WSL2-Linux-Kernel/drivers/fpga/dfl-fme-main.c

756 строки
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for FPGA Management Engine (FME)
*
* Copyright (C) 2017-2018 Intel Corporation, Inc.
*
* Authors:
* Kang Luwei <luwei.kang@intel.com>
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
* Joseph Grecco <joe.grecco@intel.com>
* Enno Luebbers <enno.luebbers@intel.com>
* Tim Whisonant <tim.whisonant@intel.com>
* Ananda Ravuri <ananda.ravuri@intel.com>
* Henry Mitchel <henry.mitchel@intel.com>
*/
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/fpga-dfl.h>
#include "dfl.h"
#include "dfl-fme.h"
static ssize_t ports_num_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
void __iomem *base;
u64 v;
base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
v = readq(base + FME_HDR_CAP);
return scnprintf(buf, PAGE_SIZE, "%u\n",
(unsigned int)FIELD_GET(FME_CAP_NUM_PORTS, v));
}
static DEVICE_ATTR_RO(ports_num);
/*
* Bitstream (static FPGA region) identifier number. It contains the
* detailed version and other information of this static FPGA region.
*/
static ssize_t bitstream_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
void __iomem *base;
u64 v;
base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
v = readq(base + FME_HDR_BITSTREAM_ID);
return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
}
static DEVICE_ATTR_RO(bitstream_id);
/*
* Bitstream (static FPGA region) meta data. It contains the synthesis
* date, seed and other information of this static FPGA region.
*/
static ssize_t bitstream_metadata_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
void __iomem *base;
u64 v;
base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
v = readq(base + FME_HDR_BITSTREAM_MD);
return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
}
static DEVICE_ATTR_RO(bitstream_metadata);
static ssize_t cache_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
void __iomem *base;
u64 v;
base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
v = readq(base + FME_HDR_CAP);
return sprintf(buf, "%u\n",
(unsigned int)FIELD_GET(FME_CAP_CACHE_SIZE, v));
}
static DEVICE_ATTR_RO(cache_size);
static ssize_t fabric_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
void __iomem *base;
u64 v;
base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
v = readq(base + FME_HDR_CAP);
return sprintf(buf, "%u\n",
(unsigned int)FIELD_GET(FME_CAP_FABRIC_VERID, v));
}
static DEVICE_ATTR_RO(fabric_version);
static ssize_t socket_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
void __iomem *base;
u64 v;
base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
v = readq(base + FME_HDR_CAP);
return sprintf(buf, "%u\n",
(unsigned int)FIELD_GET(FME_CAP_SOCKET_ID, v));
}
static DEVICE_ATTR_RO(socket_id);
static struct attribute *fme_hdr_attrs[] = {
&dev_attr_ports_num.attr,
&dev_attr_bitstream_id.attr,
&dev_attr_bitstream_metadata.attr,
&dev_attr_cache_size.attr,
&dev_attr_fabric_version.attr,
&dev_attr_socket_id.attr,
NULL,
};
static const struct attribute_group fme_hdr_group = {
.attrs = fme_hdr_attrs,
};
static long fme_hdr_ioctl_release_port(struct dfl_feature_platform_data *pdata,
unsigned long arg)
{
struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
int port_id;
if (get_user(port_id, (int __user *)arg))
return -EFAULT;
return dfl_fpga_cdev_release_port(cdev, port_id);
}
static long fme_hdr_ioctl_assign_port(struct dfl_feature_platform_data *pdata,
unsigned long arg)
{
struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
int port_id;
if (get_user(port_id, (int __user *)arg))
return -EFAULT;
return dfl_fpga_cdev_assign_port(cdev, port_id);
}
static long fme_hdr_ioctl(struct platform_device *pdev,
struct dfl_feature *feature,
unsigned int cmd, unsigned long arg)
{
struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
switch (cmd) {
case DFL_FPGA_FME_PORT_RELEASE:
return fme_hdr_ioctl_release_port(pdata, arg);
case DFL_FPGA_FME_PORT_ASSIGN:
return fme_hdr_ioctl_assign_port(pdata, arg);
}
return -ENODEV;
}
static const struct dfl_feature_id fme_hdr_id_table[] = {
{.id = FME_FEATURE_ID_HEADER,},
{0,}
};
static const struct dfl_feature_ops fme_hdr_ops = {
.ioctl = fme_hdr_ioctl,
};
#define FME_THERM_THRESHOLD 0x8
#define TEMP_THRESHOLD1 GENMASK_ULL(6, 0)
#define TEMP_THRESHOLD1_EN BIT_ULL(7)
#define TEMP_THRESHOLD2 GENMASK_ULL(14, 8)
#define TEMP_THRESHOLD2_EN BIT_ULL(15)
#define TRIP_THRESHOLD GENMASK_ULL(30, 24)
#define TEMP_THRESHOLD1_STATUS BIT_ULL(32) /* threshold1 reached */
#define TEMP_THRESHOLD2_STATUS BIT_ULL(33) /* threshold2 reached */
/* threshold1 policy: 0 - AP2 (90% throttle) / 1 - AP1 (50% throttle) */
#define TEMP_THRESHOLD1_POLICY BIT_ULL(44)
#define FME_THERM_RDSENSOR_FMT1 0x10
#define FPGA_TEMPERATURE GENMASK_ULL(6, 0)
#define FME_THERM_CAP 0x20
#define THERM_NO_THROTTLE BIT_ULL(0)
#define MD_PRE_DEG
static bool fme_thermal_throttle_support(void __iomem *base)
{
u64 v = readq(base + FME_THERM_CAP);
return FIELD_GET(THERM_NO_THROTTLE, v) ? false : true;
}
static umode_t thermal_hwmon_attrs_visible(const void *drvdata,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct dfl_feature *feature = drvdata;
/* temperature is always supported, and check hardware cap for others */
if (attr == hwmon_temp_input)
return 0444;
return fme_thermal_throttle_support(feature->ioaddr) ? 0444 : 0;
}
static int thermal_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct dfl_feature *feature = dev_get_drvdata(dev);
u64 v;
switch (attr) {
case hwmon_temp_input:
v = readq(feature->ioaddr + FME_THERM_RDSENSOR_FMT1);
*val = (long)(FIELD_GET(FPGA_TEMPERATURE, v) * 1000);
break;
case hwmon_temp_max:
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
*val = (long)(FIELD_GET(TEMP_THRESHOLD1, v) * 1000);
break;
case hwmon_temp_crit:
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
*val = (long)(FIELD_GET(TEMP_THRESHOLD2, v) * 1000);
break;
case hwmon_temp_emergency:
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
*val = (long)(FIELD_GET(TRIP_THRESHOLD, v) * 1000);
break;
case hwmon_temp_max_alarm:
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
*val = (long)FIELD_GET(TEMP_THRESHOLD1_STATUS, v);
break;
case hwmon_temp_crit_alarm:
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
*val = (long)FIELD_GET(TEMP_THRESHOLD2_STATUS, v);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static const struct hwmon_ops thermal_hwmon_ops = {
.is_visible = thermal_hwmon_attrs_visible,
.read = thermal_hwmon_read,
};
static const struct hwmon_channel_info *thermal_hwmon_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_EMERGENCY |
HWMON_T_MAX | HWMON_T_MAX_ALARM |
HWMON_T_CRIT | HWMON_T_CRIT_ALARM),
NULL
};
static const struct hwmon_chip_info thermal_hwmon_chip_info = {
.ops = &thermal_hwmon_ops,
.info = thermal_hwmon_info,
};
static ssize_t temp1_max_policy_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dfl_feature *feature = dev_get_drvdata(dev);
u64 v;
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
return sprintf(buf, "%u\n",
(unsigned int)FIELD_GET(TEMP_THRESHOLD1_POLICY, v));
}
static DEVICE_ATTR_RO(temp1_max_policy);
static struct attribute *thermal_extra_attrs[] = {
&dev_attr_temp1_max_policy.attr,
NULL,
};
static umode_t thermal_extra_attrs_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct dfl_feature *feature = dev_get_drvdata(dev);
return fme_thermal_throttle_support(feature->ioaddr) ? attr->mode : 0;
}
static const struct attribute_group thermal_extra_group = {
.attrs = thermal_extra_attrs,
.is_visible = thermal_extra_attrs_visible,
};
__ATTRIBUTE_GROUPS(thermal_extra);
static int fme_thermal_mgmt_init(struct platform_device *pdev,
struct dfl_feature *feature)
{
struct device *hwmon;
/*
* create hwmon to allow userspace monitoring temperature and other
* threshold information.
*
* temp1_input -> FPGA device temperature
* temp1_max -> hardware threshold 1 -> 50% or 90% throttling
* temp1_crit -> hardware threshold 2 -> 100% throttling
* temp1_emergency -> hardware trip_threshold to shutdown FPGA
* temp1_max_alarm -> hardware threshold 1 alarm
* temp1_crit_alarm -> hardware threshold 2 alarm
*
* create device specific sysfs interfaces, e.g. read temp1_max_policy
* to understand the actual hardware throttling action (50% vs 90%).
*
* If hardware doesn't support automatic throttling per thresholds,
* then all above sysfs interfaces are not visible except temp1_input
* for temperature.
*/
hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
"dfl_fme_thermal", feature,
&thermal_hwmon_chip_info,
thermal_extra_groups);
if (IS_ERR(hwmon)) {
dev_err(&pdev->dev, "Fail to register thermal hwmon\n");
return PTR_ERR(hwmon);
}
return 0;
}
static const struct dfl_feature_id fme_thermal_mgmt_id_table[] = {
{.id = FME_FEATURE_ID_THERMAL_MGMT,},
{0,}
};
static const struct dfl_feature_ops fme_thermal_mgmt_ops = {
.init = fme_thermal_mgmt_init,
};
#define FME_PWR_STATUS 0x8
#define FME_LATENCY_TOLERANCE BIT_ULL(18)
#define PWR_CONSUMED GENMASK_ULL(17, 0)
#define FME_PWR_THRESHOLD 0x10
#define PWR_THRESHOLD1 GENMASK_ULL(6, 0) /* in Watts */
#define PWR_THRESHOLD2 GENMASK_ULL(14, 8) /* in Watts */
#define PWR_THRESHOLD_MAX 0x7f /* in Watts */
#define PWR_THRESHOLD1_STATUS BIT_ULL(16)
#define PWR_THRESHOLD2_STATUS BIT_ULL(17)
#define FME_PWR_XEON_LIMIT 0x18
#define XEON_PWR_LIMIT GENMASK_ULL(14, 0) /* in 0.1 Watts */
#define XEON_PWR_EN BIT_ULL(15)
#define FME_PWR_FPGA_LIMIT 0x20
#define FPGA_PWR_LIMIT GENMASK_ULL(14, 0) /* in 0.1 Watts */
#define FPGA_PWR_EN BIT_ULL(15)
static int power_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct dfl_feature *feature = dev_get_drvdata(dev);
u64 v;
switch (attr) {
case hwmon_power_input:
v = readq(feature->ioaddr + FME_PWR_STATUS);
*val = (long)(FIELD_GET(PWR_CONSUMED, v) * 1000000);
break;
case hwmon_power_max:
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
*val = (long)(FIELD_GET(PWR_THRESHOLD1, v) * 1000000);
break;
case hwmon_power_crit:
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
*val = (long)(FIELD_GET(PWR_THRESHOLD2, v) * 1000000);
break;
case hwmon_power_max_alarm:
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
*val = (long)FIELD_GET(PWR_THRESHOLD1_STATUS, v);
break;
case hwmon_power_crit_alarm:
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
*val = (long)FIELD_GET(PWR_THRESHOLD2_STATUS, v);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int power_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
struct dfl_feature_platform_data *pdata = dev_get_platdata(dev->parent);
struct dfl_feature *feature = dev_get_drvdata(dev);
int ret = 0;
u64 v;
val = clamp_val(val / 1000000, 0, PWR_THRESHOLD_MAX);
mutex_lock(&pdata->lock);
switch (attr) {
case hwmon_power_max:
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
v &= ~PWR_THRESHOLD1;
v |= FIELD_PREP(PWR_THRESHOLD1, val);
writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
break;
case hwmon_power_crit:
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
v &= ~PWR_THRESHOLD2;
v |= FIELD_PREP(PWR_THRESHOLD2, val);
writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
break;
default:
ret = -EOPNOTSUPP;
break;
}
mutex_unlock(&pdata->lock);
return ret;
}
static umode_t power_hwmon_attrs_visible(const void *drvdata,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (attr) {
case hwmon_power_input:
case hwmon_power_max_alarm:
case hwmon_power_crit_alarm:
return 0444;
case hwmon_power_max:
case hwmon_power_crit:
return 0644;
}
return 0;
}
static const struct hwmon_ops power_hwmon_ops = {
.is_visible = power_hwmon_attrs_visible,
.read = power_hwmon_read,
.write = power_hwmon_write,
};
static const struct hwmon_channel_info *power_hwmon_info[] = {
HWMON_CHANNEL_INFO(power, HWMON_P_INPUT |
HWMON_P_MAX | HWMON_P_MAX_ALARM |
HWMON_P_CRIT | HWMON_P_CRIT_ALARM),
NULL
};
static const struct hwmon_chip_info power_hwmon_chip_info = {
.ops = &power_hwmon_ops,
.info = power_hwmon_info,
};
static ssize_t power1_xeon_limit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dfl_feature *feature = dev_get_drvdata(dev);
u16 xeon_limit = 0;
u64 v;
v = readq(feature->ioaddr + FME_PWR_XEON_LIMIT);
if (FIELD_GET(XEON_PWR_EN, v))
xeon_limit = FIELD_GET(XEON_PWR_LIMIT, v);
return sprintf(buf, "%u\n", xeon_limit * 100000);
}
static ssize_t power1_fpga_limit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dfl_feature *feature = dev_get_drvdata(dev);
u16 fpga_limit = 0;
u64 v;
v = readq(feature->ioaddr + FME_PWR_FPGA_LIMIT);
if (FIELD_GET(FPGA_PWR_EN, v))
fpga_limit = FIELD_GET(FPGA_PWR_LIMIT, v);
return sprintf(buf, "%u\n", fpga_limit * 100000);
}
static ssize_t power1_ltr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dfl_feature *feature = dev_get_drvdata(dev);
u64 v;
v = readq(feature->ioaddr + FME_PWR_STATUS);
return sprintf(buf, "%u\n",
(unsigned int)FIELD_GET(FME_LATENCY_TOLERANCE, v));
}
static DEVICE_ATTR_RO(power1_xeon_limit);
static DEVICE_ATTR_RO(power1_fpga_limit);
static DEVICE_ATTR_RO(power1_ltr);
static struct attribute *power_extra_attrs[] = {
&dev_attr_power1_xeon_limit.attr,
&dev_attr_power1_fpga_limit.attr,
&dev_attr_power1_ltr.attr,
NULL
};
ATTRIBUTE_GROUPS(power_extra);
static int fme_power_mgmt_init(struct platform_device *pdev,
struct dfl_feature *feature)
{
struct device *hwmon;
hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
"dfl_fme_power", feature,
&power_hwmon_chip_info,
power_extra_groups);
if (IS_ERR(hwmon)) {
dev_err(&pdev->dev, "Fail to register power hwmon\n");
return PTR_ERR(hwmon);
}
return 0;
}
static const struct dfl_feature_id fme_power_mgmt_id_table[] = {
{.id = FME_FEATURE_ID_POWER_MGMT,},
{0,}
};
static const struct dfl_feature_ops fme_power_mgmt_ops = {
.init = fme_power_mgmt_init,
};
static struct dfl_feature_driver fme_feature_drvs[] = {
{
.id_table = fme_hdr_id_table,
.ops = &fme_hdr_ops,
},
{
.id_table = fme_pr_mgmt_id_table,
.ops = &fme_pr_mgmt_ops,
},
{
.id_table = fme_global_err_id_table,
.ops = &fme_global_err_ops,
},
{
.id_table = fme_thermal_mgmt_id_table,
.ops = &fme_thermal_mgmt_ops,
},
{
.id_table = fme_power_mgmt_id_table,
.ops = &fme_power_mgmt_ops,
},
{
.id_table = fme_perf_id_table,
.ops = &fme_perf_ops,
},
{
.ops = NULL,
},
};
static long fme_ioctl_check_extension(struct dfl_feature_platform_data *pdata,
unsigned long arg)
{
/* No extension support for now */
return 0;
}
static int fme_open(struct inode *inode, struct file *filp)
{
struct platform_device *fdev = dfl_fpga_inode_to_feature_dev(inode);
struct dfl_feature_platform_data *pdata = dev_get_platdata(&fdev->dev);
int ret;
if (WARN_ON(!pdata))
return -ENODEV;
mutex_lock(&pdata->lock);
ret = dfl_feature_dev_use_begin(pdata, filp->f_flags & O_EXCL);
if (!ret) {
dev_dbg(&fdev->dev, "Device File Opened %d Times\n",
dfl_feature_dev_use_count(pdata));
filp->private_data = pdata;
}
mutex_unlock(&pdata->lock);
return ret;
}
static int fme_release(struct inode *inode, struct file *filp)
{
struct dfl_feature_platform_data *pdata = filp->private_data;
struct platform_device *pdev = pdata->dev;
dev_dbg(&pdev->dev, "Device File Release\n");
mutex_lock(&pdata->lock);
dfl_feature_dev_use_end(pdata);
mutex_unlock(&pdata->lock);
return 0;
}
static long fme_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct dfl_feature_platform_data *pdata = filp->private_data;
struct platform_device *pdev = pdata->dev;
struct dfl_feature *f;
long ret;
dev_dbg(&pdev->dev, "%s cmd 0x%x\n", __func__, cmd);
switch (cmd) {
case DFL_FPGA_GET_API_VERSION:
return DFL_FPGA_API_VERSION;
case DFL_FPGA_CHECK_EXTENSION:
return fme_ioctl_check_extension(pdata, arg);
default:
/*
* Let sub-feature's ioctl function to handle the cmd.
* Sub-feature's ioctl returns -ENODEV when cmd is not
* handled in this sub feature, and returns 0 or other
* error code if cmd is handled.
*/
dfl_fpga_dev_for_each_feature(pdata, f) {
if (f->ops && f->ops->ioctl) {
ret = f->ops->ioctl(pdev, f, cmd, arg);
if (ret != -ENODEV)
return ret;
}
}
}
return -EINVAL;
}
static int fme_dev_init(struct platform_device *pdev)
{
struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
struct dfl_fme *fme;
fme = devm_kzalloc(&pdev->dev, sizeof(*fme), GFP_KERNEL);
if (!fme)
return -ENOMEM;
fme->pdata = pdata;
mutex_lock(&pdata->lock);
dfl_fpga_pdata_set_private(pdata, fme);
mutex_unlock(&pdata->lock);
return 0;
}
static void fme_dev_destroy(struct platform_device *pdev)
{
struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
mutex_lock(&pdata->lock);
dfl_fpga_pdata_set_private(pdata, NULL);
mutex_unlock(&pdata->lock);
}
static const struct file_operations fme_fops = {
.owner = THIS_MODULE,
.open = fme_open,
.release = fme_release,
.unlocked_ioctl = fme_ioctl,
};
static int fme_probe(struct platform_device *pdev)
{
int ret;
ret = fme_dev_init(pdev);
if (ret)
goto exit;
ret = dfl_fpga_dev_feature_init(pdev, fme_feature_drvs);
if (ret)
goto dev_destroy;
ret = dfl_fpga_dev_ops_register(pdev, &fme_fops, THIS_MODULE);
if (ret)
goto feature_uinit;
return 0;
feature_uinit:
dfl_fpga_dev_feature_uinit(pdev);
dev_destroy:
fme_dev_destroy(pdev);
exit:
return ret;
}
static int fme_remove(struct platform_device *pdev)
{
dfl_fpga_dev_ops_unregister(pdev);
dfl_fpga_dev_feature_uinit(pdev);
fme_dev_destroy(pdev);
return 0;
}
static const struct attribute_group *fme_dev_groups[] = {
&fme_hdr_group,
&fme_global_err_group,
NULL
};
static struct platform_driver fme_driver = {
.driver = {
.name = DFL_FPGA_FEATURE_DEV_FME,
.dev_groups = fme_dev_groups,
},
.probe = fme_probe,
.remove = fme_remove,
};
module_platform_driver(fme_driver);
MODULE_DESCRIPTION("FPGA Management Engine driver");
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:dfl-fme");