WSL2-Linux-Kernel/drivers/dma/ioat/dma.c

1251 строка
33 KiB
C

/*
* Intel I/OAT DMA Linux driver
* Copyright(c) 2004 - 2009 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
*/
/*
* This driver supports an Intel I/OAT DMA engine, which does asynchronous
* copy operations.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/workqueue.h>
#include <linux/prefetch.h>
#include <linux/i7300_idle.h>
#include "dma.h"
#include "registers.h"
#include "hw.h"
#include "../dmaengine.h"
int ioat_pending_level = 4;
module_param(ioat_pending_level, int, 0644);
MODULE_PARM_DESC(ioat_pending_level,
"high-water mark for pushing ioat descriptors (default: 4)");
/* internal functions */
static void ioat1_cleanup(struct ioat_dma_chan *ioat);
static void ioat1_dma_start_null_desc(struct ioat_dma_chan *ioat);
/**
* ioat_dma_do_interrupt - handler used for single vector interrupt mode
* @irq: interrupt id
* @data: interrupt data
*/
static irqreturn_t ioat_dma_do_interrupt(int irq, void *data)
{
struct ioatdma_device *instance = data;
struct ioat_chan_common *chan;
unsigned long attnstatus;
int bit;
u8 intrctrl;
intrctrl = readb(instance->reg_base + IOAT_INTRCTRL_OFFSET);
if (!(intrctrl & IOAT_INTRCTRL_MASTER_INT_EN))
return IRQ_NONE;
if (!(intrctrl & IOAT_INTRCTRL_INT_STATUS)) {
writeb(intrctrl, instance->reg_base + IOAT_INTRCTRL_OFFSET);
return IRQ_NONE;
}
attnstatus = readl(instance->reg_base + IOAT_ATTNSTATUS_OFFSET);
for_each_set_bit(bit, &attnstatus, BITS_PER_LONG) {
chan = ioat_chan_by_index(instance, bit);
if (test_bit(IOAT_RUN, &chan->state))
tasklet_schedule(&chan->cleanup_task);
}
writeb(intrctrl, instance->reg_base + IOAT_INTRCTRL_OFFSET);
return IRQ_HANDLED;
}
/**
* ioat_dma_do_interrupt_msix - handler used for vector-per-channel interrupt mode
* @irq: interrupt id
* @data: interrupt data
*/
static irqreturn_t ioat_dma_do_interrupt_msix(int irq, void *data)
{
struct ioat_chan_common *chan = data;
if (test_bit(IOAT_RUN, &chan->state))
tasklet_schedule(&chan->cleanup_task);
return IRQ_HANDLED;
}
/* common channel initialization */
void ioat_init_channel(struct ioatdma_device *device, struct ioat_chan_common *chan, int idx)
{
struct dma_device *dma = &device->common;
struct dma_chan *c = &chan->common;
unsigned long data = (unsigned long) c;
chan->device = device;
chan->reg_base = device->reg_base + (0x80 * (idx + 1));
spin_lock_init(&chan->cleanup_lock);
chan->common.device = dma;
dma_cookie_init(&chan->common);
list_add_tail(&chan->common.device_node, &dma->channels);
device->idx[idx] = chan;
init_timer(&chan->timer);
chan->timer.function = device->timer_fn;
chan->timer.data = data;
tasklet_init(&chan->cleanup_task, device->cleanup_fn, data);
}
/**
* ioat1_dma_enumerate_channels - find and initialize the device's channels
* @device: the device to be enumerated
*/
static int ioat1_enumerate_channels(struct ioatdma_device *device)
{
u8 xfercap_scale;
u32 xfercap;
int i;
struct ioat_dma_chan *ioat;
struct device *dev = &device->pdev->dev;
struct dma_device *dma = &device->common;
INIT_LIST_HEAD(&dma->channels);
dma->chancnt = readb(device->reg_base + IOAT_CHANCNT_OFFSET);
dma->chancnt &= 0x1f; /* bits [4:0] valid */
if (dma->chancnt > ARRAY_SIZE(device->idx)) {
dev_warn(dev, "(%d) exceeds max supported channels (%zu)\n",
dma->chancnt, ARRAY_SIZE(device->idx));
dma->chancnt = ARRAY_SIZE(device->idx);
}
xfercap_scale = readb(device->reg_base + IOAT_XFERCAP_OFFSET);
xfercap_scale &= 0x1f; /* bits [4:0] valid */
xfercap = (xfercap_scale == 0 ? -1 : (1UL << xfercap_scale));
dev_dbg(dev, "%s: xfercap = %d\n", __func__, xfercap);
#ifdef CONFIG_I7300_IDLE_IOAT_CHANNEL
if (i7300_idle_platform_probe(NULL, NULL, 1) == 0)
dma->chancnt--;
#endif
for (i = 0; i < dma->chancnt; i++) {
ioat = devm_kzalloc(dev, sizeof(*ioat), GFP_KERNEL);
if (!ioat)
break;
ioat_init_channel(device, &ioat->base, i);
ioat->xfercap = xfercap;
spin_lock_init(&ioat->desc_lock);
INIT_LIST_HEAD(&ioat->free_desc);
INIT_LIST_HEAD(&ioat->used_desc);
}
dma->chancnt = i;
return i;
}
/**
* ioat_dma_memcpy_issue_pending - push potentially unrecognized appended
* descriptors to hw
* @chan: DMA channel handle
*/
static inline void
__ioat1_dma_memcpy_issue_pending(struct ioat_dma_chan *ioat)
{
void __iomem *reg_base = ioat->base.reg_base;
dev_dbg(to_dev(&ioat->base), "%s: pending: %d\n",
__func__, ioat->pending);
ioat->pending = 0;
writeb(IOAT_CHANCMD_APPEND, reg_base + IOAT1_CHANCMD_OFFSET);
}
static void ioat1_dma_memcpy_issue_pending(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat = to_ioat_chan(chan);
if (ioat->pending > 0) {
spin_lock_bh(&ioat->desc_lock);
__ioat1_dma_memcpy_issue_pending(ioat);
spin_unlock_bh(&ioat->desc_lock);
}
}
/**
* ioat1_reset_channel - restart a channel
* @ioat: IOAT DMA channel handle
*/
static void ioat1_reset_channel(struct ioat_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
void __iomem *reg_base = chan->reg_base;
u32 chansts, chanerr;
dev_warn(to_dev(chan), "reset\n");
chanerr = readl(reg_base + IOAT_CHANERR_OFFSET);
chansts = *chan->completion & IOAT_CHANSTS_STATUS;
if (chanerr) {
dev_err(to_dev(chan),
"chan%d, CHANSTS = 0x%08x CHANERR = 0x%04x, clearing\n",
chan_num(chan), chansts, chanerr);
writel(chanerr, reg_base + IOAT_CHANERR_OFFSET);
}
/*
* whack it upside the head with a reset
* and wait for things to settle out.
* force the pending count to a really big negative
* to make sure no one forces an issue_pending
* while we're waiting.
*/
ioat->pending = INT_MIN;
writeb(IOAT_CHANCMD_RESET,
reg_base + IOAT_CHANCMD_OFFSET(chan->device->version));
set_bit(IOAT_RESET_PENDING, &chan->state);
mod_timer(&chan->timer, jiffies + RESET_DELAY);
}
static dma_cookie_t ioat1_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct dma_chan *c = tx->chan;
struct ioat_dma_chan *ioat = to_ioat_chan(c);
struct ioat_desc_sw *desc = tx_to_ioat_desc(tx);
struct ioat_chan_common *chan = &ioat->base;
struct ioat_desc_sw *first;
struct ioat_desc_sw *chain_tail;
dma_cookie_t cookie;
spin_lock_bh(&ioat->desc_lock);
/* cookie incr and addition to used_list must be atomic */
cookie = dma_cookie_assign(tx);
dev_dbg(to_dev(&ioat->base), "%s: cookie: %d\n", __func__, cookie);
/* write address into NextDescriptor field of last desc in chain */
first = to_ioat_desc(desc->tx_list.next);
chain_tail = to_ioat_desc(ioat->used_desc.prev);
/* make descriptor updates globally visible before chaining */
wmb();
chain_tail->hw->next = first->txd.phys;
list_splice_tail_init(&desc->tx_list, &ioat->used_desc);
dump_desc_dbg(ioat, chain_tail);
dump_desc_dbg(ioat, first);
if (!test_and_set_bit(IOAT_COMPLETION_PENDING, &chan->state))
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
ioat->active += desc->hw->tx_cnt;
ioat->pending += desc->hw->tx_cnt;
if (ioat->pending >= ioat_pending_level)
__ioat1_dma_memcpy_issue_pending(ioat);
spin_unlock_bh(&ioat->desc_lock);
return cookie;
}
/**
* ioat_dma_alloc_descriptor - allocate and return a sw and hw descriptor pair
* @ioat: the channel supplying the memory pool for the descriptors
* @flags: allocation flags
*/
static struct ioat_desc_sw *
ioat_dma_alloc_descriptor(struct ioat_dma_chan *ioat, gfp_t flags)
{
struct ioat_dma_descriptor *desc;
struct ioat_desc_sw *desc_sw;
struct ioatdma_device *ioatdma_device;
dma_addr_t phys;
ioatdma_device = ioat->base.device;
desc = pci_pool_alloc(ioatdma_device->dma_pool, flags, &phys);
if (unlikely(!desc))
return NULL;
desc_sw = kzalloc(sizeof(*desc_sw), flags);
if (unlikely(!desc_sw)) {
pci_pool_free(ioatdma_device->dma_pool, desc, phys);
return NULL;
}
memset(desc, 0, sizeof(*desc));
INIT_LIST_HEAD(&desc_sw->tx_list);
dma_async_tx_descriptor_init(&desc_sw->txd, &ioat->base.common);
desc_sw->txd.tx_submit = ioat1_tx_submit;
desc_sw->hw = desc;
desc_sw->txd.phys = phys;
set_desc_id(desc_sw, -1);
return desc_sw;
}
static int ioat_initial_desc_count = 256;
module_param(ioat_initial_desc_count, int, 0644);
MODULE_PARM_DESC(ioat_initial_desc_count,
"ioat1: initial descriptors per channel (default: 256)");
/**
* ioat1_dma_alloc_chan_resources - returns the number of allocated descriptors
* @chan: the channel to be filled out
*/
static int ioat1_dma_alloc_chan_resources(struct dma_chan *c)
{
struct ioat_dma_chan *ioat = to_ioat_chan(c);
struct ioat_chan_common *chan = &ioat->base;
struct ioat_desc_sw *desc;
u32 chanerr;
int i;
LIST_HEAD(tmp_list);
/* have we already been set up? */
if (!list_empty(&ioat->free_desc))
return ioat->desccount;
/* Setup register to interrupt and write completion status on error */
writew(IOAT_CHANCTRL_RUN, chan->reg_base + IOAT_CHANCTRL_OFFSET);
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
if (chanerr) {
dev_err(to_dev(chan), "CHANERR = %x, clearing\n", chanerr);
writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
}
/* Allocate descriptors */
for (i = 0; i < ioat_initial_desc_count; i++) {
desc = ioat_dma_alloc_descriptor(ioat, GFP_KERNEL);
if (!desc) {
dev_err(to_dev(chan), "Only %d initial descriptors\n", i);
break;
}
set_desc_id(desc, i);
list_add_tail(&desc->node, &tmp_list);
}
spin_lock_bh(&ioat->desc_lock);
ioat->desccount = i;
list_splice(&tmp_list, &ioat->free_desc);
spin_unlock_bh(&ioat->desc_lock);
/* allocate a completion writeback area */
/* doing 2 32bit writes to mmio since 1 64b write doesn't work */
chan->completion = pci_pool_alloc(chan->device->completion_pool,
GFP_KERNEL, &chan->completion_dma);
memset(chan->completion, 0, sizeof(*chan->completion));
writel(((u64) chan->completion_dma) & 0x00000000FFFFFFFF,
chan->reg_base + IOAT_CHANCMP_OFFSET_LOW);
writel(((u64) chan->completion_dma) >> 32,
chan->reg_base + IOAT_CHANCMP_OFFSET_HIGH);
set_bit(IOAT_RUN, &chan->state);
ioat1_dma_start_null_desc(ioat); /* give chain to dma device */
dev_dbg(to_dev(chan), "%s: allocated %d descriptors\n",
__func__, ioat->desccount);
return ioat->desccount;
}
void ioat_stop(struct ioat_chan_common *chan)
{
struct ioatdma_device *device = chan->device;
struct pci_dev *pdev = device->pdev;
int chan_id = chan_num(chan);
struct msix_entry *msix;
/* 1/ stop irq from firing tasklets
* 2/ stop the tasklet from re-arming irqs
*/
clear_bit(IOAT_RUN, &chan->state);
/* flush inflight interrupts */
switch (device->irq_mode) {
case IOAT_MSIX:
msix = &device->msix_entries[chan_id];
synchronize_irq(msix->vector);
break;
case IOAT_MSI:
case IOAT_INTX:
synchronize_irq(pdev->irq);
break;
default:
break;
}
/* flush inflight timers */
del_timer_sync(&chan->timer);
/* flush inflight tasklet runs */
tasklet_kill(&chan->cleanup_task);
/* final cleanup now that everything is quiesced and can't re-arm */
device->cleanup_fn((unsigned long) &chan->common);
}
/**
* ioat1_dma_free_chan_resources - release all the descriptors
* @chan: the channel to be cleaned
*/
static void ioat1_dma_free_chan_resources(struct dma_chan *c)
{
struct ioat_dma_chan *ioat = to_ioat_chan(c);
struct ioat_chan_common *chan = &ioat->base;
struct ioatdma_device *ioatdma_device = chan->device;
struct ioat_desc_sw *desc, *_desc;
int in_use_descs = 0;
/* Before freeing channel resources first check
* if they have been previously allocated for this channel.
*/
if (ioat->desccount == 0)
return;
ioat_stop(chan);
/* Delay 100ms after reset to allow internal DMA logic to quiesce
* before removing DMA descriptor resources.
*/
writeb(IOAT_CHANCMD_RESET,
chan->reg_base + IOAT_CHANCMD_OFFSET(chan->device->version));
mdelay(100);
spin_lock_bh(&ioat->desc_lock);
list_for_each_entry_safe(desc, _desc, &ioat->used_desc, node) {
dev_dbg(to_dev(chan), "%s: freeing %d from used list\n",
__func__, desc_id(desc));
dump_desc_dbg(ioat, desc);
in_use_descs++;
list_del(&desc->node);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->txd.phys);
kfree(desc);
}
list_for_each_entry_safe(desc, _desc,
&ioat->free_desc, node) {
list_del(&desc->node);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->txd.phys);
kfree(desc);
}
spin_unlock_bh(&ioat->desc_lock);
pci_pool_free(ioatdma_device->completion_pool,
chan->completion,
chan->completion_dma);
/* one is ok since we left it on there on purpose */
if (in_use_descs > 1)
dev_err(to_dev(chan), "Freeing %d in use descriptors!\n",
in_use_descs - 1);
chan->last_completion = 0;
chan->completion_dma = 0;
ioat->pending = 0;
ioat->desccount = 0;
}
/**
* ioat1_dma_get_next_descriptor - return the next available descriptor
* @ioat: IOAT DMA channel handle
*
* Gets the next descriptor from the chain, and must be called with the
* channel's desc_lock held. Allocates more descriptors if the channel
* has run out.
*/
static struct ioat_desc_sw *
ioat1_dma_get_next_descriptor(struct ioat_dma_chan *ioat)
{
struct ioat_desc_sw *new;
if (!list_empty(&ioat->free_desc)) {
new = to_ioat_desc(ioat->free_desc.next);
list_del(&new->node);
} else {
/* try to get another desc */
new = ioat_dma_alloc_descriptor(ioat, GFP_ATOMIC);
if (!new) {
dev_err(to_dev(&ioat->base), "alloc failed\n");
return NULL;
}
}
dev_dbg(to_dev(&ioat->base), "%s: allocated: %d\n",
__func__, desc_id(new));
prefetch(new->hw);
return new;
}
static struct dma_async_tx_descriptor *
ioat1_dma_prep_memcpy(struct dma_chan *c, dma_addr_t dma_dest,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct ioat_dma_chan *ioat = to_ioat_chan(c);
struct ioat_desc_sw *desc;
size_t copy;
LIST_HEAD(chain);
dma_addr_t src = dma_src;
dma_addr_t dest = dma_dest;
size_t total_len = len;
struct ioat_dma_descriptor *hw = NULL;
int tx_cnt = 0;
spin_lock_bh(&ioat->desc_lock);
desc = ioat1_dma_get_next_descriptor(ioat);
do {
if (!desc)
break;
tx_cnt++;
copy = min_t(size_t, len, ioat->xfercap);
hw = desc->hw;
hw->size = copy;
hw->ctl = 0;
hw->src_addr = src;
hw->dst_addr = dest;
list_add_tail(&desc->node, &chain);
len -= copy;
dest += copy;
src += copy;
if (len) {
struct ioat_desc_sw *next;
async_tx_ack(&desc->txd);
next = ioat1_dma_get_next_descriptor(ioat);
hw->next = next ? next->txd.phys : 0;
dump_desc_dbg(ioat, desc);
desc = next;
} else
hw->next = 0;
} while (len);
if (!desc) {
struct ioat_chan_common *chan = &ioat->base;
dev_err(to_dev(chan),
"chan%d - get_next_desc failed\n", chan_num(chan));
list_splice(&chain, &ioat->free_desc);
spin_unlock_bh(&ioat->desc_lock);
return NULL;
}
spin_unlock_bh(&ioat->desc_lock);
desc->txd.flags = flags;
desc->len = total_len;
list_splice(&chain, &desc->tx_list);
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
hw->ctl_f.compl_write = 1;
hw->tx_cnt = tx_cnt;
dump_desc_dbg(ioat, desc);
return &desc->txd;
}
static void ioat1_cleanup_event(unsigned long data)
{
struct ioat_dma_chan *ioat = to_ioat_chan((void *) data);
struct ioat_chan_common *chan = &ioat->base;
ioat1_cleanup(ioat);
if (!test_bit(IOAT_RUN, &chan->state))
return;
writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
}
dma_addr_t ioat_get_current_completion(struct ioat_chan_common *chan)
{
dma_addr_t phys_complete;
u64 completion;
completion = *chan->completion;
phys_complete = ioat_chansts_to_addr(completion);
dev_dbg(to_dev(chan), "%s: phys_complete: %#llx\n", __func__,
(unsigned long long) phys_complete);
if (is_ioat_halted(completion)) {
u32 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
dev_err(to_dev(chan), "Channel halted, chanerr = %x\n",
chanerr);
/* TODO do something to salvage the situation */
}
return phys_complete;
}
bool ioat_cleanup_preamble(struct ioat_chan_common *chan,
dma_addr_t *phys_complete)
{
*phys_complete = ioat_get_current_completion(chan);
if (*phys_complete == chan->last_completion)
return false;
clear_bit(IOAT_COMPLETION_ACK, &chan->state);
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
return true;
}
static void __cleanup(struct ioat_dma_chan *ioat, dma_addr_t phys_complete)
{
struct ioat_chan_common *chan = &ioat->base;
struct list_head *_desc, *n;
struct dma_async_tx_descriptor *tx;
dev_dbg(to_dev(chan), "%s: phys_complete: %llx\n",
__func__, (unsigned long long) phys_complete);
list_for_each_safe(_desc, n, &ioat->used_desc) {
struct ioat_desc_sw *desc;
prefetch(n);
desc = list_entry(_desc, typeof(*desc), node);
tx = &desc->txd;
/*
* Incoming DMA requests may use multiple descriptors,
* due to exceeding xfercap, perhaps. If so, only the
* last one will have a cookie, and require unmapping.
*/
dump_desc_dbg(ioat, desc);
if (tx->cookie) {
dma_cookie_complete(tx);
dma_descriptor_unmap(tx);
ioat->active -= desc->hw->tx_cnt;
if (tx->callback) {
tx->callback(tx->callback_param);
tx->callback = NULL;
}
}
if (tx->phys != phys_complete) {
/*
* a completed entry, but not the last, so clean
* up if the client is done with the descriptor
*/
if (async_tx_test_ack(tx))
list_move_tail(&desc->node, &ioat->free_desc);
} else {
/*
* last used desc. Do not remove, so we can
* append from it.
*/
/* if nothing else is pending, cancel the
* completion timeout
*/
if (n == &ioat->used_desc) {
dev_dbg(to_dev(chan),
"%s cancel completion timeout\n",
__func__);
clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
}
/* TODO check status bits? */
break;
}
}
chan->last_completion = phys_complete;
}
/**
* ioat1_cleanup - cleanup up finished descriptors
* @chan: ioat channel to be cleaned up
*
* To prevent lock contention we defer cleanup when the locks are
* contended with a terminal timeout that forces cleanup and catches
* completion notification errors.
*/
static void ioat1_cleanup(struct ioat_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
dma_addr_t phys_complete;
prefetch(chan->completion);
if (!spin_trylock_bh(&chan->cleanup_lock))
return;
if (!ioat_cleanup_preamble(chan, &phys_complete)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
if (!spin_trylock_bh(&ioat->desc_lock)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
__cleanup(ioat, phys_complete);
spin_unlock_bh(&ioat->desc_lock);
spin_unlock_bh(&chan->cleanup_lock);
}
static void ioat1_timer_event(unsigned long data)
{
struct ioat_dma_chan *ioat = to_ioat_chan((void *) data);
struct ioat_chan_common *chan = &ioat->base;
dev_dbg(to_dev(chan), "%s: state: %lx\n", __func__, chan->state);
spin_lock_bh(&chan->cleanup_lock);
if (test_and_clear_bit(IOAT_RESET_PENDING, &chan->state)) {
struct ioat_desc_sw *desc;
spin_lock_bh(&ioat->desc_lock);
/* restart active descriptors */
desc = to_ioat_desc(ioat->used_desc.prev);
ioat_set_chainaddr(ioat, desc->txd.phys);
ioat_start(chan);
ioat->pending = 0;
set_bit(IOAT_COMPLETION_PENDING, &chan->state);
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
spin_unlock_bh(&ioat->desc_lock);
} else if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
dma_addr_t phys_complete;
spin_lock_bh(&ioat->desc_lock);
/* if we haven't made progress and we have already
* acknowledged a pending completion once, then be more
* forceful with a restart
*/
if (ioat_cleanup_preamble(chan, &phys_complete))
__cleanup(ioat, phys_complete);
else if (test_bit(IOAT_COMPLETION_ACK, &chan->state))
ioat1_reset_channel(ioat);
else {
u64 status = ioat_chansts(chan);
/* manually update the last completion address */
if (ioat_chansts_to_addr(status) != 0)
*chan->completion = status;
set_bit(IOAT_COMPLETION_ACK, &chan->state);
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
}
spin_unlock_bh(&ioat->desc_lock);
}
spin_unlock_bh(&chan->cleanup_lock);
}
enum dma_status
ioat_dma_tx_status(struct dma_chan *c, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct ioat_chan_common *chan = to_chan_common(c);
struct ioatdma_device *device = chan->device;
enum dma_status ret;
ret = dma_cookie_status(c, cookie, txstate);
if (ret == DMA_COMPLETE)
return ret;
device->cleanup_fn((unsigned long) c);
return dma_cookie_status(c, cookie, txstate);
}
static void ioat1_dma_start_null_desc(struct ioat_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
struct ioat_desc_sw *desc;
struct ioat_dma_descriptor *hw;
spin_lock_bh(&ioat->desc_lock);
desc = ioat1_dma_get_next_descriptor(ioat);
if (!desc) {
dev_err(to_dev(chan),
"Unable to start null desc - get next desc failed\n");
spin_unlock_bh(&ioat->desc_lock);
return;
}
hw = desc->hw;
hw->ctl = 0;
hw->ctl_f.null = 1;
hw->ctl_f.int_en = 1;
hw->ctl_f.compl_write = 1;
/* set size to non-zero value (channel returns error when size is 0) */
hw->size = NULL_DESC_BUFFER_SIZE;
hw->src_addr = 0;
hw->dst_addr = 0;
async_tx_ack(&desc->txd);
hw->next = 0;
list_add_tail(&desc->node, &ioat->used_desc);
dump_desc_dbg(ioat, desc);
ioat_set_chainaddr(ioat, desc->txd.phys);
ioat_start(chan);
spin_unlock_bh(&ioat->desc_lock);
}
/*
* Perform a IOAT transaction to verify the HW works.
*/
#define IOAT_TEST_SIZE 2000
static void ioat_dma_test_callback(void *dma_async_param)
{
struct completion *cmp = dma_async_param;
complete(cmp);
}
/**
* ioat_dma_self_test - Perform a IOAT transaction to verify the HW works.
* @device: device to be tested
*/
int ioat_dma_self_test(struct ioatdma_device *device)
{
int i;
u8 *src;
u8 *dest;
struct dma_device *dma = &device->common;
struct device *dev = &device->pdev->dev;
struct dma_chan *dma_chan;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int err = 0;
struct completion cmp;
unsigned long tmo;
unsigned long flags;
src = kzalloc(sizeof(u8) * IOAT_TEST_SIZE, GFP_KERNEL);
if (!src)
return -ENOMEM;
dest = kzalloc(sizeof(u8) * IOAT_TEST_SIZE, GFP_KERNEL);
if (!dest) {
kfree(src);
return -ENOMEM;
}
/* Fill in src buffer */
for (i = 0; i < IOAT_TEST_SIZE; i++)
src[i] = (u8)i;
/* Start copy, using first DMA channel */
dma_chan = container_of(dma->channels.next, struct dma_chan,
device_node);
if (dma->device_alloc_chan_resources(dma_chan) < 1) {
dev_err(dev, "selftest cannot allocate chan resource\n");
err = -ENODEV;
goto out;
}
dma_src = dma_map_single(dev, src, IOAT_TEST_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_src)) {
dev_err(dev, "mapping src buffer failed\n");
goto free_resources;
}
dma_dest = dma_map_single(dev, dest, IOAT_TEST_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, dma_dest)) {
dev_err(dev, "mapping dest buffer failed\n");
goto unmap_src;
}
flags = DMA_PREP_INTERRUPT;
tx = device->common.device_prep_dma_memcpy(dma_chan, dma_dest, dma_src,
IOAT_TEST_SIZE, flags);
if (!tx) {
dev_err(dev, "Self-test prep failed, disabling\n");
err = -ENODEV;
goto unmap_dma;
}
async_tx_ack(tx);
init_completion(&cmp);
tx->callback = ioat_dma_test_callback;
tx->callback_param = &cmp;
cookie = tx->tx_submit(tx);
if (cookie < 0) {
dev_err(dev, "Self-test setup failed, disabling\n");
err = -ENODEV;
goto unmap_dma;
}
dma->device_issue_pending(dma_chan);
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (tmo == 0 ||
dma->device_tx_status(dma_chan, cookie, NULL)
!= DMA_COMPLETE) {
dev_err(dev, "Self-test copy timed out, disabling\n");
err = -ENODEV;
goto unmap_dma;
}
if (memcmp(src, dest, IOAT_TEST_SIZE)) {
dev_err(dev, "Self-test copy failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
unmap_dma:
dma_unmap_single(dev, dma_dest, IOAT_TEST_SIZE, DMA_FROM_DEVICE);
unmap_src:
dma_unmap_single(dev, dma_src, IOAT_TEST_SIZE, DMA_TO_DEVICE);
free_resources:
dma->device_free_chan_resources(dma_chan);
out:
kfree(src);
kfree(dest);
return err;
}
static char ioat_interrupt_style[32] = "msix";
module_param_string(ioat_interrupt_style, ioat_interrupt_style,
sizeof(ioat_interrupt_style), 0644);
MODULE_PARM_DESC(ioat_interrupt_style,
"set ioat interrupt style: msix (default), msi, intx");
/**
* ioat_dma_setup_interrupts - setup interrupt handler
* @device: ioat device
*/
int ioat_dma_setup_interrupts(struct ioatdma_device *device)
{
struct ioat_chan_common *chan;
struct pci_dev *pdev = device->pdev;
struct device *dev = &pdev->dev;
struct msix_entry *msix;
int i, j, msixcnt;
int err = -EINVAL;
u8 intrctrl = 0;
if (!strcmp(ioat_interrupt_style, "msix"))
goto msix;
if (!strcmp(ioat_interrupt_style, "msi"))
goto msi;
if (!strcmp(ioat_interrupt_style, "intx"))
goto intx;
dev_err(dev, "invalid ioat_interrupt_style %s\n", ioat_interrupt_style);
goto err_no_irq;
msix:
/* The number of MSI-X vectors should equal the number of channels */
msixcnt = device->common.chancnt;
for (i = 0; i < msixcnt; i++)
device->msix_entries[i].entry = i;
err = pci_enable_msix_exact(pdev, device->msix_entries, msixcnt);
if (err)
goto msi;
for (i = 0; i < msixcnt; i++) {
msix = &device->msix_entries[i];
chan = ioat_chan_by_index(device, i);
err = devm_request_irq(dev, msix->vector,
ioat_dma_do_interrupt_msix, 0,
"ioat-msix", chan);
if (err) {
for (j = 0; j < i; j++) {
msix = &device->msix_entries[j];
chan = ioat_chan_by_index(device, j);
devm_free_irq(dev, msix->vector, chan);
}
goto msi;
}
}
intrctrl |= IOAT_INTRCTRL_MSIX_VECTOR_CONTROL;
device->irq_mode = IOAT_MSIX;
goto done;
msi:
err = pci_enable_msi(pdev);
if (err)
goto intx;
err = devm_request_irq(dev, pdev->irq, ioat_dma_do_interrupt, 0,
"ioat-msi", device);
if (err) {
pci_disable_msi(pdev);
goto intx;
}
device->irq_mode = IOAT_MSI;
goto done;
intx:
err = devm_request_irq(dev, pdev->irq, ioat_dma_do_interrupt,
IRQF_SHARED, "ioat-intx", device);
if (err)
goto err_no_irq;
device->irq_mode = IOAT_INTX;
done:
if (device->intr_quirk)
device->intr_quirk(device);
intrctrl |= IOAT_INTRCTRL_MASTER_INT_EN;
writeb(intrctrl, device->reg_base + IOAT_INTRCTRL_OFFSET);
return 0;
err_no_irq:
/* Disable all interrupt generation */
writeb(0, device->reg_base + IOAT_INTRCTRL_OFFSET);
device->irq_mode = IOAT_NOIRQ;
dev_err(dev, "no usable interrupts\n");
return err;
}
EXPORT_SYMBOL(ioat_dma_setup_interrupts);
static void ioat_disable_interrupts(struct ioatdma_device *device)
{
/* Disable all interrupt generation */
writeb(0, device->reg_base + IOAT_INTRCTRL_OFFSET);
}
int ioat_probe(struct ioatdma_device *device)
{
int err = -ENODEV;
struct dma_device *dma = &device->common;
struct pci_dev *pdev = device->pdev;
struct device *dev = &pdev->dev;
/* DMA coherent memory pool for DMA descriptor allocations */
device->dma_pool = pci_pool_create("dma_desc_pool", pdev,
sizeof(struct ioat_dma_descriptor),
64, 0);
if (!device->dma_pool) {
err = -ENOMEM;
goto err_dma_pool;
}
device->completion_pool = pci_pool_create("completion_pool", pdev,
sizeof(u64), SMP_CACHE_BYTES,
SMP_CACHE_BYTES);
if (!device->completion_pool) {
err = -ENOMEM;
goto err_completion_pool;
}
device->enumerate_channels(device);
dma_cap_set(DMA_MEMCPY, dma->cap_mask);
dma->dev = &pdev->dev;
if (!dma->chancnt) {
dev_err(dev, "channel enumeration error\n");
goto err_setup_interrupts;
}
err = ioat_dma_setup_interrupts(device);
if (err)
goto err_setup_interrupts;
err = device->self_test(device);
if (err)
goto err_self_test;
return 0;
err_self_test:
ioat_disable_interrupts(device);
err_setup_interrupts:
pci_pool_destroy(device->completion_pool);
err_completion_pool:
pci_pool_destroy(device->dma_pool);
err_dma_pool:
return err;
}
int ioat_register(struct ioatdma_device *device)
{
int err = dma_async_device_register(&device->common);
if (err) {
ioat_disable_interrupts(device);
pci_pool_destroy(device->completion_pool);
pci_pool_destroy(device->dma_pool);
}
return err;
}
/* ioat1_intr_quirk - fix up dma ctrl register to enable / disable msi */
static void ioat1_intr_quirk(struct ioatdma_device *device)
{
struct pci_dev *pdev = device->pdev;
u32 dmactrl;
pci_read_config_dword(pdev, IOAT_PCI_DMACTRL_OFFSET, &dmactrl);
if (pdev->msi_enabled)
dmactrl |= IOAT_PCI_DMACTRL_MSI_EN;
else
dmactrl &= ~IOAT_PCI_DMACTRL_MSI_EN;
pci_write_config_dword(pdev, IOAT_PCI_DMACTRL_OFFSET, dmactrl);
}
static ssize_t ring_size_show(struct dma_chan *c, char *page)
{
struct ioat_dma_chan *ioat = to_ioat_chan(c);
return sprintf(page, "%d\n", ioat->desccount);
}
static struct ioat_sysfs_entry ring_size_attr = __ATTR_RO(ring_size);
static ssize_t ring_active_show(struct dma_chan *c, char *page)
{
struct ioat_dma_chan *ioat = to_ioat_chan(c);
return sprintf(page, "%d\n", ioat->active);
}
static struct ioat_sysfs_entry ring_active_attr = __ATTR_RO(ring_active);
static ssize_t cap_show(struct dma_chan *c, char *page)
{
struct dma_device *dma = c->device;
return sprintf(page, "copy%s%s%s%s%s\n",
dma_has_cap(DMA_PQ, dma->cap_mask) ? " pq" : "",
dma_has_cap(DMA_PQ_VAL, dma->cap_mask) ? " pq_val" : "",
dma_has_cap(DMA_XOR, dma->cap_mask) ? " xor" : "",
dma_has_cap(DMA_XOR_VAL, dma->cap_mask) ? " xor_val" : "",
dma_has_cap(DMA_INTERRUPT, dma->cap_mask) ? " intr" : "");
}
struct ioat_sysfs_entry ioat_cap_attr = __ATTR_RO(cap);
static ssize_t version_show(struct dma_chan *c, char *page)
{
struct dma_device *dma = c->device;
struct ioatdma_device *device = to_ioatdma_device(dma);
return sprintf(page, "%d.%d\n",
device->version >> 4, device->version & 0xf);
}
struct ioat_sysfs_entry ioat_version_attr = __ATTR_RO(version);
static struct attribute *ioat1_attrs[] = {
&ring_size_attr.attr,
&ring_active_attr.attr,
&ioat_cap_attr.attr,
&ioat_version_attr.attr,
NULL,
};
static ssize_t
ioat_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct ioat_sysfs_entry *entry;
struct ioat_chan_common *chan;
entry = container_of(attr, struct ioat_sysfs_entry, attr);
chan = container_of(kobj, struct ioat_chan_common, kobj);
if (!entry->show)
return -EIO;
return entry->show(&chan->common, page);
}
const struct sysfs_ops ioat_sysfs_ops = {
.show = ioat_attr_show,
};
static struct kobj_type ioat1_ktype = {
.sysfs_ops = &ioat_sysfs_ops,
.default_attrs = ioat1_attrs,
};
void ioat_kobject_add(struct ioatdma_device *device, struct kobj_type *type)
{
struct dma_device *dma = &device->common;
struct dma_chan *c;
list_for_each_entry(c, &dma->channels, device_node) {
struct ioat_chan_common *chan = to_chan_common(c);
struct kobject *parent = &c->dev->device.kobj;
int err;
err = kobject_init_and_add(&chan->kobj, type, parent, "quickdata");
if (err) {
dev_warn(to_dev(chan),
"sysfs init error (%d), continuing...\n", err);
kobject_put(&chan->kobj);
set_bit(IOAT_KOBJ_INIT_FAIL, &chan->state);
}
}
}
void ioat_kobject_del(struct ioatdma_device *device)
{
struct dma_device *dma = &device->common;
struct dma_chan *c;
list_for_each_entry(c, &dma->channels, device_node) {
struct ioat_chan_common *chan = to_chan_common(c);
if (!test_bit(IOAT_KOBJ_INIT_FAIL, &chan->state)) {
kobject_del(&chan->kobj);
kobject_put(&chan->kobj);
}
}
}
int ioat1_dma_probe(struct ioatdma_device *device, int dca)
{
struct pci_dev *pdev = device->pdev;
struct dma_device *dma;
int err;
device->intr_quirk = ioat1_intr_quirk;
device->enumerate_channels = ioat1_enumerate_channels;
device->self_test = ioat_dma_self_test;
device->timer_fn = ioat1_timer_event;
device->cleanup_fn = ioat1_cleanup_event;
dma = &device->common;
dma->device_prep_dma_memcpy = ioat1_dma_prep_memcpy;
dma->device_issue_pending = ioat1_dma_memcpy_issue_pending;
dma->device_alloc_chan_resources = ioat1_dma_alloc_chan_resources;
dma->device_free_chan_resources = ioat1_dma_free_chan_resources;
dma->device_tx_status = ioat_dma_tx_status;
err = ioat_probe(device);
if (err)
return err;
err = ioat_register(device);
if (err)
return err;
ioat_kobject_add(device, &ioat1_ktype);
if (dca)
device->dca = ioat_dca_init(pdev, device->reg_base);
return err;
}
void ioat_dma_remove(struct ioatdma_device *device)
{
struct dma_device *dma = &device->common;
ioat_disable_interrupts(device);
ioat_kobject_del(device);
dma_async_device_unregister(dma);
pci_pool_destroy(device->dma_pool);
pci_pool_destroy(device->completion_pool);
INIT_LIST_HEAD(&dma->channels);
}