WSL2-Linux-Kernel/drivers/iio/light/isl29028.c

714 строки
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* IIO driver for the light sensor ISL29028.
* ISL29028 is Concurrent Ambient Light and Proximity Sensor
*
* Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2016-2017 Brian Masney <masneyb@onstation.org>
*
* Datasheets:
* - http://www.intersil.com/content/dam/Intersil/documents/isl2/isl29028.pdf
* - http://www.intersil.com/content/dam/Intersil/documents/isl2/isl29030.pdf
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/pm_runtime.h>
#define ISL29028_CONV_TIME_MS 100
#define ISL29028_REG_CONFIGURE 0x01
#define ISL29028_CONF_ALS_IR_MODE_ALS 0
#define ISL29028_CONF_ALS_IR_MODE_IR BIT(0)
#define ISL29028_CONF_ALS_IR_MODE_MASK BIT(0)
#define ISL29028_CONF_ALS_RANGE_LOW_LUX 0
#define ISL29028_CONF_ALS_RANGE_HIGH_LUX BIT(1)
#define ISL29028_CONF_ALS_RANGE_MASK BIT(1)
#define ISL29028_CONF_ALS_DIS 0
#define ISL29028_CONF_ALS_EN BIT(2)
#define ISL29028_CONF_ALS_EN_MASK BIT(2)
#define ISL29028_CONF_PROX_SLP_SH 4
#define ISL29028_CONF_PROX_SLP_MASK (7 << ISL29028_CONF_PROX_SLP_SH)
#define ISL29028_CONF_PROX_EN BIT(7)
#define ISL29028_CONF_PROX_EN_MASK BIT(7)
#define ISL29028_REG_INTERRUPT 0x02
#define ISL29028_REG_PROX_DATA 0x08
#define ISL29028_REG_ALSIR_L 0x09
#define ISL29028_REG_ALSIR_U 0x0A
#define ISL29028_REG_TEST1_MODE 0x0E
#define ISL29028_REG_TEST2_MODE 0x0F
#define ISL29028_NUM_REGS (ISL29028_REG_TEST2_MODE + 1)
#define ISL29028_POWER_OFF_DELAY_MS 2000
struct isl29028_prox_data {
int sampling_int;
int sampling_fract;
int sleep_time;
};
static const struct isl29028_prox_data isl29028_prox_data[] = {
{ 1, 250000, 800 },
{ 2, 500000, 400 },
{ 5, 0, 200 },
{ 10, 0, 100 },
{ 13, 300000, 75 },
{ 20, 0, 50 },
{ 80, 0, 13 }, /*
* Note: Data sheet lists 12.5 ms sleep time.
* Round up a half millisecond for msleep().
*/
{ 100, 0, 0 }
};
enum isl29028_als_ir_mode {
ISL29028_MODE_NONE = 0,
ISL29028_MODE_ALS,
ISL29028_MODE_IR,
};
struct isl29028_chip {
struct mutex lock;
struct regmap *regmap;
int prox_sampling_int;
int prox_sampling_frac;
bool enable_prox;
int lux_scale;
enum isl29028_als_ir_mode als_ir_mode;
};
static int isl29028_find_prox_sleep_index(int sampling_int, int sampling_fract)
{
int i;
for (i = 0; i < ARRAY_SIZE(isl29028_prox_data); ++i) {
if (isl29028_prox_data[i].sampling_int == sampling_int &&
isl29028_prox_data[i].sampling_fract == sampling_fract)
return i;
}
return -EINVAL;
}
static int isl29028_set_proxim_sampling(struct isl29028_chip *chip,
int sampling_int, int sampling_fract)
{
struct device *dev = regmap_get_device(chip->regmap);
int sleep_index, ret;
sleep_index = isl29028_find_prox_sleep_index(sampling_int,
sampling_fract);
if (sleep_index < 0)
return sleep_index;
ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE,
ISL29028_CONF_PROX_SLP_MASK,
sleep_index << ISL29028_CONF_PROX_SLP_SH);
if (ret < 0) {
dev_err(dev, "%s(): Error %d setting the proximity sampling\n",
__func__, ret);
return ret;
}
chip->prox_sampling_int = sampling_int;
chip->prox_sampling_frac = sampling_fract;
return ret;
}
static int isl29028_enable_proximity(struct isl29028_chip *chip)
{
int prox_index, ret;
ret = isl29028_set_proxim_sampling(chip, chip->prox_sampling_int,
chip->prox_sampling_frac);
if (ret < 0)
return ret;
ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE,
ISL29028_CONF_PROX_EN_MASK,
ISL29028_CONF_PROX_EN);
if (ret < 0)
return ret;
/* Wait for conversion to be complete for first sample */
prox_index = isl29028_find_prox_sleep_index(chip->prox_sampling_int,
chip->prox_sampling_frac);
if (prox_index < 0)
return prox_index;
msleep(isl29028_prox_data[prox_index].sleep_time);
return 0;
}
static int isl29028_set_als_scale(struct isl29028_chip *chip, int lux_scale)
{
struct device *dev = regmap_get_device(chip->regmap);
int val = (lux_scale == 2000) ? ISL29028_CONF_ALS_RANGE_HIGH_LUX :
ISL29028_CONF_ALS_RANGE_LOW_LUX;
int ret;
ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE,
ISL29028_CONF_ALS_RANGE_MASK, val);
if (ret < 0) {
dev_err(dev, "%s(): Error %d setting the ALS scale\n", __func__,
ret);
return ret;
}
chip->lux_scale = lux_scale;
return ret;
}
static int isl29028_set_als_ir_mode(struct isl29028_chip *chip,
enum isl29028_als_ir_mode mode)
{
int ret;
if (chip->als_ir_mode == mode)
return 0;
ret = isl29028_set_als_scale(chip, chip->lux_scale);
if (ret < 0)
return ret;
switch (mode) {
case ISL29028_MODE_ALS:
ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE,
ISL29028_CONF_ALS_IR_MODE_MASK,
ISL29028_CONF_ALS_IR_MODE_ALS);
if (ret < 0)
return ret;
ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE,
ISL29028_CONF_ALS_RANGE_MASK,
ISL29028_CONF_ALS_RANGE_HIGH_LUX);
break;
case ISL29028_MODE_IR:
ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE,
ISL29028_CONF_ALS_IR_MODE_MASK,
ISL29028_CONF_ALS_IR_MODE_IR);
break;
case ISL29028_MODE_NONE:
return regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE,
ISL29028_CONF_ALS_EN_MASK,
ISL29028_CONF_ALS_DIS);
}
if (ret < 0)
return ret;
/* Enable the ALS/IR */
ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE,
ISL29028_CONF_ALS_EN_MASK,
ISL29028_CONF_ALS_EN);
if (ret < 0)
return ret;
/* Need to wait for conversion time if ALS/IR mode enabled */
msleep(ISL29028_CONV_TIME_MS);
chip->als_ir_mode = mode;
return 0;
}
static int isl29028_read_als_ir(struct isl29028_chip *chip, int *als_ir)
{
struct device *dev = regmap_get_device(chip->regmap);
unsigned int lsb;
unsigned int msb;
int ret;
ret = regmap_read(chip->regmap, ISL29028_REG_ALSIR_L, &lsb);
if (ret < 0) {
dev_err(dev,
"%s(): Error %d reading register ALSIR_L\n",
__func__, ret);
return ret;
}
ret = regmap_read(chip->regmap, ISL29028_REG_ALSIR_U, &msb);
if (ret < 0) {
dev_err(dev,
"%s(): Error %d reading register ALSIR_U\n",
__func__, ret);
return ret;
}
*als_ir = ((msb & 0xF) << 8) | (lsb & 0xFF);
return 0;
}
static int isl29028_read_proxim(struct isl29028_chip *chip, int *prox)
{
struct device *dev = regmap_get_device(chip->regmap);
unsigned int data;
int ret;
if (!chip->enable_prox) {
ret = isl29028_enable_proximity(chip);
if (ret < 0)
return ret;
chip->enable_prox = true;
}
ret = regmap_read(chip->regmap, ISL29028_REG_PROX_DATA, &data);
if (ret < 0) {
dev_err(dev, "%s(): Error %d reading register PROX_DATA\n",
__func__, ret);
return ret;
}
*prox = data;
return 0;
}
static int isl29028_als_get(struct isl29028_chip *chip, int *als_data)
{
struct device *dev = regmap_get_device(chip->regmap);
int ret;
int als_ir_data;
ret = isl29028_set_als_ir_mode(chip, ISL29028_MODE_ALS);
if (ret < 0) {
dev_err(dev, "%s(): Error %d enabling ALS mode\n", __func__,
ret);
return ret;
}
ret = isl29028_read_als_ir(chip, &als_ir_data);
if (ret < 0)
return ret;
/*
* convert als data count to lux.
* if lux_scale = 125, lux = count * 0.031
* if lux_scale = 2000, lux = count * 0.49
*/
if (chip->lux_scale == 125)
als_ir_data = (als_ir_data * 31) / 1000;
else
als_ir_data = (als_ir_data * 49) / 100;
*als_data = als_ir_data;
return 0;
}
static int isl29028_ir_get(struct isl29028_chip *chip, int *ir_data)
{
struct device *dev = regmap_get_device(chip->regmap);
int ret;
ret = isl29028_set_als_ir_mode(chip, ISL29028_MODE_IR);
if (ret < 0) {
dev_err(dev, "%s(): Error %d enabling IR mode\n", __func__,
ret);
return ret;
}
return isl29028_read_als_ir(chip, ir_data);
}
static int isl29028_set_pm_runtime_busy(struct isl29028_chip *chip, bool on)
{
struct device *dev = regmap_get_device(chip->regmap);
int ret;
if (on) {
ret = pm_runtime_resume_and_get(dev);
} else {
pm_runtime_mark_last_busy(dev);
ret = pm_runtime_put_autosuspend(dev);
}
return ret;
}
/* Channel IO */
static int isl29028_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct isl29028_chip *chip = iio_priv(indio_dev);
struct device *dev = regmap_get_device(chip->regmap);
int ret;
ret = isl29028_set_pm_runtime_busy(chip, true);
if (ret < 0)
return ret;
mutex_lock(&chip->lock);
ret = -EINVAL;
switch (chan->type) {
case IIO_PROXIMITY:
if (mask != IIO_CHAN_INFO_SAMP_FREQ) {
dev_err(dev,
"%s(): proximity: Mask value 0x%08lx is not supported\n",
__func__, mask);
break;
}
if (val < 1 || val > 100) {
dev_err(dev,
"%s(): proximity: Sampling frequency %d is not in the range [1:100]\n",
__func__, val);
break;
}
ret = isl29028_set_proxim_sampling(chip, val, val2);
break;
case IIO_LIGHT:
if (mask != IIO_CHAN_INFO_SCALE) {
dev_err(dev,
"%s(): light: Mask value 0x%08lx is not supported\n",
__func__, mask);
break;
}
if (val != 125 && val != 2000) {
dev_err(dev,
"%s(): light: Lux scale %d is not in the set {125, 2000}\n",
__func__, val);
break;
}
ret = isl29028_set_als_scale(chip, val);
break;
default:
dev_err(dev, "%s(): Unsupported channel type %x\n",
__func__, chan->type);
break;
}
mutex_unlock(&chip->lock);
if (ret < 0)
return ret;
ret = isl29028_set_pm_runtime_busy(chip, false);
if (ret < 0)
return ret;
return ret;
}
static int isl29028_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct isl29028_chip *chip = iio_priv(indio_dev);
struct device *dev = regmap_get_device(chip->regmap);
int ret, pm_ret;
ret = isl29028_set_pm_runtime_busy(chip, true);
if (ret < 0)
return ret;
mutex_lock(&chip->lock);
ret = -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_LIGHT:
ret = isl29028_als_get(chip, val);
break;
case IIO_INTENSITY:
ret = isl29028_ir_get(chip, val);
break;
case IIO_PROXIMITY:
ret = isl29028_read_proxim(chip, val);
break;
default:
break;
}
if (ret < 0)
break;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
if (chan->type != IIO_PROXIMITY)
break;
*val = chip->prox_sampling_int;
*val2 = chip->prox_sampling_frac;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
if (chan->type != IIO_LIGHT)
break;
*val = chip->lux_scale;
ret = IIO_VAL_INT;
break;
default:
dev_err(dev, "%s(): mask value 0x%08lx is not supported\n",
__func__, mask);
break;
}
mutex_unlock(&chip->lock);
if (ret < 0)
return ret;
/**
* Preserve the ret variable if the call to
* isl29028_set_pm_runtime_busy() is successful so the reading
* (if applicable) is returned to user space.
*/
pm_ret = isl29028_set_pm_runtime_busy(chip, false);
if (pm_ret < 0)
return pm_ret;
return ret;
}
static IIO_CONST_ATTR(in_proximity_sampling_frequency_available,
"1.25 2.5 5 10 13.3 20 80 100");
static IIO_CONST_ATTR(in_illuminance_scale_available, "125 2000");
#define ISL29028_CONST_ATTR(name) (&iio_const_attr_##name.dev_attr.attr)
static struct attribute *isl29028_attributes[] = {
ISL29028_CONST_ATTR(in_proximity_sampling_frequency_available),
ISL29028_CONST_ATTR(in_illuminance_scale_available),
NULL,
};
static const struct attribute_group isl29108_group = {
.attrs = isl29028_attributes,
};
static const struct iio_chan_spec isl29028_channels[] = {
{
.type = IIO_LIGHT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_SCALE),
}, {
.type = IIO_INTENSITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
}, {
.type = IIO_PROXIMITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
}
};
static const struct iio_info isl29028_info = {
.attrs = &isl29108_group,
.read_raw = isl29028_read_raw,
.write_raw = isl29028_write_raw,
};
static int isl29028_clear_configure_reg(struct isl29028_chip *chip)
{
struct device *dev = regmap_get_device(chip->regmap);
int ret;
ret = regmap_write(chip->regmap, ISL29028_REG_CONFIGURE, 0x0);
if (ret < 0)
dev_err(dev, "%s(): Error %d clearing the CONFIGURE register\n",
__func__, ret);
chip->als_ir_mode = ISL29028_MODE_NONE;
chip->enable_prox = false;
return ret;
}
static bool isl29028_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case ISL29028_REG_INTERRUPT:
case ISL29028_REG_PROX_DATA:
case ISL29028_REG_ALSIR_L:
case ISL29028_REG_ALSIR_U:
return true;
default:
return false;
}
}
static const struct regmap_config isl29028_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_reg = isl29028_is_volatile_reg,
.max_register = ISL29028_NUM_REGS - 1,
.num_reg_defaults_raw = ISL29028_NUM_REGS,
.cache_type = REGCACHE_RBTREE,
};
static int isl29028_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct isl29028_chip *chip;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip));
if (!indio_dev)
return -ENOMEM;
chip = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
mutex_init(&chip->lock);
chip->regmap = devm_regmap_init_i2c(client, &isl29028_regmap_config);
if (IS_ERR(chip->regmap)) {
ret = PTR_ERR(chip->regmap);
dev_err(&client->dev, "%s: Error %d initializing regmap\n",
__func__, ret);
return ret;
}
chip->enable_prox = false;
chip->prox_sampling_int = 20;
chip->prox_sampling_frac = 0;
chip->lux_scale = 2000;
ret = regmap_write(chip->regmap, ISL29028_REG_TEST1_MODE, 0x0);
if (ret < 0) {
dev_err(&client->dev,
"%s(): Error %d writing to TEST1_MODE register\n",
__func__, ret);
return ret;
}
ret = regmap_write(chip->regmap, ISL29028_REG_TEST2_MODE, 0x0);
if (ret < 0) {
dev_err(&client->dev,
"%s(): Error %d writing to TEST2_MODE register\n",
__func__, ret);
return ret;
}
ret = isl29028_clear_configure_reg(chip);
if (ret < 0)
return ret;
indio_dev->info = &isl29028_info;
indio_dev->channels = isl29028_channels;
indio_dev->num_channels = ARRAY_SIZE(isl29028_channels);
indio_dev->name = id->name;
indio_dev->modes = INDIO_DIRECT_MODE;
pm_runtime_enable(&client->dev);
pm_runtime_set_autosuspend_delay(&client->dev,
ISL29028_POWER_OFF_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
ret = devm_iio_device_register(indio_dev->dev.parent, indio_dev);
if (ret < 0) {
dev_err(&client->dev,
"%s(): iio registration failed with error %d\n",
__func__, ret);
return ret;
}
return 0;
}
static int isl29028_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct isl29028_chip *chip = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
return isl29028_clear_configure_reg(chip);
}
static int __maybe_unused isl29028_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct isl29028_chip *chip = iio_priv(indio_dev);
int ret;
mutex_lock(&chip->lock);
ret = isl29028_clear_configure_reg(chip);
mutex_unlock(&chip->lock);
return ret;
}
static int __maybe_unused isl29028_resume(struct device *dev)
{
/**
* The specific component (ALS/IR or proximity) will enable itself as
* needed the next time that the user requests a reading. This is done
* above in isl29028_set_als_ir_mode() and isl29028_enable_proximity().
*/
return 0;
}
static const struct dev_pm_ops isl29028_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(isl29028_suspend, isl29028_resume, NULL)
};
static const struct i2c_device_id isl29028_id[] = {
{"isl29028", 0},
{"isl29030", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, isl29028_id);
static const struct of_device_id isl29028_of_match[] = {
{ .compatible = "isl,isl29028", }, /* for backward compat., don't use */
{ .compatible = "isil,isl29028", },
{ .compatible = "isil,isl29030", },
{ },
};
MODULE_DEVICE_TABLE(of, isl29028_of_match);
static struct i2c_driver isl29028_driver = {
.driver = {
.name = "isl29028",
.pm = &isl29028_pm_ops,
.of_match_table = isl29028_of_match,
},
.probe = isl29028_probe,
.remove = isl29028_remove,
.id_table = isl29028_id,
};
module_i2c_driver(isl29028_driver);
MODULE_DESCRIPTION("ISL29028 Ambient Light and Proximity Sensor driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");