WSL2-Linux-Kernel/arch/v850/kernel/setup.c

331 строка
10 KiB
C
Исходник Ответственный История

Этот файл содержит невидимые символы Юникода!

Этот файл содержит невидимые символы Юникода, которые могут быть отображены не так, как показано ниже. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы показать скрытые символы.

/*
* arch/v850/kernel/setup.c -- Arch-dependent initialization functions
*
* Copyright (C) 2001,02,03,05,06 NEC Electronics Corporation
* Copyright (C) 2001,02,03,05,06 Miles Bader <miles@gnu.org>
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file COPYING in the main directory of this
* archive for more details.
*
* Written by Miles Bader <miles@gnu.org>
*/
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/swap.h> /* we don't have swap, but for nr_free_pages */
#include <linux/irq.h>
#include <linux/reboot.h>
#include <linux/personality.h>
#include <linux/major.h>
#include <linux/root_dev.h>
#include <linux/mtd/mtd.h>
#include <linux/init.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include "mach.h"
/* These symbols are all defined in the linker map to delineate various
statically allocated regions of memory. */
extern char _intv_start, _intv_end;
/* `kram' is only used if the kernel uses part of normal user RAM. */
extern char _kram_start __attribute__ ((__weak__));
extern char _kram_end __attribute__ ((__weak__));
extern char _init_start, _init_end;
extern char _bootmap;
extern char _stext, _etext, _sdata, _edata, _sbss, _ebss;
/* Many platforms use an embedded root image. */
extern char _root_fs_image_start __attribute__ ((__weak__));
extern char _root_fs_image_end __attribute__ ((__weak__));
char __initdata command_line[COMMAND_LINE_SIZE];
/* Memory not used by the kernel. */
static unsigned long total_ram_pages;
/* System RAM. */
static unsigned long ram_start = 0, ram_len = 0;
#define ADDR_TO_PAGE_UP(x) ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT)
#define ADDR_TO_PAGE(x) (((unsigned long)x) >> PAGE_SHIFT)
#define PAGE_TO_ADDR(x) (((unsigned long)x) << PAGE_SHIFT)
static void init_mem_alloc (unsigned long ram_start, unsigned long ram_len);
void set_mem_root (void *addr, size_t len, char *cmd_line);
void __init setup_arch (char **cmdline)
{
/* Keep a copy of command line */
*cmdline = command_line;
memcpy (boot_command_line, command_line, COMMAND_LINE_SIZE);
boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
console_verbose ();
init_mm.start_code = (unsigned long) &_stext;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_kram_end;
/* Find out what mem this machine has. */
mach_get_physical_ram (&ram_start, &ram_len);
/* ... and tell the kernel about it. */
init_mem_alloc (ram_start, ram_len);
printk (KERN_INFO "CPU: %s\nPlatform: %s\n",
CPU_MODEL_LONG, PLATFORM_LONG);
/* do machine-specific setups. */
mach_setup (cmdline);
#ifdef CONFIG_MTD
if (!ROOT_DEV && &_root_fs_image_end > &_root_fs_image_start)
set_mem_root (&_root_fs_image_start,
&_root_fs_image_end - &_root_fs_image_start,
*cmdline);
#endif
}
void __init trap_init (void)
{
}
#ifdef CONFIG_MTD
/* From drivers/mtd/devices/slram.c */
#define SLRAM_BLK_SZ 0x4000
/* Set the root filesystem to be the given memory region.
Some parameter may be appended to CMD_LINE. */
void set_mem_root (void *addr, size_t len, char *cmd_line)
{
/* Some sort of idiocy in MTD means we must supply a length that's
a multiple of SLRAM_BLK_SZ. We just round up the real length,
as the file system shouldn't attempt to access anything beyond
the end of the image anyway. */
len = (((len - 1) + SLRAM_BLK_SZ) / SLRAM_BLK_SZ) * SLRAM_BLK_SZ;
/* The only way to pass info to the MTD slram driver is via
the command line. */
if (*cmd_line) {
cmd_line += strlen (cmd_line);
*cmd_line++ = ' ';
}
sprintf (cmd_line, "slram=root,0x%x,+0x%x", (u32)addr, (u32)len);
ROOT_DEV = MKDEV (MTD_BLOCK_MAJOR, 0);
}
#endif
static void irq_nop (unsigned irq) { }
static unsigned irq_zero (unsigned irq) { return 0; }
static void nmi_end (unsigned irq)
{
if (irq != IRQ_NMI (0)) {
printk (KERN_CRIT "NMI %d is unrecoverable; restarting...",
irq - IRQ_NMI (0));
machine_restart (0);
}
}
static struct hw_interrupt_type nmi_irq_type = {
.typename = "NMI",
.startup = irq_zero, /* startup */
.shutdown = irq_nop, /* shutdown */
.enable = irq_nop, /* enable */
.disable = irq_nop, /* disable */
.ack = irq_nop, /* ack */
.end = nmi_end, /* end */
};
void __init init_IRQ (void)
{
init_irq_handlers (0, NUM_MACH_IRQS, 1, 0);
init_irq_handlers (IRQ_NMI (0), NUM_NMIS, 1, &nmi_irq_type);
mach_init_irqs ();
}
void __init mem_init (void)
{
max_mapnr = MAP_NR (ram_start + ram_len);
num_physpages = ADDR_TO_PAGE (ram_len);
total_ram_pages = free_all_bootmem ();
printk (KERN_INFO
"Memory: %luK/%luK available"
" (%luK kernel code, %luK data)\n",
PAGE_TO_ADDR (nr_free_pages()) / 1024,
ram_len / 1024,
((unsigned long)&_etext - (unsigned long)&_stext) / 1024,
((unsigned long)&_ebss - (unsigned long)&_sdata) / 1024);
}
void free_initmem (void)
{
unsigned long ram_end = ram_start + ram_len;
unsigned long start = PAGE_ALIGN ((unsigned long)(&_init_start));
if (start >= ram_start && start < ram_end) {
unsigned long addr;
unsigned long end = PAGE_ALIGN ((unsigned long)(&_init_end));
if (end > ram_end)
end = ram_end;
printk("Freeing unused kernel memory: %ldK freed\n",
(end - start) / 1024);
for (addr = start; addr < end; addr += PAGE_SIZE) {
struct page *page = virt_to_page (addr);
ClearPageReserved (page);
init_page_count (page);
__free_page (page);
total_ram_pages++;
}
}
}
/* Initialize the `bootmem allocator'. RAM_START and RAM_LEN identify
what RAM may be used. */
static void __init
init_bootmem_alloc (unsigned long ram_start, unsigned long ram_len)
{
/* The part of the kernel that's in the same managed RAM space
used for general allocation. */
unsigned long kram_start = (unsigned long)&_kram_start;
unsigned long kram_end = (unsigned long)&_kram_end;
/* End of the managed RAM space. */
unsigned long ram_end = ram_start + ram_len;
/* Address range of the interrupt vector table. */
unsigned long intv_start = (unsigned long)&_intv_start;
unsigned long intv_end = (unsigned long)&_intv_end;
/* True if the interrupt vectors are in the managed RAM area. */
int intv_in_ram = (intv_end > ram_start && intv_start < ram_end);
/* True if the interrupt vectors are inside the kernel's RAM. */
int intv_in_kram = (intv_end > kram_start && intv_start < kram_end);
/* A pointer to an optional function that reserves platform-specific
memory regions. We declare the pointer `volatile' to avoid gcc
turning the call into a static call (the problem is that since
it's a weak symbol, a static call may end up trying to reference
the location 0x0, which is not always reachable). */
void (*volatile mrb) (void) = mach_reserve_bootmem;
/* The bootmem allocator's allocation bitmap. */
unsigned long bootmap = (unsigned long)&_bootmap;
unsigned long bootmap_len;
/* Round bootmap location up to next page. */
bootmap = PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap));
/* Initialize bootmem allocator. */
bootmap_len = init_bootmem_node (NODE_DATA (0),
ADDR_TO_PAGE (bootmap),
ADDR_TO_PAGE (PAGE_OFFSET),
ADDR_TO_PAGE (ram_end));
/* Now make the RAM actually allocatable (it starts out `reserved'). */
free_bootmem (ram_start, ram_len);
if (kram_end > kram_start)
/* Reserve the RAM part of the kernel's address space, so it
doesn't get allocated. */
reserve_bootmem(kram_start, kram_end - kram_start,
BOOTMEM_DEFAULT);
if (intv_in_ram && !intv_in_kram)
/* Reserve the interrupt vector space. */
reserve_bootmem(intv_start, intv_end - intv_start,
BOOTMEM_DEFAULT);
if (bootmap >= ram_start && bootmap < ram_end)
/* Reserve the bootmap space. */
reserve_bootmem(bootmap, bootmap_len,
BOOTMEM_DEFAULT);
/* Reserve the memory used by the root filesystem image if it's
in RAM. */
if (&_root_fs_image_end > &_root_fs_image_start
&& (unsigned long)&_root_fs_image_start >= ram_start
&& (unsigned long)&_root_fs_image_start < ram_end)
reserve_bootmem ((unsigned long)&_root_fs_image_start,
&_root_fs_image_end - &_root_fs_image_start,
BOOTMEM_DEFAULT);
/* Let the platform-dependent code reserve some too. */
if (mrb)
(*mrb) ();
}
/* Tell the kernel about what RAM it may use for memory allocation. */
static void __init
init_mem_alloc (unsigned long ram_start, unsigned long ram_len)
{
unsigned i;
unsigned long zones_size[MAX_NR_ZONES];
init_bootmem_alloc (ram_start, ram_len);
for (i = 0; i < MAX_NR_ZONES; i++)
zones_size[i] = 0;
/* We stuff all the memory into one area, which includes the
initial gap from PAGE_OFFSET to ram_start. */
zones_size[ZONE_DMA]
= ADDR_TO_PAGE (ram_len + (ram_start - PAGE_OFFSET));
/* The allocator is very picky about the address of the first
allocatable page -- it must be at least as aligned as the
maximum allocation -- so try to detect cases where it will get
confused and signal them at compile time (this is a common
problem when porting to a new platform with ). There is a
similar runtime check in free_area_init_core. */
#if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1))
#error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it)
#endif
NODE_DATA(0)->node_mem_map = NULL;
free_area_init_node (0, NODE_DATA(0), zones_size,
ADDR_TO_PAGE (PAGE_OFFSET), 0);
}
/* Taken from m68knommu */
void show_mem(void)
{
unsigned long i;
int free = 0, total = 0, reserved = 0, shared = 0;
int cached = 0;
printk(KERN_INFO "\nMem-info:\n");
show_free_areas();
i = max_mapnr;
while (i-- > 0) {
total++;
if (PageReserved(mem_map+i))
reserved++;
else if (PageSwapCache(mem_map+i))
cached++;
else if (!page_count(mem_map+i))
free++;
else
shared += page_count(mem_map+i) - 1;
}
printk(KERN_INFO "%d pages of RAM\n",total);
printk(KERN_INFO "%d free pages\n",free);
printk(KERN_INFO "%d reserved pages\n",reserved);
printk(KERN_INFO "%d pages shared\n",shared);
printk(KERN_INFO "%d pages swap cached\n",cached);
}