLK_EH_DONE.
|
|
*/
|
|
switch (dev->ctrl.state) {
|
|
case NVME_CTRL_CONNECTING:
|
|
case NVME_CTRL_RESETTING:
|
|
dev_warn_ratelimited(dev->ctrl.device,
|
|
"I/O %d QID %d timeout, disable controller\n",
|
|
req->tag, nvmeq->qid);
|
|
nvme_dev_disable(dev, false);
|
|
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
|
|
return BLK_EH_DONE;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Shutdown the controller immediately and schedule a reset if the
|
|
* command was already aborted once before and still hasn't been
|
|
* returned to the driver, or if this is the admin queue.
|
|
*/
|
|
if (!nvmeq->qid || iod->aborted) {
|
|
dev_warn(dev->ctrl.device,
|
|
"I/O %d QID %d timeout, reset controller\n",
|
|
req->tag, nvmeq->qid);
|
|
nvme_dev_disable(dev, false);
|
|
nvme_reset_ctrl(&dev->ctrl);
|
|
|
|
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
|
|
return BLK_EH_DONE;
|
|
}
|
|
|
|
if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
|
|
atomic_inc(&dev->ctrl.abort_limit);
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
iod->aborted = 1;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.abort.opcode = nvme_admin_abort_cmd;
|
|
cmd.abort.cid = req->tag;
|
|
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
|
|
|
|
dev_warn(nvmeq->dev->ctrl.device,
|
|
"I/O %d QID %d timeout, aborting\n",
|
|
req->tag, nvmeq->qid);
|
|
|
|
abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
|
|
BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
|
|
if (IS_ERR(abort_req)) {
|
|
atomic_inc(&dev->ctrl.abort_limit);
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
|
|
abort_req->timeout = ADMIN_TIMEOUT;
|
|
abort_req->end_io_data = NULL;
|
|
blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
|
|
|
|
/*
|
|
* The aborted req will be completed on receiving the abort req.
|
|
* We enable the timer again. If hit twice, it'll cause a device reset,
|
|
* as the device then is in a faulty state.
|
|
*/
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
|
|
static void nvme_free_queue(struct nvme_queue *nvmeq)
|
|
{
|
|
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
|
|
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
|
|
if (!nvmeq->sq_cmds)
|
|
return;
|
|
|
|
if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
|
|
pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
|
|
nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
|
|
} else {
|
|
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
|
|
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
|
|
}
|
|
}
|
|
|
|
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
|
|
{
|
|
int i;
|
|
|
|
for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
|
|
dev->ctrl.queue_count--;
|
|
nvme_free_queue(&dev->queues[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nvme_suspend_queue - put queue into suspended state
|
|
* @nvmeq: queue to suspend
|
|
*/
|
|
static int nvme_suspend_queue(struct nvme_queue *nvmeq)
|
|
{
|
|
if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
|
|
return 1;
|
|
|
|
/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
|
|
mb();
|
|
|
|
nvmeq->dev->online_queues--;
|
|
if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
|
|
blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
|
|
if (nvmeq->cq_vector == -1)
|
|
return 0;
|
|
pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
|
|
nvmeq->cq_vector = -1;
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_suspend_io_queues(struct nvme_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = dev->ctrl.queue_count - 1; i > 0; i--)
|
|
nvme_suspend_queue(&dev->queues[i]);
|
|
}
|
|
|
|
static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
|
|
{
|
|
struct nvme_queue *nvmeq = &dev->queues[0];
|
|
|
|
if (shutdown)
|
|
nvme_shutdown_ctrl(&dev->ctrl);
|
|
else
|
|
nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
|
|
|
|
nvme_poll_irqdisable(nvmeq, -1);
|
|
}
|
|
|
|
static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
|
|
int entry_size)
|
|
{
|
|
int q_depth = dev->q_depth;
|
|
unsigned q_size_aligned = roundup(q_depth * entry_size,
|
|
dev->ctrl.page_size);
|
|
|
|
if (q_size_aligned * nr_io_queues > dev->cmb_size) {
|
|
u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
|
|
mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
|
|
q_depth = div_u64(mem_per_q, entry_size);
|
|
|
|
/*
|
|
* Ensure the reduced q_depth is above some threshold where it
|
|
* would be better to map queues in system memory with the
|
|
* original depth
|
|
*/
|
|
if (q_depth < 64)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return q_depth;
|
|
}
|
|
|
|
static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
|
|
int qid, int depth)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
|
|
nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
|
|
nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
|
|
nvmeq->sq_cmds);
|
|
if (nvmeq->sq_dma_addr) {
|
|
set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
|
|
&nvmeq->sq_dma_addr, GFP_KERNEL);
|
|
if (!nvmeq->sq_cmds)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
|
|
{
|
|
struct nvme_queue *nvmeq = &dev->queues[qid];
|
|
|
|
if (dev->ctrl.queue_count > qid)
|
|
return 0;
|
|
|
|
nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
|
|
&nvmeq->cq_dma_addr, GFP_KERNEL);
|
|
if (!nvmeq->cqes)
|
|
goto free_nvmeq;
|
|
|
|
if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
|
|
goto free_cqdma;
|
|
|
|
nvmeq->q_dmadev = dev->dev;
|
|
nvmeq->dev = dev;
|
|
spin_lock_init(&nvmeq->sq_lock);
|
|
spin_lock_init(&nvmeq->cq_poll_lock);
|
|
nvmeq->cq_head = 0;
|
|
nvmeq->cq_phase = 1;
|
|
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
|
nvmeq->q_depth = depth;
|
|
nvmeq->qid = qid;
|
|
nvmeq->cq_vector = -1;
|
|
dev->ctrl.queue_count++;
|
|
|
|
return 0;
|
|
|
|
free_cqdma:
|
|
dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
|
|
nvmeq->cq_dma_addr);
|
|
free_nvmeq:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int queue_request_irq(struct nvme_queue *nvmeq)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
|
|
int nr = nvmeq->dev->ctrl.instance;
|
|
|
|
if (use_threaded_interrupts) {
|
|
return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
|
|
nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
|
|
} else {
|
|
return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
|
|
NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
|
|
}
|
|
}
|
|
|
|
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
|
|
{
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
|
|
nvmeq->sq_tail = 0;
|
|
nvmeq->last_sq_tail = 0;
|
|
nvmeq->cq_head = 0;
|
|
nvmeq->cq_phase = 1;
|
|
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
|
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
|
|
nvme_dbbuf_init(dev, nvmeq, qid);
|
|
dev->online_queues++;
|
|
wmb(); /* ensure the first interrupt sees the initialization */
|
|
}
|
|
|
|
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
|
|
{
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
int result;
|
|
s16 vector;
|
|
|
|
clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
|
|
|
|
/*
|
|
* A queue's vector matches the queue identifier unless the controller
|
|
* has only one vector available.
|
|
*/
|
|
if (!polled)
|
|
vector = dev->num_vecs == 1 ? 0 : qid;
|
|
else
|
|
vector = -1;
|
|
|
|
result = adapter_alloc_cq(dev, qid, nvmeq, vector);
|
|
if (result)
|
|
return result;
|
|
|
|
result = adapter_alloc_sq(dev, qid, nvmeq);
|
|
if (result < 0)
|
|
return result;
|
|
else if (result)
|
|
goto release_cq;
|
|
|
|
nvmeq->cq_vector = vector;
|
|
nvme_init_queue(nvmeq, qid);
|
|
|
|
if (vector != -1) {
|
|
result = queue_request_irq(nvmeq);
|
|
if (result < 0)
|
|
goto release_sq;
|
|
}
|
|
|
|
set_bit(NVMEQ_ENABLED, &nvmeq->flags);
|
|
return result;
|
|
|
|
release_sq:
|
|
nvmeq->cq_vector = -1;
|
|
dev->online_queues--;
|
|
adapter_delete_sq(dev, qid);
|
|
release_cq:
|
|
adapter_delete_cq(dev, qid);
|
|
return result;
|
|
}
|
|
|
|
static const struct blk_mq_ops nvme_mq_admin_ops = {
|
|
.queue_rq = nvme_queue_rq,
|
|
.complete = nvme_pci_complete_rq,
|
|
.init_hctx = nvme_admin_init_hctx,
|
|
.exit_hctx = nvme_admin_exit_hctx,
|
|
.init_request = nvme_init_request,
|
|
.timeout = nvme_timeout,
|
|
};
|
|
|
|
static const struct blk_mq_ops nvme_mq_ops = {
|
|
.queue_rq = nvme_queue_rq,
|
|
.complete = nvme_pci_complete_rq,
|
|
.commit_rqs = nvme_commit_rqs,
|
|
.init_hctx = nvme_init_hctx,
|
|
.init_request = nvme_init_request,
|
|
.map_queues = nvme_pci_map_queues,
|
|
.timeout = nvme_timeout,
|
|
.poll = nvme_poll,
|
|
};
|
|
|
|
static void nvme_dev_remove_admin(struct nvme_dev *dev)
|
|
{
|
|
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
|
|
/*
|
|
* If the controller was reset during removal, it's possible
|
|
* user requests may be waiting on a stopped queue. Start the
|
|
* queue to flush these to completion.
|
|
*/
|
|
blk_mq_unquiesce_queue(dev->ctrl.admin_q);
|
|
blk_cleanup_queue(dev->ctrl.admin_q);
|
|
blk_mq_free_tag_set(&dev->admin_tagset);
|
|
}
|
|
}
|
|
|
|
static int nvme_alloc_admin_tags(struct nvme_dev *dev)
|
|
{
|
|
if (!dev->ctrl.admin_q) {
|
|
dev->admin_tagset.ops = &nvme_mq_admin_ops;
|
|
dev->admin_tagset.nr_hw_queues = 1;
|
|
|
|
dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
|
|
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
|
|
dev->admin_tagset.numa_node = dev_to_node(dev->dev);
|
|
dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
|
|
dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
|
|
dev->admin_tagset.driver_data = dev;
|
|
|
|
if (blk_mq_alloc_tag_set(&dev->admin_tagset))
|
|
return -ENOMEM;
|
|
dev->ctrl.admin_tagset = &dev->admin_tagset;
|
|
|
|
dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
|
|
if (IS_ERR(dev->ctrl.admin_q)) {
|
|
blk_mq_free_tag_set(&dev->admin_tagset);
|
|
return -ENOMEM;
|
|
}
|
|
if (!blk_get_queue(dev->ctrl.admin_q)) {
|
|
nvme_dev_remove_admin(dev);
|
|
dev->ctrl.admin_q = NULL;
|
|
return -ENODEV;
|
|
}
|
|
} else
|
|
blk_mq_unquiesce_queue(dev->ctrl.admin_q);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
|
|
{
|
|
return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
|
|
}
|
|
|
|
static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
if (size <= dev->bar_mapped_size)
|
|
return 0;
|
|
if (size > pci_resource_len(pdev, 0))
|
|
return -ENOMEM;
|
|
if (dev->bar)
|
|
iounmap(dev->bar);
|
|
dev->bar = ioremap(pci_resource_start(pdev, 0), size);
|
|
if (!dev->bar) {
|
|
dev->bar_mapped_size = 0;
|
|
return -ENOMEM;
|
|
}
|
|
dev->bar_mapped_size = size;
|
|
dev->dbs = dev->bar + NVME_REG_DBS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
|
|
{
|
|
int result;
|
|
u32 aqa;
|
|
struct nvme_queue *nvmeq;
|
|
|
|
result = nvme_remap_bar(dev, db_bar_size(dev, 0));
|
|
if (result < 0)
|
|
return result;
|
|
|
|
dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
|
|
NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
|
|
|
|
if (dev->subsystem &&
|
|
(readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
|
|
writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
|
|
|
|
result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
|
|
if (result)
|
|
return result;
|
|
|
|
nvmeq = &dev->queues[0];
|
|
aqa = nvmeq->q_depth - 1;
|
|
aqa |= aqa << 16;
|
|
|
|
writel(aqa, dev->bar + NVME_REG_AQA);
|
|
lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
|
|
lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
|
|
|
|
result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
|
|
if (result)
|
|
return result;
|
|
|
|
nvmeq->cq_vector = 0;
|
|
nvme_init_queue(nvmeq, 0);
|
|
result = queue_request_irq(nvmeq);
|
|
if (result) {
|
|
nvmeq->cq_vector = -1;
|
|
return result;
|
|
}
|
|
|
|
set_bit(NVMEQ_ENABLED, &nvmeq->flags);
|
|
return result;
|
|
}
|
|
|
|
static int nvme_create_io_queues(struct nvme_dev *dev)
|
|
{
|
|
unsigned i, max, rw_queues;
|
|
int ret = 0;
|
|
|
|
for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
|
|
if (nvme_alloc_queue(dev, i, dev->q_depth)) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
max = min(dev->max_qid, dev->ctrl.queue_count - 1);
|
|
if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
|
|
rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
|
|
dev->io_queues[HCTX_TYPE_READ];
|
|
} else {
|
|
rw_queues = max;
|
|
}
|
|
|
|
for (i = dev->online_queues; i <= max; i++) {
|
|
bool polled = i > rw_queues;
|
|
|
|
ret = nvme_create_queue(&dev->queues[i], i, polled);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ignore failing Create SQ/CQ commands, we can continue with less
|
|
* than the desired amount of queues, and even a controller without
|
|
* I/O queues can still be used to issue admin commands. This might
|
|
* be useful to upgrade a buggy firmware for example.
|
|
*/
|
|
return ret >= 0 ? 0 : ret;
|
|
}
|
|
|
|
static ssize_t nvme_cmb_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
|
|
ndev->cmbloc, ndev->cmbsz);
|
|
}
|
|
static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
|
|
|
|
static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
|
|
{
|
|
u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
|
|
|
|
return 1ULL << (12 + 4 * szu);
|
|
}
|
|
|
|
static u32 nvme_cmb_size(struct nvme_dev *dev)
|
|
{
|
|
return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
|
|
}
|
|
|
|
static void nvme_map_cmb(struct nvme_dev *dev)
|
|
{
|
|
u64 size, offset;
|
|
resource_size_t bar_size;
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
int bar;
|
|
|
|
if (dev->cmb_size)
|
|
return;
|
|
|
|
dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
|
|
if (!dev->cmbsz)
|
|
return;
|
|
dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
|
|
|
|
size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
|
|
offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
|
|
bar = NVME_CMB_BIR(dev->cmbloc);
|
|
bar_size = pci_resource_len(pdev, bar);
|
|
|
|
if (offset > bar_size)
|
|
return;
|
|
|
|
/*
|
|
* Controllers may support a CMB size larger than their BAR,
|
|
* for example, due to being behind a bridge. Reduce the CMB to
|
|
* the reported size of the BAR
|
|
*/
|
|
if (size > bar_size - offset)
|
|
size = bar_size - offset;
|
|
|
|
if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
|
|
dev_warn(dev->ctrl.device,
|
|
"failed to register the CMB\n");
|
|
return;
|
|
}
|
|
|
|
dev->cmb_size = size;
|
|
dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
|
|
|
|
if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
|
|
(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
|
|
pci_p2pmem_publish(pdev, true);
|
|
|
|
if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
|
|
&dev_attr_cmb.attr, NULL))
|
|
dev_warn(dev->ctrl.device,
|
|
"failed to add sysfs attribute for CMB\n");
|
|
}
|
|
|
|
static inline void nvme_release_cmb(struct nvme_dev *dev)
|
|
{
|
|
if (dev->cmb_size) {
|
|
sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
|
|
&dev_attr_cmb.attr, NULL);
|
|
dev->cmb_size = 0;
|
|
}
|
|
}
|
|
|
|
static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
|
|
{
|
|
u64 dma_addr = dev->host_mem_descs_dma;
|
|
struct nvme_command c;
|
|
int ret;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_set_features;
|
|
c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
|
|
c.features.dword11 = cpu_to_le32(bits);
|
|
c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
|
|
ilog2(dev->ctrl.page_size));
|
|
c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
|
|
c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
|
|
c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
|
|
|
|
ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
|
if (ret) {
|
|
dev_warn(dev->ctrl.device,
|
|
"failed to set host mem (err %d, flags %#x).\n",
|
|
ret, bits);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_free_host_mem(struct nvme_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dev->nr_host_mem_descs; i++) {
|
|
struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
|
|
size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
|
|
|
|
dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
|
|
le64_to_cpu(desc->addr),
|
|
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
|
}
|
|
|
|
kfree(dev->host_mem_desc_bufs);
|
|
dev->host_mem_desc_bufs = NULL;
|
|
dma_free_coherent(dev->dev,
|
|
dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
|
|
dev->host_mem_descs, dev->host_mem_descs_dma);
|
|
dev->host_mem_descs = NULL;
|
|
dev->nr_host_mem_descs = 0;
|
|
}
|
|
|
|
static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
|
|
u32 chunk_size)
|
|
{
|
|
struct nvme_host_mem_buf_desc *descs;
|
|
u32 max_entries, len;
|
|
dma_addr_t descs_dma;
|
|
int i = 0;
|
|
void **bufs;
|
|
u64 size, tmp;
|
|
|
|
tmp = (preferred + chunk_size - 1);
|
|
do_div(tmp, chunk_size);
|
|
max_entries = tmp;
|
|
|
|
if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
|
|
max_entries = dev->ctrl.hmmaxd;
|
|
|
|
descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
|
|
&descs_dma, GFP_KERNEL);
|
|
if (!descs)
|
|
goto out;
|
|
|
|
bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
|
|
if (!bufs)
|
|
goto out_free_descs;
|
|
|
|
for (size = 0; size < preferred && i < max_entries; size += len) {
|
|
dma_addr_t dma_addr;
|
|
|
|
len = min_t(u64, chunk_size, preferred - size);
|
|
bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
|
|
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
|
if (!bufs[i])
|
|
break;
|
|
|
|
descs[i].addr = cpu_to_le64(dma_addr);
|
|
descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
|
|
i++;
|
|
}
|
|
|
|
if (!size)
|
|
goto out_free_bufs;
|
|
|
|
dev->nr_host_mem_descs = i;
|
|
dev->host_mem_size = size;
|
|
dev->host_mem_descs = descs;
|
|
dev->host_mem_descs_dma = descs_dma;
|
|
dev->host_mem_desc_bufs = bufs;
|
|
return 0;
|
|
|
|
out_free_bufs:
|
|
while (--i >= 0) {
|
|
size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
|
|
|
|
dma_free_attrs(dev->dev, size, bufs[i],
|
|
le64_to_cpu(descs[i].addr),
|
|
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
|
}
|
|
|
|
kfree(bufs);
|
|
out_free_descs:
|
|
dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
|
|
descs_dma);
|
|
out:
|
|
dev->host_mem_descs = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
|
|
{
|
|
u32 chunk_size;
|
|
|
|
/* start big and work our way down */
|
|
for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
|
|
chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
|
|
chunk_size /= 2) {
|
|
if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
|
|
if (!min || dev->host_mem_size >= min)
|
|
return 0;
|
|
nvme_free_host_mem(dev);
|
|
}
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int nvme_setup_host_mem(struct nvme_dev *dev)
|
|
{
|
|
u64 max = (u64)max_host_mem_size_mb * SZ_1M;
|
|
u64 preferred = (u64)dev->ctrl.hmpre * 4096;
|
|
u64 min = (u64)dev->ctrl.hmmin * 4096;
|
|
u32 enable_bits = NVME_HOST_MEM_ENABLE;
|
|
int ret;
|
|
|
|
preferred = min(preferred, max);
|
|
if (min > max) {
|
|
dev_warn(dev->ctrl.device,
|
|
"min host memory (%lld MiB) above limit (%d MiB).\n",
|
|
min >> ilog2(SZ_1M), max_host_mem_size_mb);
|
|
nvme_free_host_mem(dev);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we already have a buffer allocated check if we can reuse it.
|
|
*/
|
|
if (dev->host_mem_descs) {
|
|
if (dev->host_mem_size >= min)
|
|
enable_bits |= NVME_HOST_MEM_RETURN;
|
|
else
|
|
nvme_free_host_mem(dev);
|
|
}
|
|
|
|
if (!dev->host_mem_descs) {
|
|
if (nvme_alloc_host_mem(dev, min, preferred)) {
|
|
dev_warn(dev->ctrl.device,
|
|
"failed to allocate host memory buffer.\n");
|
|
return 0; /* controller must work without HMB */
|
|
}
|
|
|
|
dev_info(dev->ctrl.device,
|
|
"allocated %lld MiB host memory buffer.\n",
|
|
dev->host_mem_size >> ilog2(SZ_1M));
|
|
}
|
|
|
|
ret = nvme_set_host_mem(dev, enable_bits);
|
|
if (ret)
|
|
nvme_free_host_mem(dev);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* nirqs is the number of interrupts available for write and read
|
|
* queues. The core already reserved an interrupt for the admin queue.
|
|
*/
|
|
static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
|
|
{
|
|
struct nvme_dev *dev = affd->priv;
|
|
unsigned int nr_read_queues;
|
|
|
|
/*
|
|
* If there is no interupt available for queues, ensure that
|
|
* the default queue is set to 1. The affinity set size is
|
|
* also set to one, but the irq core ignores it for this case.
|
|
*
|
|
* If only one interrupt is available or 'write_queue' == 0, combine
|
|
* write and read queues.
|
|
*
|
|
* If 'write_queues' > 0, ensure it leaves room for at least one read
|
|
* queue.
|
|
*/
|
|
if (!nrirqs) {
|
|
nrirqs = 1;
|
|
nr_read_queues = 0;
|
|
} else if (nrirqs == 1 || !write_queues) {
|
|
nr_read_queues = 0;
|
|
} else if (write_queues >= nrirqs) {
|
|
nr_read_queues = 1;
|
|
} else {
|
|
nr_read_queues = nrirqs - write_queues;
|
|
}
|
|
|
|
dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
|
|
affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
|
|
dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
|
|
affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
|
|
affd->nr_sets = nr_read_queues ? 2 : 1;
|
|
}
|
|
|
|
static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
struct irq_affinity affd = {
|
|
.pre_vectors = 1,
|
|
.calc_sets = nvme_calc_irq_sets,
|
|
.priv = dev,
|
|
};
|
|
unsigned int irq_queues, this_p_queues;
|
|
|
|
/*
|
|
* Poll queues don't need interrupts, but we need at least one IO
|
|
* queue left over for non-polled IO.
|
|
*/
|
|
this_p_queues = poll_queues;
|
|
if (this_p_queues >= nr_io_queues) {
|
|
this_p_queues = nr_io_queues - 1;
|
|
irq_queues = 1;
|
|
} else {
|
|
irq_queues = nr_io_queues - this_p_queues + 1;
|
|
}
|
|
dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
|
|
|
|
/* Initialize for the single interrupt case */
|
|
dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
|
|
dev->io_queues[HCTX_TYPE_READ] = 0;
|
|
|
|
return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
|
|
PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
|
|
}
|
|
|
|
static void nvme_disable_io_queues(struct nvme_dev *dev)
|
|
{
|
|
if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
|
|
__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
|
|
}
|
|
|
|
static int nvme_setup_io_queues(struct nvme_dev *dev)
|
|
{
|
|
struct nvme_queue *adminq = &dev->queues[0];
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
int result, nr_io_queues;
|
|
unsigned long size;
|
|
|
|
nr_io_queues = max_io_queues();
|
|
result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
if (nr_io_queues == 0)
|
|
return 0;
|
|
|
|
clear_bit(NVMEQ_ENABLED, &adminq->flags);
|
|
|
|
if (dev->cmb_use_sqes) {
|
|
result = nvme_cmb_qdepth(dev, nr_io_queues,
|
|
sizeof(struct nvme_command));
|
|
if (result > 0)
|
|
dev->q_depth = result;
|
|
else
|
|
dev->cmb_use_sqes = false;
|
|
}
|
|
|
|
do {
|
|
size = db_bar_size(dev, nr_io_queues);
|
|
result = nvme_remap_bar(dev, size);
|
|
if (!result)
|
|
break;
|
|
if (!--nr_io_queues)
|
|
return -ENOMEM;
|
|
} while (1);
|
|
adminq->q_db = dev->dbs;
|
|
|
|
retry:
|
|
/* Deregister the admin queue's interrupt */
|
|
pci_free_irq(pdev, 0, adminq);
|
|
|
|
/*
|
|
* If we enable msix early due to not intx, disable it again before
|
|
* setting up the full range we need.
|
|
*/
|
|
pci_free_irq_vectors(pdev);
|
|
|
|
result = nvme_setup_irqs(dev, nr_io_queues);
|
|
if (result <= 0)
|
|
return -EIO;
|
|
|
|
dev->num_vecs = result;
|
|
result = max(result - 1, 1);
|
|
dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
|
|
|
|
/*
|
|
* Should investigate if there's a performance win from allocating
|
|
* more queues than interrupt vectors; it might allow the submission
|
|
* path to scale better, even if the receive path is limited by the
|
|
* number of interrupts.
|
|
*/
|
|
result = queue_request_irq(adminq);
|
|
if (result) {
|
|
adminq->cq_vector = -1;
|
|
return result;
|
|
}
|
|
set_bit(NVMEQ_ENABLED, &adminq->flags);
|
|
|
|
result = nvme_create_io_queues(dev);
|
|
if (result || dev->online_queues < 2)
|
|
return result;
|
|
|
|
if (dev->online_queues - 1 < dev->max_qid) {
|
|
nr_io_queues = dev->online_queues - 1;
|
|
nvme_disable_io_queues(dev);
|
|
nvme_suspend_io_queues(dev);
|
|
goto retry;
|
|
}
|
|
dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
|
|
dev->io_queues[HCTX_TYPE_DEFAULT],
|
|
dev->io_queues[HCTX_TYPE_READ],
|
|
dev->io_queues[HCTX_TYPE_POLL]);
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_del_queue_end(struct request *req, blk_status_t error)
|
|
{
|
|
struct nvme_queue *nvmeq = req->end_io_data;
|
|
|
|
blk_mq_free_request(req);
|
|
complete(&nvmeq->delete_done);
|
|
}
|
|
|
|
static void nvme_del_cq_end(struct request *req, blk_status_t error)
|
|
{
|
|
struct nvme_queue *nvmeq = req->end_io_data;
|
|
|
|
if (error)
|
|
set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
|
|
|
|
nvme_del_queue_end(req, error);
|
|
}
|
|
|
|
static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
|
|
{
|
|
struct request_queue *q = nvmeq->dev->ctrl.admin_q;
|
|
struct request *req;
|
|
struct nvme_command cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.delete_queue.opcode = opcode;
|
|
cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
|
|
|
|
req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
req->timeout = ADMIN_TIMEOUT;
|
|
req->end_io_data = nvmeq;
|
|
|
|
init_completion(&nvmeq->delete_done);
|
|
blk_execute_rq_nowait(q, NULL, req, false,
|
|
opcode == nvme_admin_delete_cq ?
|
|
nvme_del_cq_end : nvme_del_queue_end);
|
|
return 0;
|
|
}
|
|
|
|
static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
|
|
{
|
|
int nr_queues = dev->online_queues - 1, sent = 0;
|
|
unsigned long timeout;
|
|
|
|
retry:
|
|
timeout = ADMIN_TIMEOUT;
|
|
while (nr_queues > 0) {
|
|
if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
|
|
break;
|
|
nr_queues--;
|
|
sent++;
|
|
}
|
|
while (sent) {
|
|
struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
|
|
|
|
timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
|
|
timeout);
|
|
if (timeout == 0)
|
|
return false;
|
|
|
|
/* handle any remaining CQEs */
|
|
if (opcode == nvme_admin_delete_cq &&
|
|
!test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
|
|
nvme_poll_irqdisable(nvmeq, -1);
|
|
|
|
sent--;
|
|
if (nr_queues)
|
|
goto retry;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* return error value only when tagset allocation failed
|
|
*/
|
|
static int nvme_dev_add(struct nvme_dev *dev)
|
|
{
|
|
int ret;
|
|
|
|
if (!dev->ctrl.tagset) {
|
|
dev->tagset.ops = &nvme_mq_ops;
|
|
dev->tagset.nr_hw_queues = dev->online_queues - 1;
|
|
dev->tagset.nr_maps = 2; /* default + read */
|
|
if (dev->io_queues[HCTX_TYPE_POLL])
|
|
dev->tagset.nr_maps++;
|
|
dev->tagset.timeout = NVME_IO_TIMEOUT;
|
|
dev->tagset.numa_node = dev_to_node(dev->dev);
|
|
dev->tagset.queue_depth =
|
|
min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
|
|
dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
|
|
if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
|
|
dev->tagset.cmd_size = max(dev->tagset.cmd_size,
|
|
nvme_pci_cmd_size(dev, true));
|
|
}
|
|
dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
|
|
dev->tagset.driver_data = dev;
|
|
|
|
ret = blk_mq_alloc_tag_set(&dev->tagset);
|
|
if (ret) {
|
|
dev_warn(dev->ctrl.device,
|
|
"IO queues tagset allocation failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
dev->ctrl.tagset = &dev->tagset;
|
|
|
|
nvme_dbbuf_set(dev);
|
|
} else {
|
|
blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
|
|
|
|
/* Free previously allocated queues that are no longer usable */
|
|
nvme_free_queues(dev, dev->online_queues);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_enable(struct nvme_dev *dev)
|
|
{
|
|
int result = -ENOMEM;
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
if (pci_enable_device_mem(pdev))
|
|
return result;
|
|
|
|
pci_set_master(pdev);
|
|
|
|
if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
|
|
dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
|
|
goto disable;
|
|
|
|
if (readl(dev->bar + NVME_REG_CSTS) == -1) {
|
|
result = -ENODEV;
|
|
goto disable;
|
|
}
|
|
|
|
/*
|
|
* Some devices and/or platforms don't advertise or work with INTx
|
|
* interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
|
|
* adjust this later.
|
|
*/
|
|
result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
|
|
|
|
dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
|
|
io_queue_depth);
|
|
dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
|
|
dev->dbs = dev->bar + 4096;
|
|
|
|
/*
|
|
* Temporary fix for the Apple controller found in the MacBook8,1 and
|
|
* some MacBook7,1 to avoid controller resets and data loss.
|
|
*/
|
|
if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
|
|
dev->q_depth = 2;
|
|
dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
|
|
"set queue depth=%u to work around controller resets\n",
|
|
dev->q_depth);
|
|
} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
|
|
(pdev->device == 0xa821 || pdev->device == 0xa822) &&
|
|
NVME_CAP_MQES(dev->ctrl.cap) == 0) {
|
|
dev->q_depth = 64;
|
|
dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
|
|
"set queue depth=%u\n", dev->q_depth);
|
|
}
|
|
|
|
nvme_map_cmb(dev);
|
|
|
|
pci_enable_pcie_error_reporting(pdev);
|
|
pci_save_state(pdev);
|
|
return 0;
|
|
|
|
disable:
|
|
pci_disable_device(pdev);
|
|
return result;
|
|
}
|
|
|
|
static void nvme_dev_unmap(struct nvme_dev *dev)
|
|
{
|
|
if (dev->bar)
|
|
iounmap(dev->bar);
|
|
pci_release_mem_regions(to_pci_dev(dev->dev));
|
|
}
|
|
|
|
static void nvme_pci_disable(struct nvme_dev *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
pci_free_irq_vectors(pdev);
|
|
|
|
if (pci_is_enabled(pdev)) {
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
pci_disable_device(pdev);
|
|
}
|
|
}
|
|
|
|
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
|
|
{
|
|
bool dead = true;
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
mutex_lock(&dev->shutdown_lock);
|
|
if (pci_is_enabled(pdev)) {
|
|
u32 csts = readl(dev->bar + NVME_REG_CSTS);
|
|
|
|
if (dev->ctrl.state == NVME_CTRL_LIVE ||
|
|
dev->ctrl.state == NVME_CTRL_RESETTING)
|
|
nvme_start_freeze(&dev->ctrl);
|
|
dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
|
|
pdev->error_state != pci_channel_io_normal);
|
|
}
|
|
|
|
/*
|
|
* Give the controller a chance to complete all entered requests if
|
|
* doing a safe shutdown.
|
|
*/
|
|
if (!dead) {
|
|
if (shutdown)
|
|
nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
|
|
}
|
|
|
|
nvme_stop_queues(&dev->ctrl);
|
|
|
|
if (!dead && dev->ctrl.queue_count > 0) {
|
|
nvme_disable_io_queues(dev);
|
|
nvme_disable_admin_queue(dev, shutdown);
|
|
}
|
|
nvme_suspend_io_queues(dev);
|
|
nvme_suspend_queue(&dev->queues[0]);
|
|
nvme_pci_disable(dev);
|
|
|
|
blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
|
|
blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
|
|
|
|
/*
|
|
* The driver will not be starting up queues again if shutting down so
|
|
* must flush all entered requests to their failed completion to avoid
|
|
* deadlocking blk-mq hot-cpu notifier.
|
|
*/
|
|
if (shutdown)
|
|
nvme_start_queues(&dev->ctrl);
|
|
mutex_unlock(&dev->shutdown_lock);
|
|
}
|
|
|
|
static int nvme_setup_prp_pools(struct nvme_dev *dev)
|
|
{
|
|
dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
|
|
PAGE_SIZE, PAGE_SIZE, 0);
|
|
if (!dev->prp_page_pool)
|
|
return -ENOMEM;
|
|
|
|
/* Optimisation for I/Os between 4k and 128k */
|
|
dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
|
|
256, 256, 0);
|
|
if (!dev->prp_small_pool) {
|
|
dma_pool_destroy(dev->prp_page_pool);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_release_prp_pools(struct nvme_dev *dev)
|
|
{
|
|
dma_pool_destroy(dev->prp_page_pool);
|
|
dma_pool_destroy(dev->prp_small_pool);
|
|
}
|
|
|
|
static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
|
|
|
nvme_dbbuf_dma_free(dev);
|
|
put_device(dev->dev);
|
|
if (dev->tagset.tags)
|
|
blk_mq_free_tag_set(&dev->tagset);
|
|
if (dev->ctrl.admin_q)
|
|
blk_put_queue(dev->ctrl.admin_q);
|
|
kfree(dev->queues);
|
|
free_opal_dev(dev->ctrl.opal_dev);
|
|
mempool_destroy(dev->iod_mempool);
|
|
kfree(dev);
|
|
}
|
|
|
|
static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
|
|
{
|
|
dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
|
|
|
|
nvme_get_ctrl(&dev->ctrl);
|
|
nvme_dev_disable(dev, false);
|
|
nvme_kill_queues(&dev->ctrl);
|
|
if (!queue_work(nvme_wq, &dev->remove_work))
|
|
nvme_put_ctrl(&dev->ctrl);
|
|
}
|
|
|
|
static void nvme_reset_work(struct work_struct *work)
|
|
{
|
|
struct nvme_dev *dev =
|
|
container_of(work, struct nvme_dev, ctrl.reset_work);
|
|
bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
|
|
int result = -ENODEV;
|
|
enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
|
|
|
|
if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
|
|
goto out;
|
|
|
|
/*
|
|
* If we're called to reset a live controller first shut it down before
|
|
* moving on.
|
|
*/
|
|
if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
|
|
nvme_dev_disable(dev, false);
|
|
|
|
mutex_lock(&dev->shutdown_lock);
|
|
result = nvme_pci_enable(dev);
|
|
if (result)
|
|
goto out_unlock;
|
|
|
|
result = nvme_pci_configure_admin_queue(dev);
|
|
if (result)
|
|
goto out_unlock;
|
|
|
|
result = nvme_alloc_admin_tags(dev);
|
|
if (result)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Limit the max command size to prevent iod->sg allocations going
|
|
* over a single page.
|
|
*/
|
|
dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
|
|
dev->ctrl.max_segments = NVME_MAX_SEGS;
|
|
mutex_unlock(&dev->shutdown_lock);
|
|
|
|
/*
|
|
* Introduce CONNECTING state from nvme-fc/rdma transports to mark the
|
|
* initializing procedure here.
|
|
*/
|
|
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
|
|
dev_warn(dev->ctrl.device,
|
|
"failed to mark controller CONNECTING\n");
|
|
goto out;
|
|
}
|
|
|
|
result = nvme_init_identify(&dev->ctrl);
|
|
if (result)
|
|
goto out;
|
|
|
|
if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
|
|
if (!dev->ctrl.opal_dev)
|
|
dev->ctrl.opal_dev =
|
|
init_opal_dev(&dev->ctrl, &nvme_sec_submit);
|
|
else if (was_suspend)
|
|
opal_unlock_from_suspend(dev->ctrl.opal_dev);
|
|
} else {
|
|
free_opal_dev(dev->ctrl.opal_dev);
|
|
dev->ctrl.opal_dev = NULL;
|
|
}
|
|
|
|
if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
|
|
result = nvme_dbbuf_dma_alloc(dev);
|
|
if (result)
|
|
dev_warn(dev->dev,
|
|
"unable to allocate dma for dbbuf\n");
|
|
}
|
|
|
|
if (dev->ctrl.hmpre) {
|
|
result = nvme_setup_host_mem(dev);
|
|
if (result < 0)
|
|
goto out;
|
|
}
|
|
|
|
result = nvme_setup_io_queues(dev);
|
|
if (result)
|
|
goto out;
|
|
|
|
/*
|
|
* Keep the controller around but remove all namespaces if we don't have
|
|
* any working I/O queue.
|
|
*/
|
|
if (dev->online_queues < 2) {
|
|
dev_warn(dev->ctrl.device, "IO queues not created\n");
|
|
nvme_kill_queues(&dev->ctrl);
|
|
nvme_remove_namespaces(&dev->ctrl);
|
|
new_state = NVME_CTRL_ADMIN_ONLY;
|
|
} else {
|
|
nvme_start_queues(&dev->ctrl);
|
|
nvme_wait_freeze(&dev->ctrl);
|
|
/* hit this only when allocate tagset fails */
|
|
if (nvme_dev_add(dev))
|
|
new_state = NVME_CTRL_ADMIN_ONLY;
|
|
nvme_unfreeze(&dev->ctrl);
|
|
}
|
|
|
|
/*
|
|
* If only admin queue live, keep it to do further investigation or
|
|
* recovery.
|
|
*/
|
|
if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
|
|
dev_warn(dev->ctrl.device,
|
|
"failed to mark controller state %d\n", new_state);
|
|
goto out;
|
|
}
|
|
|
|
nvme_start_ctrl(&dev->ctrl);
|
|
return;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&dev->shutdown_lock);
|
|
out:
|
|
nvme_remove_dead_ctrl(dev, result);
|
|
}
|
|
|
|
static void nvme_remove_dead_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
if (pci_get_drvdata(pdev))
|
|
device_release_driver(&pdev->dev);
|
|
nvme_put_ctrl(&dev->ctrl);
|
|
}
|
|
|
|
static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
|
|
{
|
|
*val = readl(to_nvme_dev(ctrl)->bar + off);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
|
|
{
|
|
writel(val, to_nvme_dev(ctrl)->bar + off);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
|
|
{
|
|
*val = readq(to_nvme_dev(ctrl)->bar + off);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
|
|
|
|
return snprintf(buf, size, "%s", dev_name(&pdev->dev));
|
|
}
|
|
|
|
static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
|
|
.name = "pcie",
|
|
.module = THIS_MODULE,
|
|
.flags = NVME_F_METADATA_SUPPORTED |
|
|
NVME_F_PCI_P2PDMA,
|
|
.reg_read32 = nvme_pci_reg_read32,
|
|
.reg_write32 = nvme_pci_reg_write32,
|
|
.reg_read64 = nvme_pci_reg_read64,
|
|
.free_ctrl = nvme_pci_free_ctrl,
|
|
.submit_async_event = nvme_pci_submit_async_event,
|
|
.get_address = nvme_pci_get_address,
|
|
};
|
|
|
|
static int nvme_dev_map(struct nvme_dev *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
if (pci_request_mem_regions(pdev, "nvme"))
|
|
return -ENODEV;
|
|
|
|
if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
|
|
goto release;
|
|
|
|
return 0;
|
|
release:
|
|
pci_release_mem_regions(pdev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
|
|
{
|
|
if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
|
|
/*
|
|
* Several Samsung devices seem to drop off the PCIe bus
|
|
* randomly when APST is on and uses the deepest sleep state.
|
|
* This has been observed on a Samsung "SM951 NVMe SAMSUNG
|
|
* 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
|
|
* 950 PRO 256GB", but it seems to be restricted to two Dell
|
|
* laptops.
|
|
*/
|
|
if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
|
|
(dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
|
|
dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
|
|
return NVME_QUIRK_NO_DEEPEST_PS;
|
|
} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
|
|
/*
|
|
* Samsung SSD 960 EVO drops off the PCIe bus after system
|
|
* suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
|
|
* within few minutes after bootup on a Coffee Lake board -
|
|
* ASUS PRIME Z370-A
|
|
*/
|
|
if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
|
|
(dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
|
|
dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
|
|
return NVME_QUIRK_NO_APST;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_async_probe(void *data, async_cookie_t cookie)
|
|
{
|
|
struct nvme_dev *dev = data;
|
|
|
|
nvme_reset_ctrl_sync(&dev->ctrl);
|
|
flush_work(&dev->ctrl.scan_work);
|
|
nvme_put_ctrl(&dev->ctrl);
|
|
}
|
|
|
|
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
int node, result = -ENOMEM;
|
|
struct nvme_dev *dev;
|
|
unsigned long quirks = id->driver_data;
|
|
size_t alloc_size;
|
|
|
|
node = dev_to_node(&pdev->dev);
|
|
if (node == NUMA_NO_NODE)
|
|
set_dev_node(&pdev->dev, first_memory_node);
|
|
|
|
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
|
|
GFP_KERNEL, node);
|
|
if (!dev->queues)
|
|
goto free;
|
|
|
|
dev->dev = get_device(&pdev->dev);
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
result = nvme_dev_map(dev);
|
|
if (result)
|
|
goto put_pci;
|
|
|
|
INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
|
|
INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
|
|
mutex_init(&dev->shutdown_lock);
|
|
|
|
result = nvme_setup_prp_pools(dev);
|
|
if (result)
|
|
goto unmap;
|
|
|
|
quirks |= check_vendor_combination_bug(pdev);
|
|
|
|
/*
|
|
* Double check that our mempool alloc size will cover the biggest
|
|
* command we support.
|
|
*/
|
|
alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
|
|
NVME_MAX_SEGS, true);
|
|
WARN_ON_ONCE(alloc_size > PAGE_SIZE);
|
|
|
|
dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
|
|
mempool_kfree,
|
|
(void *) alloc_size,
|
|
GFP_KERNEL, node);
|
|
if (!dev->iod_mempool) {
|
|
result = -ENOMEM;
|
|
goto release_pools;
|
|
}
|
|
|
|
result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
|
|
quirks);
|
|
if (result)
|
|
goto release_mempool;
|
|
|
|
dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
|
|
|
|
nvme_get_ctrl(&dev->ctrl);
|
|
async_schedule(nvme_async_probe, dev);
|
|
|
|
return 0;
|
|
|
|
release_mempool:
|
|
mempool_destroy(dev->iod_mempool);
|
|
release_pools:
|
|
nvme_release_prp_pools(dev);
|
|
unmap:
|
|
nvme_dev_unmap(dev);
|
|
put_pci:
|
|
put_device(dev->dev);
|
|
free:
|
|
kfree(dev->queues);
|
|
kfree(dev);
|
|
return result;
|
|
}
|
|
|
|
static void nvme_reset_prepare(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
nvme_dev_disable(dev, false);
|
|
}
|
|
|
|
static void nvme_reset_done(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
nvme_reset_ctrl_sync(&dev->ctrl);
|
|
}
|
|
|
|
static void nvme_shutdown(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
nvme_dev_disable(dev, true);
|
|
}
|
|
|
|
/*
|
|
* The driver's remove may be called on a device in a partially initialized
|
|
* state. This function must not have any dependencies on the device state in
|
|
* order to proceed.
|
|
*/
|
|
static void nvme_remove(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
|
|
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
if (!pci_device_is_present(pdev)) {
|
|
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
|
|
nvme_dev_disable(dev, true);
|
|
nvme_dev_remove_admin(dev);
|
|
}
|
|
|
|
flush_work(&dev->ctrl.reset_work);
|
|
nvme_stop_ctrl(&dev->ctrl);
|
|
nvme_remove_namespaces(&dev->ctrl);
|
|
nvme_dev_disable(dev, true);
|
|
nvme_release_cmb(dev);
|
|
nvme_free_host_mem(dev);
|
|
nvme_dev_remove_admin(dev);
|
|
nvme_free_queues(dev, 0);
|
|
nvme_uninit_ctrl(&dev->ctrl);
|
|
nvme_release_prp_pools(dev);
|
|
nvme_dev_unmap(dev);
|
|
nvme_put_ctrl(&dev->ctrl);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int nvme_suspend(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct nvme_dev *ndev = pci_get_drvdata(pdev);
|
|
|
|
nvme_dev_disable(ndev, true);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_resume(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct nvme_dev *ndev = pci_get_drvdata(pdev);
|
|
|
|
nvme_reset_ctrl(&ndev->ctrl);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
|
|
|
|
static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
|
|
/*
|
|
* A frozen channel requires a reset. When detected, this method will
|
|
* shutdown the controller to quiesce. The controller will be restarted
|
|
* after the slot reset through driver's slot_reset callback.
|
|
*/
|
|
switch (state) {
|
|
case pci_channel_io_normal:
|
|
return PCI_ERS_RESULT_CAN_RECOVER;
|
|
case pci_channel_io_frozen:
|
|
dev_warn(dev->ctrl.device,
|
|
"frozen state error detected, reset controller\n");
|
|
nvme_dev_disable(dev, false);
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
case pci_channel_io_perm_failure:
|
|
dev_warn(dev->ctrl.device,
|
|
"failure state error detected, request disconnect\n");
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
|
|
dev_info(dev->ctrl.device, "restart after slot reset\n");
|
|
pci_restore_state(pdev);
|
|
nvme_reset_ctrl(&dev->ctrl);
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
static void nvme_error_resume(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
|
|
flush_work(&dev->ctrl.reset_work);
|
|
}
|
|
|
|
static const struct pci_error_handlers nvme_err_handler = {
|
|
.error_detected = nvme_error_detected,
|
|
.slot_reset = nvme_slot_reset,
|
|
.resume = nvme_error_resume,
|
|
.reset_prepare = nvme_reset_prepare,
|
|
.reset_done = nvme_reset_done,
|
|
};
|
|
|
|
static const struct pci_device_id nvme_id_table[] = {
|
|
{ PCI_VDEVICE(INTEL, 0x0953),
|
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
|
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
|
{ PCI_VDEVICE(INTEL, 0x0a53),
|
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
|
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
|
{ PCI_VDEVICE(INTEL, 0x0a54),
|
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
|
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
|
{ PCI_VDEVICE(INTEL, 0x0a55),
|
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
|
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
|
{ PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
|
|
.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
|
|
NVME_QUIRK_MEDIUM_PRIO_SQ },
|
|
{ PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
|
|
.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
|
{ PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
|
|
.driver_data = NVME_QUIRK_IDENTIFY_CNS |
|
|
NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
|
{ PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
|
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
|
{ PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
|
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
|
{ PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
|
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
|
{ PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
|
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
|
{ PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
|
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
|
{ PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
|
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
|
{ PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
|
|
.driver_data = NVME_QUIRK_LIGHTNVM, },
|
|
{ PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
|
|
.driver_data = NVME_QUIRK_LIGHTNVM, },
|
|
{ PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
|
|
.driver_data = NVME_QUIRK_LIGHTNVM, },
|
|
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
|
|
{ 0, }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, nvme_id_table);
|
|
|
|
static struct pci_driver nvme_driver = {
|
|
.name = "nvme",
|
|
.id_table = nvme_id_table,
|
|
.probe = nvme_probe,
|
|
.remove = nvme_remove,
|
|
.shutdown = nvme_shutdown,
|
|
.driver = {
|
|
.pm = &nvme_dev_pm_ops,
|
|
},
|
|
.sriov_configure = pci_sriov_configure_simple,
|
|
.err_handler = &nvme_err_handler,
|
|
};
|
|
|
|
static int __init nvme_init(void)
|
|
{
|
|
BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
|
|
return pci_register_driver(&nvme_driver);
|
|
}
|
|
|
|
static void __exit nvme_exit(void)
|
|
{
|
|
pci_unregister_driver(&nvme_driver);
|
|
flush_workqueue(nvme_wq);
|
|
_nvme_check_size();
|
|
}
|
|
|
|
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION("1.0");
|
|
module_init(nvme_init);
|
|
module_exit(nvme_exit);
|