1436 строки
35 KiB
C
1436 строки
35 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
//
|
|
// Copyright 2013 Freescale Semiconductor, Inc.
|
|
// Copyright 2020 NXP
|
|
//
|
|
// Freescale DSPI driver
|
|
// This file contains a driver for the Freescale DSPI
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi-fsl-dspi.h>
|
|
|
|
#define DRIVER_NAME "fsl-dspi"
|
|
|
|
#define SPI_MCR 0x00
|
|
#define SPI_MCR_MASTER BIT(31)
|
|
#define SPI_MCR_PCSIS(x) ((x) << 16)
|
|
#define SPI_MCR_CLR_TXF BIT(11)
|
|
#define SPI_MCR_CLR_RXF BIT(10)
|
|
#define SPI_MCR_XSPI BIT(3)
|
|
#define SPI_MCR_DIS_TXF BIT(13)
|
|
#define SPI_MCR_DIS_RXF BIT(12)
|
|
#define SPI_MCR_HALT BIT(0)
|
|
|
|
#define SPI_TCR 0x08
|
|
#define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
|
|
|
|
#define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
|
|
#define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
|
|
#define SPI_CTAR_CPOL BIT(26)
|
|
#define SPI_CTAR_CPHA BIT(25)
|
|
#define SPI_CTAR_LSBFE BIT(24)
|
|
#define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
|
|
#define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
|
|
#define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
|
|
#define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
|
|
#define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
|
|
#define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
|
|
#define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
|
|
#define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
|
|
#define SPI_CTAR_SCALE_BITS 0xf
|
|
|
|
#define SPI_CTAR0_SLAVE 0x0c
|
|
|
|
#define SPI_SR 0x2c
|
|
#define SPI_SR_TCFQF BIT(31)
|
|
#define SPI_SR_TFUF BIT(27)
|
|
#define SPI_SR_TFFF BIT(25)
|
|
#define SPI_SR_CMDTCF BIT(23)
|
|
#define SPI_SR_SPEF BIT(21)
|
|
#define SPI_SR_RFOF BIT(19)
|
|
#define SPI_SR_TFIWF BIT(18)
|
|
#define SPI_SR_RFDF BIT(17)
|
|
#define SPI_SR_CMDFFF BIT(16)
|
|
#define SPI_SR_CLEAR (SPI_SR_TCFQF | \
|
|
SPI_SR_TFUF | SPI_SR_TFFF | \
|
|
SPI_SR_CMDTCF | SPI_SR_SPEF | \
|
|
SPI_SR_RFOF | SPI_SR_TFIWF | \
|
|
SPI_SR_RFDF | SPI_SR_CMDFFF)
|
|
|
|
#define SPI_RSER_TFFFE BIT(25)
|
|
#define SPI_RSER_TFFFD BIT(24)
|
|
#define SPI_RSER_RFDFE BIT(17)
|
|
#define SPI_RSER_RFDFD BIT(16)
|
|
|
|
#define SPI_RSER 0x30
|
|
#define SPI_RSER_TCFQE BIT(31)
|
|
#define SPI_RSER_CMDTCFE BIT(23)
|
|
|
|
#define SPI_PUSHR 0x34
|
|
#define SPI_PUSHR_CMD_CONT BIT(15)
|
|
#define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
|
|
#define SPI_PUSHR_CMD_EOQ BIT(11)
|
|
#define SPI_PUSHR_CMD_CTCNT BIT(10)
|
|
#define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
|
|
|
|
#define SPI_PUSHR_SLAVE 0x34
|
|
|
|
#define SPI_POPR 0x38
|
|
|
|
#define SPI_TXFR0 0x3c
|
|
#define SPI_TXFR1 0x40
|
|
#define SPI_TXFR2 0x44
|
|
#define SPI_TXFR3 0x48
|
|
#define SPI_RXFR0 0x7c
|
|
#define SPI_RXFR1 0x80
|
|
#define SPI_RXFR2 0x84
|
|
#define SPI_RXFR3 0x88
|
|
|
|
#define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
|
|
#define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
|
|
#define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
|
|
|
|
#define SPI_SREX 0x13c
|
|
|
|
#define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
|
|
#define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
|
|
|
|
#define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
|
|
|
|
struct chip_data {
|
|
u32 ctar_val;
|
|
};
|
|
|
|
enum dspi_trans_mode {
|
|
DSPI_XSPI_MODE,
|
|
DSPI_DMA_MODE,
|
|
};
|
|
|
|
struct fsl_dspi_devtype_data {
|
|
enum dspi_trans_mode trans_mode;
|
|
u8 max_clock_factor;
|
|
int fifo_size;
|
|
};
|
|
|
|
enum {
|
|
LS1021A,
|
|
LS1012A,
|
|
LS1028A,
|
|
LS1043A,
|
|
LS1046A,
|
|
LS2080A,
|
|
LS2085A,
|
|
LX2160A,
|
|
MCF5441X,
|
|
VF610,
|
|
};
|
|
|
|
static const struct fsl_dspi_devtype_data devtype_data[] = {
|
|
[VF610] = {
|
|
.trans_mode = DSPI_DMA_MODE,
|
|
.max_clock_factor = 2,
|
|
.fifo_size = 4,
|
|
},
|
|
[LS1021A] = {
|
|
/* Has A-011218 DMA erratum */
|
|
.trans_mode = DSPI_XSPI_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 4,
|
|
},
|
|
[LS1012A] = {
|
|
/* Has A-011218 DMA erratum */
|
|
.trans_mode = DSPI_XSPI_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 16,
|
|
},
|
|
[LS1028A] = {
|
|
.trans_mode = DSPI_XSPI_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 4,
|
|
},
|
|
[LS1043A] = {
|
|
/* Has A-011218 DMA erratum */
|
|
.trans_mode = DSPI_XSPI_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 16,
|
|
},
|
|
[LS1046A] = {
|
|
/* Has A-011218 DMA erratum */
|
|
.trans_mode = DSPI_XSPI_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 16,
|
|
},
|
|
[LS2080A] = {
|
|
.trans_mode = DSPI_XSPI_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 4,
|
|
},
|
|
[LS2085A] = {
|
|
.trans_mode = DSPI_XSPI_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 4,
|
|
},
|
|
[LX2160A] = {
|
|
.trans_mode = DSPI_XSPI_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 4,
|
|
},
|
|
[MCF5441X] = {
|
|
.trans_mode = DSPI_DMA_MODE,
|
|
.max_clock_factor = 8,
|
|
.fifo_size = 16,
|
|
},
|
|
};
|
|
|
|
struct fsl_dspi_dma {
|
|
u32 *tx_dma_buf;
|
|
struct dma_chan *chan_tx;
|
|
dma_addr_t tx_dma_phys;
|
|
struct completion cmd_tx_complete;
|
|
struct dma_async_tx_descriptor *tx_desc;
|
|
|
|
u32 *rx_dma_buf;
|
|
struct dma_chan *chan_rx;
|
|
dma_addr_t rx_dma_phys;
|
|
struct completion cmd_rx_complete;
|
|
struct dma_async_tx_descriptor *rx_desc;
|
|
};
|
|
|
|
struct fsl_dspi {
|
|
struct spi_controller *ctlr;
|
|
struct platform_device *pdev;
|
|
|
|
struct regmap *regmap;
|
|
struct regmap *regmap_pushr;
|
|
int irq;
|
|
struct clk *clk;
|
|
|
|
struct spi_transfer *cur_transfer;
|
|
struct spi_message *cur_msg;
|
|
struct chip_data *cur_chip;
|
|
size_t progress;
|
|
size_t len;
|
|
const void *tx;
|
|
void *rx;
|
|
u16 tx_cmd;
|
|
const struct fsl_dspi_devtype_data *devtype_data;
|
|
|
|
struct completion xfer_done;
|
|
|
|
struct fsl_dspi_dma *dma;
|
|
|
|
int oper_word_size;
|
|
int oper_bits_per_word;
|
|
|
|
int words_in_flight;
|
|
|
|
/*
|
|
* Offsets for CMD and TXDATA within SPI_PUSHR when accessed
|
|
* individually (in XSPI mode)
|
|
*/
|
|
int pushr_cmd;
|
|
int pushr_tx;
|
|
|
|
void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
|
|
void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
|
|
};
|
|
|
|
static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
|
|
{
|
|
switch (dspi->oper_word_size) {
|
|
case 1:
|
|
*txdata = *(u8 *)dspi->tx;
|
|
break;
|
|
case 2:
|
|
*txdata = *(u16 *)dspi->tx;
|
|
break;
|
|
case 4:
|
|
*txdata = *(u32 *)dspi->tx;
|
|
break;
|
|
}
|
|
dspi->tx += dspi->oper_word_size;
|
|
}
|
|
|
|
static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
|
|
{
|
|
switch (dspi->oper_word_size) {
|
|
case 1:
|
|
*(u8 *)dspi->rx = rxdata;
|
|
break;
|
|
case 2:
|
|
*(u16 *)dspi->rx = rxdata;
|
|
break;
|
|
case 4:
|
|
*(u32 *)dspi->rx = rxdata;
|
|
break;
|
|
}
|
|
dspi->rx += dspi->oper_word_size;
|
|
}
|
|
|
|
static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
|
|
{
|
|
*txdata = cpu_to_be32(*(u32 *)dspi->tx);
|
|
dspi->tx += sizeof(u32);
|
|
}
|
|
|
|
static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
|
|
{
|
|
*(u32 *)dspi->rx = be32_to_cpu(rxdata);
|
|
dspi->rx += sizeof(u32);
|
|
}
|
|
|
|
static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
|
|
{
|
|
*txdata = cpu_to_be16(*(u16 *)dspi->tx);
|
|
dspi->tx += sizeof(u16);
|
|
}
|
|
|
|
static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
|
|
{
|
|
*(u16 *)dspi->rx = be16_to_cpu(rxdata);
|
|
dspi->rx += sizeof(u16);
|
|
}
|
|
|
|
static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
|
|
{
|
|
u16 hi = *(u16 *)dspi->tx;
|
|
u16 lo = *(u16 *)(dspi->tx + 2);
|
|
|
|
*txdata = (u32)hi << 16 | lo;
|
|
dspi->tx += sizeof(u32);
|
|
}
|
|
|
|
static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
|
|
{
|
|
u16 hi = rxdata & 0xffff;
|
|
u16 lo = rxdata >> 16;
|
|
|
|
*(u16 *)dspi->rx = lo;
|
|
*(u16 *)(dspi->rx + 2) = hi;
|
|
dspi->rx += sizeof(u32);
|
|
}
|
|
|
|
/*
|
|
* Pop one word from the TX buffer for pushing into the
|
|
* PUSHR register (TX FIFO)
|
|
*/
|
|
static u32 dspi_pop_tx(struct fsl_dspi *dspi)
|
|
{
|
|
u32 txdata = 0;
|
|
|
|
if (dspi->tx)
|
|
dspi->host_to_dev(dspi, &txdata);
|
|
dspi->len -= dspi->oper_word_size;
|
|
return txdata;
|
|
}
|
|
|
|
/* Prepare one TX FIFO entry (txdata plus cmd) */
|
|
static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
|
|
{
|
|
u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
|
|
|
|
if (spi_controller_is_slave(dspi->ctlr))
|
|
return data;
|
|
|
|
if (dspi->len > 0)
|
|
cmd |= SPI_PUSHR_CMD_CONT;
|
|
return cmd << 16 | data;
|
|
}
|
|
|
|
/* Push one word to the RX buffer from the POPR register (RX FIFO) */
|
|
static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
|
|
{
|
|
if (!dspi->rx)
|
|
return;
|
|
dspi->dev_to_host(dspi, rxdata);
|
|
}
|
|
|
|
static void dspi_tx_dma_callback(void *arg)
|
|
{
|
|
struct fsl_dspi *dspi = arg;
|
|
struct fsl_dspi_dma *dma = dspi->dma;
|
|
|
|
complete(&dma->cmd_tx_complete);
|
|
}
|
|
|
|
static void dspi_rx_dma_callback(void *arg)
|
|
{
|
|
struct fsl_dspi *dspi = arg;
|
|
struct fsl_dspi_dma *dma = dspi->dma;
|
|
int i;
|
|
|
|
if (dspi->rx) {
|
|
for (i = 0; i < dspi->words_in_flight; i++)
|
|
dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
|
|
}
|
|
|
|
complete(&dma->cmd_rx_complete);
|
|
}
|
|
|
|
static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
|
|
{
|
|
struct device *dev = &dspi->pdev->dev;
|
|
struct fsl_dspi_dma *dma = dspi->dma;
|
|
int time_left;
|
|
int i;
|
|
|
|
for (i = 0; i < dspi->words_in_flight; i++)
|
|
dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
|
|
|
|
dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
|
|
dma->tx_dma_phys,
|
|
dspi->words_in_flight *
|
|
DMA_SLAVE_BUSWIDTH_4_BYTES,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!dma->tx_desc) {
|
|
dev_err(dev, "Not able to get desc for DMA xfer\n");
|
|
return -EIO;
|
|
}
|
|
|
|
dma->tx_desc->callback = dspi_tx_dma_callback;
|
|
dma->tx_desc->callback_param = dspi;
|
|
if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
|
|
dev_err(dev, "DMA submit failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
|
|
dma->rx_dma_phys,
|
|
dspi->words_in_flight *
|
|
DMA_SLAVE_BUSWIDTH_4_BYTES,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!dma->rx_desc) {
|
|
dev_err(dev, "Not able to get desc for DMA xfer\n");
|
|
return -EIO;
|
|
}
|
|
|
|
dma->rx_desc->callback = dspi_rx_dma_callback;
|
|
dma->rx_desc->callback_param = dspi;
|
|
if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
|
|
dev_err(dev, "DMA submit failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
reinit_completion(&dspi->dma->cmd_rx_complete);
|
|
reinit_completion(&dspi->dma->cmd_tx_complete);
|
|
|
|
dma_async_issue_pending(dma->chan_rx);
|
|
dma_async_issue_pending(dma->chan_tx);
|
|
|
|
if (spi_controller_is_slave(dspi->ctlr)) {
|
|
wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
|
|
return 0;
|
|
}
|
|
|
|
time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
|
|
DMA_COMPLETION_TIMEOUT);
|
|
if (time_left == 0) {
|
|
dev_err(dev, "DMA tx timeout\n");
|
|
dmaengine_terminate_all(dma->chan_tx);
|
|
dmaengine_terminate_all(dma->chan_rx);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
|
|
DMA_COMPLETION_TIMEOUT);
|
|
if (time_left == 0) {
|
|
dev_err(dev, "DMA rx timeout\n");
|
|
dmaengine_terminate_all(dma->chan_tx);
|
|
dmaengine_terminate_all(dma->chan_rx);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dspi_setup_accel(struct fsl_dspi *dspi);
|
|
|
|
static int dspi_dma_xfer(struct fsl_dspi *dspi)
|
|
{
|
|
struct spi_message *message = dspi->cur_msg;
|
|
struct device *dev = &dspi->pdev->dev;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* dspi->len gets decremented by dspi_pop_tx_pushr in
|
|
* dspi_next_xfer_dma_submit
|
|
*/
|
|
while (dspi->len) {
|
|
/* Figure out operational bits-per-word for this chunk */
|
|
dspi_setup_accel(dspi);
|
|
|
|
dspi->words_in_flight = dspi->len / dspi->oper_word_size;
|
|
if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
|
|
dspi->words_in_flight = dspi->devtype_data->fifo_size;
|
|
|
|
message->actual_length += dspi->words_in_flight *
|
|
dspi->oper_word_size;
|
|
|
|
ret = dspi_next_xfer_dma_submit(dspi);
|
|
if (ret) {
|
|
dev_err(dev, "DMA transfer failed\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
|
|
{
|
|
int dma_bufsize = dspi->devtype_data->fifo_size * 2;
|
|
struct device *dev = &dspi->pdev->dev;
|
|
struct dma_slave_config cfg;
|
|
struct fsl_dspi_dma *dma;
|
|
int ret;
|
|
|
|
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
|
|
if (!dma)
|
|
return -ENOMEM;
|
|
|
|
dma->chan_rx = dma_request_chan(dev, "rx");
|
|
if (IS_ERR(dma->chan_rx)) {
|
|
dev_err(dev, "rx dma channel not available\n");
|
|
ret = PTR_ERR(dma->chan_rx);
|
|
return ret;
|
|
}
|
|
|
|
dma->chan_tx = dma_request_chan(dev, "tx");
|
|
if (IS_ERR(dma->chan_tx)) {
|
|
dev_err(dev, "tx dma channel not available\n");
|
|
ret = PTR_ERR(dma->chan_tx);
|
|
goto err_tx_channel;
|
|
}
|
|
|
|
dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
|
|
dma_bufsize, &dma->tx_dma_phys,
|
|
GFP_KERNEL);
|
|
if (!dma->tx_dma_buf) {
|
|
ret = -ENOMEM;
|
|
goto err_tx_dma_buf;
|
|
}
|
|
|
|
dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
|
|
dma_bufsize, &dma->rx_dma_phys,
|
|
GFP_KERNEL);
|
|
if (!dma->rx_dma_buf) {
|
|
ret = -ENOMEM;
|
|
goto err_rx_dma_buf;
|
|
}
|
|
|
|
cfg.src_addr = phy_addr + SPI_POPR;
|
|
cfg.dst_addr = phy_addr + SPI_PUSHR;
|
|
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
cfg.src_maxburst = 1;
|
|
cfg.dst_maxburst = 1;
|
|
|
|
cfg.direction = DMA_DEV_TO_MEM;
|
|
ret = dmaengine_slave_config(dma->chan_rx, &cfg);
|
|
if (ret) {
|
|
dev_err(dev, "can't configure rx dma channel\n");
|
|
ret = -EINVAL;
|
|
goto err_slave_config;
|
|
}
|
|
|
|
cfg.direction = DMA_MEM_TO_DEV;
|
|
ret = dmaengine_slave_config(dma->chan_tx, &cfg);
|
|
if (ret) {
|
|
dev_err(dev, "can't configure tx dma channel\n");
|
|
ret = -EINVAL;
|
|
goto err_slave_config;
|
|
}
|
|
|
|
dspi->dma = dma;
|
|
init_completion(&dma->cmd_tx_complete);
|
|
init_completion(&dma->cmd_rx_complete);
|
|
|
|
return 0;
|
|
|
|
err_slave_config:
|
|
dma_free_coherent(dma->chan_rx->device->dev,
|
|
dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
|
|
err_rx_dma_buf:
|
|
dma_free_coherent(dma->chan_tx->device->dev,
|
|
dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
|
|
err_tx_dma_buf:
|
|
dma_release_channel(dma->chan_tx);
|
|
err_tx_channel:
|
|
dma_release_channel(dma->chan_rx);
|
|
|
|
devm_kfree(dev, dma);
|
|
dspi->dma = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dspi_release_dma(struct fsl_dspi *dspi)
|
|
{
|
|
int dma_bufsize = dspi->devtype_data->fifo_size * 2;
|
|
struct fsl_dspi_dma *dma = dspi->dma;
|
|
|
|
if (!dma)
|
|
return;
|
|
|
|
if (dma->chan_tx) {
|
|
dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
|
|
dma->tx_dma_buf, dma->tx_dma_phys);
|
|
dma_release_channel(dma->chan_tx);
|
|
}
|
|
|
|
if (dma->chan_rx) {
|
|
dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
|
|
dma->rx_dma_buf, dma->rx_dma_phys);
|
|
dma_release_channel(dma->chan_rx);
|
|
}
|
|
}
|
|
|
|
static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
|
|
unsigned long clkrate)
|
|
{
|
|
/* Valid baud rate pre-scaler values */
|
|
int pbr_tbl[4] = {2, 3, 5, 7};
|
|
int brs[16] = { 2, 4, 6, 8,
|
|
16, 32, 64, 128,
|
|
256, 512, 1024, 2048,
|
|
4096, 8192, 16384, 32768 };
|
|
int scale_needed, scale, minscale = INT_MAX;
|
|
int i, j;
|
|
|
|
scale_needed = clkrate / speed_hz;
|
|
if (clkrate % speed_hz)
|
|
scale_needed++;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(brs); i++)
|
|
for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
|
|
scale = brs[i] * pbr_tbl[j];
|
|
if (scale >= scale_needed) {
|
|
if (scale < minscale) {
|
|
minscale = scale;
|
|
*br = i;
|
|
*pbr = j;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (minscale == INT_MAX) {
|
|
pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
|
|
speed_hz, clkrate);
|
|
*pbr = ARRAY_SIZE(pbr_tbl) - 1;
|
|
*br = ARRAY_SIZE(brs) - 1;
|
|
}
|
|
}
|
|
|
|
static void ns_delay_scale(char *psc, char *sc, int delay_ns,
|
|
unsigned long clkrate)
|
|
{
|
|
int scale_needed, scale, minscale = INT_MAX;
|
|
int pscale_tbl[4] = {1, 3, 5, 7};
|
|
u32 remainder;
|
|
int i, j;
|
|
|
|
scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
|
|
&remainder);
|
|
if (remainder)
|
|
scale_needed++;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
|
|
for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
|
|
scale = pscale_tbl[i] * (2 << j);
|
|
if (scale >= scale_needed) {
|
|
if (scale < minscale) {
|
|
minscale = scale;
|
|
*psc = i;
|
|
*sc = j;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (minscale == INT_MAX) {
|
|
pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
|
|
delay_ns, clkrate);
|
|
*psc = ARRAY_SIZE(pscale_tbl) - 1;
|
|
*sc = SPI_CTAR_SCALE_BITS;
|
|
}
|
|
}
|
|
|
|
static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
|
|
{
|
|
/*
|
|
* The only time when the PCS doesn't need continuation after this word
|
|
* is when it's last. We need to look ahead, because we actually call
|
|
* dspi_pop_tx (the function that decrements dspi->len) _after_
|
|
* dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
|
|
* word is enough. If there's more to transmit than that,
|
|
* dspi_xspi_write will know to split the FIFO writes in 2, and
|
|
* generate a new PUSHR command with the final word that will have PCS
|
|
* deasserted (not continued) here.
|
|
*/
|
|
if (dspi->len > dspi->oper_word_size)
|
|
cmd |= SPI_PUSHR_CMD_CONT;
|
|
regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
|
|
}
|
|
|
|
static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
|
|
{
|
|
regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
|
|
}
|
|
|
|
static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
|
|
{
|
|
int num_bytes = num_words * dspi->oper_word_size;
|
|
u16 tx_cmd = dspi->tx_cmd;
|
|
|
|
/*
|
|
* If the PCS needs to de-assert (i.e. we're at the end of the buffer
|
|
* and cs_change does not want the PCS to stay on), then we need a new
|
|
* PUSHR command, since this one (for the body of the buffer)
|
|
* necessarily has the CONT bit set.
|
|
* So send one word less during this go, to force a split and a command
|
|
* with a single word next time, when CONT will be unset.
|
|
*/
|
|
if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
|
|
tx_cmd |= SPI_PUSHR_CMD_EOQ;
|
|
|
|
/* Update CTARE */
|
|
regmap_write(dspi->regmap, SPI_CTARE(0),
|
|
SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
|
|
SPI_CTARE_DTCP(num_words));
|
|
|
|
/*
|
|
* Write the CMD FIFO entry first, and then the two
|
|
* corresponding TX FIFO entries (or one...).
|
|
*/
|
|
dspi_pushr_cmd_write(dspi, tx_cmd);
|
|
|
|
/* Fill TX FIFO with as many transfers as possible */
|
|
while (num_words--) {
|
|
u32 data = dspi_pop_tx(dspi);
|
|
|
|
dspi_pushr_txdata_write(dspi, data & 0xFFFF);
|
|
if (dspi->oper_bits_per_word > 16)
|
|
dspi_pushr_txdata_write(dspi, data >> 16);
|
|
}
|
|
}
|
|
|
|
static u32 dspi_popr_read(struct fsl_dspi *dspi)
|
|
{
|
|
u32 rxdata = 0;
|
|
|
|
regmap_read(dspi->regmap, SPI_POPR, &rxdata);
|
|
return rxdata;
|
|
}
|
|
|
|
static void dspi_fifo_read(struct fsl_dspi *dspi)
|
|
{
|
|
int num_fifo_entries = dspi->words_in_flight;
|
|
|
|
/* Read one FIFO entry and push to rx buffer */
|
|
while (num_fifo_entries--)
|
|
dspi_push_rx(dspi, dspi_popr_read(dspi));
|
|
}
|
|
|
|
static void dspi_setup_accel(struct fsl_dspi *dspi)
|
|
{
|
|
struct spi_transfer *xfer = dspi->cur_transfer;
|
|
bool odd = !!(dspi->len & 1);
|
|
|
|
/* No accel for frames not multiple of 8 bits at the moment */
|
|
if (xfer->bits_per_word % 8)
|
|
goto no_accel;
|
|
|
|
if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
|
|
dspi->oper_bits_per_word = 16;
|
|
} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
|
|
dspi->oper_bits_per_word = 8;
|
|
} else {
|
|
/* Start off with maximum supported by hardware */
|
|
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
|
|
dspi->oper_bits_per_word = 32;
|
|
else
|
|
dspi->oper_bits_per_word = 16;
|
|
|
|
/*
|
|
* And go down only if the buffer can't be sent with
|
|
* words this big
|
|
*/
|
|
do {
|
|
if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
|
|
break;
|
|
|
|
dspi->oper_bits_per_word /= 2;
|
|
} while (dspi->oper_bits_per_word > 8);
|
|
}
|
|
|
|
if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
|
|
dspi->dev_to_host = dspi_8on32_dev_to_host;
|
|
dspi->host_to_dev = dspi_8on32_host_to_dev;
|
|
} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
|
|
dspi->dev_to_host = dspi_8on16_dev_to_host;
|
|
dspi->host_to_dev = dspi_8on16_host_to_dev;
|
|
} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
|
|
dspi->dev_to_host = dspi_16on32_dev_to_host;
|
|
dspi->host_to_dev = dspi_16on32_host_to_dev;
|
|
} else {
|
|
no_accel:
|
|
dspi->dev_to_host = dspi_native_dev_to_host;
|
|
dspi->host_to_dev = dspi_native_host_to_dev;
|
|
dspi->oper_bits_per_word = xfer->bits_per_word;
|
|
}
|
|
|
|
dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
|
|
|
|
/*
|
|
* Update CTAR here (code is common for XSPI and DMA modes).
|
|
* We will update CTARE in the portion specific to XSPI, when we
|
|
* also know the preload value (DTCP).
|
|
*/
|
|
regmap_write(dspi->regmap, SPI_CTAR(0),
|
|
dspi->cur_chip->ctar_val |
|
|
SPI_FRAME_BITS(dspi->oper_bits_per_word));
|
|
}
|
|
|
|
static void dspi_fifo_write(struct fsl_dspi *dspi)
|
|
{
|
|
int num_fifo_entries = dspi->devtype_data->fifo_size;
|
|
struct spi_transfer *xfer = dspi->cur_transfer;
|
|
struct spi_message *msg = dspi->cur_msg;
|
|
int num_words, num_bytes;
|
|
|
|
dspi_setup_accel(dspi);
|
|
|
|
/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
|
|
if (dspi->oper_word_size == 4)
|
|
num_fifo_entries /= 2;
|
|
|
|
/*
|
|
* Integer division intentionally trims off odd (or non-multiple of 4)
|
|
* numbers of bytes at the end of the buffer, which will be sent next
|
|
* time using a smaller oper_word_size.
|
|
*/
|
|
num_words = dspi->len / dspi->oper_word_size;
|
|
if (num_words > num_fifo_entries)
|
|
num_words = num_fifo_entries;
|
|
|
|
/* Update total number of bytes that were transferred */
|
|
num_bytes = num_words * dspi->oper_word_size;
|
|
msg->actual_length += num_bytes;
|
|
dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
|
|
|
|
/*
|
|
* Update shared variable for use in the next interrupt (both in
|
|
* dspi_fifo_read and in dspi_fifo_write).
|
|
*/
|
|
dspi->words_in_flight = num_words;
|
|
|
|
spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
|
|
|
|
dspi_xspi_fifo_write(dspi, num_words);
|
|
/*
|
|
* Everything after this point is in a potential race with the next
|
|
* interrupt, so we must never use dspi->words_in_flight again since it
|
|
* might already be modified by the next dspi_fifo_write.
|
|
*/
|
|
|
|
spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
|
|
dspi->progress, !dspi->irq);
|
|
}
|
|
|
|
static int dspi_rxtx(struct fsl_dspi *dspi)
|
|
{
|
|
dspi_fifo_read(dspi);
|
|
|
|
if (!dspi->len)
|
|
/* Success! */
|
|
return 0;
|
|
|
|
dspi_fifo_write(dspi);
|
|
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
static int dspi_poll(struct fsl_dspi *dspi)
|
|
{
|
|
int tries = 1000;
|
|
u32 spi_sr;
|
|
|
|
do {
|
|
regmap_read(dspi->regmap, SPI_SR, &spi_sr);
|
|
regmap_write(dspi->regmap, SPI_SR, spi_sr);
|
|
|
|
if (spi_sr & SPI_SR_CMDTCF)
|
|
break;
|
|
} while (--tries);
|
|
|
|
if (!tries)
|
|
return -ETIMEDOUT;
|
|
|
|
return dspi_rxtx(dspi);
|
|
}
|
|
|
|
static irqreturn_t dspi_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
|
|
u32 spi_sr;
|
|
|
|
regmap_read(dspi->regmap, SPI_SR, &spi_sr);
|
|
regmap_write(dspi->regmap, SPI_SR, spi_sr);
|
|
|
|
if (!(spi_sr & SPI_SR_CMDTCF))
|
|
return IRQ_NONE;
|
|
|
|
if (dspi_rxtx(dspi) == 0)
|
|
complete(&dspi->xfer_done);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int dspi_transfer_one_message(struct spi_controller *ctlr,
|
|
struct spi_message *message)
|
|
{
|
|
struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
|
|
struct spi_device *spi = message->spi;
|
|
struct spi_transfer *transfer;
|
|
int status = 0;
|
|
|
|
message->actual_length = 0;
|
|
|
|
list_for_each_entry(transfer, &message->transfers, transfer_list) {
|
|
dspi->cur_transfer = transfer;
|
|
dspi->cur_msg = message;
|
|
dspi->cur_chip = spi_get_ctldata(spi);
|
|
/* Prepare command word for CMD FIFO */
|
|
dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
|
|
SPI_PUSHR_CMD_PCS(spi->chip_select);
|
|
if (list_is_last(&dspi->cur_transfer->transfer_list,
|
|
&dspi->cur_msg->transfers)) {
|
|
/* Leave PCS activated after last transfer when
|
|
* cs_change is set.
|
|
*/
|
|
if (transfer->cs_change)
|
|
dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
|
|
} else {
|
|
/* Keep PCS active between transfers in same message
|
|
* when cs_change is not set, and de-activate PCS
|
|
* between transfers in the same message when
|
|
* cs_change is set.
|
|
*/
|
|
if (!transfer->cs_change)
|
|
dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
|
|
}
|
|
|
|
dspi->tx = transfer->tx_buf;
|
|
dspi->rx = transfer->rx_buf;
|
|
dspi->len = transfer->len;
|
|
dspi->progress = 0;
|
|
|
|
regmap_update_bits(dspi->regmap, SPI_MCR,
|
|
SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
|
|
SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
|
|
|
|
spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
|
|
dspi->progress, !dspi->irq);
|
|
|
|
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
|
|
status = dspi_dma_xfer(dspi);
|
|
} else {
|
|
dspi_fifo_write(dspi);
|
|
|
|
if (dspi->irq) {
|
|
wait_for_completion(&dspi->xfer_done);
|
|
reinit_completion(&dspi->xfer_done);
|
|
} else {
|
|
do {
|
|
status = dspi_poll(dspi);
|
|
} while (status == -EINPROGRESS);
|
|
}
|
|
}
|
|
if (status)
|
|
break;
|
|
|
|
spi_transfer_delay_exec(transfer);
|
|
}
|
|
|
|
message->status = status;
|
|
spi_finalize_current_message(ctlr);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int dspi_setup(struct spi_device *spi)
|
|
{
|
|
struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
|
|
unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
|
|
u32 cs_sck_delay = 0, sck_cs_delay = 0;
|
|
struct fsl_dspi_platform_data *pdata;
|
|
unsigned char pasc = 0, asc = 0;
|
|
struct chip_data *chip;
|
|
unsigned long clkrate;
|
|
|
|
/* Only alloc on first setup */
|
|
chip = spi_get_ctldata(spi);
|
|
if (chip == NULL) {
|
|
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
|
|
if (!chip)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pdata = dev_get_platdata(&dspi->pdev->dev);
|
|
|
|
if (!pdata) {
|
|
of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
|
|
&cs_sck_delay);
|
|
|
|
of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
|
|
&sck_cs_delay);
|
|
} else {
|
|
cs_sck_delay = pdata->cs_sck_delay;
|
|
sck_cs_delay = pdata->sck_cs_delay;
|
|
}
|
|
|
|
clkrate = clk_get_rate(dspi->clk);
|
|
hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
|
|
|
|
/* Set PCS to SCK delay scale values */
|
|
ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
|
|
|
|
/* Set After SCK delay scale values */
|
|
ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
|
|
|
|
chip->ctar_val = 0;
|
|
if (spi->mode & SPI_CPOL)
|
|
chip->ctar_val |= SPI_CTAR_CPOL;
|
|
if (spi->mode & SPI_CPHA)
|
|
chip->ctar_val |= SPI_CTAR_CPHA;
|
|
|
|
if (!spi_controller_is_slave(dspi->ctlr)) {
|
|
chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
|
|
SPI_CTAR_CSSCK(cssck) |
|
|
SPI_CTAR_PASC(pasc) |
|
|
SPI_CTAR_ASC(asc) |
|
|
SPI_CTAR_PBR(pbr) |
|
|
SPI_CTAR_BR(br);
|
|
|
|
if (spi->mode & SPI_LSB_FIRST)
|
|
chip->ctar_val |= SPI_CTAR_LSBFE;
|
|
}
|
|
|
|
spi_set_ctldata(spi, chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dspi_cleanup(struct spi_device *spi)
|
|
{
|
|
struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
|
|
|
|
dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
|
|
spi->controller->bus_num, spi->chip_select);
|
|
|
|
kfree(chip);
|
|
}
|
|
|
|
static const struct of_device_id fsl_dspi_dt_ids[] = {
|
|
{
|
|
.compatible = "fsl,vf610-dspi",
|
|
.data = &devtype_data[VF610],
|
|
}, {
|
|
.compatible = "fsl,ls1021a-v1.0-dspi",
|
|
.data = &devtype_data[LS1021A],
|
|
}, {
|
|
.compatible = "fsl,ls1012a-dspi",
|
|
.data = &devtype_data[LS1012A],
|
|
}, {
|
|
.compatible = "fsl,ls1028a-dspi",
|
|
.data = &devtype_data[LS1028A],
|
|
}, {
|
|
.compatible = "fsl,ls1043a-dspi",
|
|
.data = &devtype_data[LS1043A],
|
|
}, {
|
|
.compatible = "fsl,ls1046a-dspi",
|
|
.data = &devtype_data[LS1046A],
|
|
}, {
|
|
.compatible = "fsl,ls2080a-dspi",
|
|
.data = &devtype_data[LS2080A],
|
|
}, {
|
|
.compatible = "fsl,ls2085a-dspi",
|
|
.data = &devtype_data[LS2085A],
|
|
}, {
|
|
.compatible = "fsl,lx2160a-dspi",
|
|
.data = &devtype_data[LX2160A],
|
|
},
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int dspi_suspend(struct device *dev)
|
|
{
|
|
struct fsl_dspi *dspi = dev_get_drvdata(dev);
|
|
|
|
if (dspi->irq)
|
|
disable_irq(dspi->irq);
|
|
spi_controller_suspend(dspi->ctlr);
|
|
clk_disable_unprepare(dspi->clk);
|
|
|
|
pinctrl_pm_select_sleep_state(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dspi_resume(struct device *dev)
|
|
{
|
|
struct fsl_dspi *dspi = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
pinctrl_pm_select_default_state(dev);
|
|
|
|
ret = clk_prepare_enable(dspi->clk);
|
|
if (ret)
|
|
return ret;
|
|
spi_controller_resume(dspi->ctlr);
|
|
if (dspi->irq)
|
|
enable_irq(dspi->irq);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
|
|
|
|
static const struct regmap_range dspi_volatile_ranges[] = {
|
|
regmap_reg_range(SPI_MCR, SPI_TCR),
|
|
regmap_reg_range(SPI_SR, SPI_SR),
|
|
regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
|
|
};
|
|
|
|
static const struct regmap_access_table dspi_volatile_table = {
|
|
.yes_ranges = dspi_volatile_ranges,
|
|
.n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
|
|
};
|
|
|
|
static const struct regmap_config dspi_regmap_config = {
|
|
.reg_bits = 32,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
.max_register = 0x88,
|
|
.volatile_table = &dspi_volatile_table,
|
|
};
|
|
|
|
static const struct regmap_range dspi_xspi_volatile_ranges[] = {
|
|
regmap_reg_range(SPI_MCR, SPI_TCR),
|
|
regmap_reg_range(SPI_SR, SPI_SR),
|
|
regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
|
|
regmap_reg_range(SPI_SREX, SPI_SREX),
|
|
};
|
|
|
|
static const struct regmap_access_table dspi_xspi_volatile_table = {
|
|
.yes_ranges = dspi_xspi_volatile_ranges,
|
|
.n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
|
|
};
|
|
|
|
static const struct regmap_config dspi_xspi_regmap_config[] = {
|
|
{
|
|
.reg_bits = 32,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
.max_register = 0x13c,
|
|
.volatile_table = &dspi_xspi_volatile_table,
|
|
},
|
|
{
|
|
.name = "pushr",
|
|
.reg_bits = 16,
|
|
.val_bits = 16,
|
|
.reg_stride = 2,
|
|
.max_register = 0x2,
|
|
},
|
|
};
|
|
|
|
static int dspi_init(struct fsl_dspi *dspi)
|
|
{
|
|
unsigned int mcr;
|
|
|
|
/* Set idle states for all chip select signals to high */
|
|
mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
|
|
|
|
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
|
|
mcr |= SPI_MCR_XSPI;
|
|
if (!spi_controller_is_slave(dspi->ctlr))
|
|
mcr |= SPI_MCR_MASTER;
|
|
|
|
regmap_write(dspi->regmap, SPI_MCR, mcr);
|
|
regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
|
|
|
|
switch (dspi->devtype_data->trans_mode) {
|
|
case DSPI_XSPI_MODE:
|
|
regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
|
|
break;
|
|
case DSPI_DMA_MODE:
|
|
regmap_write(dspi->regmap, SPI_RSER,
|
|
SPI_RSER_TFFFE | SPI_RSER_TFFFD |
|
|
SPI_RSER_RFDFE | SPI_RSER_RFDFD);
|
|
break;
|
|
default:
|
|
dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
|
|
dspi->devtype_data->trans_mode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dspi_slave_abort(struct spi_master *master)
|
|
{
|
|
struct fsl_dspi *dspi = spi_master_get_devdata(master);
|
|
|
|
/*
|
|
* Terminate all pending DMA transactions for the SPI working
|
|
* in SLAVE mode.
|
|
*/
|
|
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
|
|
dmaengine_terminate_sync(dspi->dma->chan_rx);
|
|
dmaengine_terminate_sync(dspi->dma->chan_tx);
|
|
}
|
|
|
|
/* Clear the internal DSPI RX and TX FIFO buffers */
|
|
regmap_update_bits(dspi->regmap, SPI_MCR,
|
|
SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
|
|
SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dspi_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
const struct regmap_config *regmap_config;
|
|
struct fsl_dspi_platform_data *pdata;
|
|
struct spi_controller *ctlr;
|
|
int ret, cs_num, bus_num = -1;
|
|
struct fsl_dspi *dspi;
|
|
struct resource *res;
|
|
void __iomem *base;
|
|
bool big_endian;
|
|
|
|
dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
|
|
if (!dspi)
|
|
return -ENOMEM;
|
|
|
|
ctlr = spi_alloc_master(&pdev->dev, 0);
|
|
if (!ctlr)
|
|
return -ENOMEM;
|
|
|
|
spi_controller_set_devdata(ctlr, dspi);
|
|
platform_set_drvdata(pdev, dspi);
|
|
|
|
dspi->pdev = pdev;
|
|
dspi->ctlr = ctlr;
|
|
|
|
ctlr->setup = dspi_setup;
|
|
ctlr->transfer_one_message = dspi_transfer_one_message;
|
|
ctlr->dev.of_node = pdev->dev.of_node;
|
|
|
|
ctlr->cleanup = dspi_cleanup;
|
|
ctlr->slave_abort = dspi_slave_abort;
|
|
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
|
|
|
|
pdata = dev_get_platdata(&pdev->dev);
|
|
if (pdata) {
|
|
ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
|
|
ctlr->bus_num = pdata->bus_num;
|
|
|
|
/* Only Coldfire uses platform data */
|
|
dspi->devtype_data = &devtype_data[MCF5441X];
|
|
big_endian = true;
|
|
} else {
|
|
|
|
ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
|
|
goto out_ctlr_put;
|
|
}
|
|
ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
|
|
|
|
of_property_read_u32(np, "bus-num", &bus_num);
|
|
ctlr->bus_num = bus_num;
|
|
|
|
if (of_property_read_bool(np, "spi-slave"))
|
|
ctlr->slave = true;
|
|
|
|
dspi->devtype_data = of_device_get_match_data(&pdev->dev);
|
|
if (!dspi->devtype_data) {
|
|
dev_err(&pdev->dev, "can't get devtype_data\n");
|
|
ret = -EFAULT;
|
|
goto out_ctlr_put;
|
|
}
|
|
|
|
big_endian = of_device_is_big_endian(np);
|
|
}
|
|
if (big_endian) {
|
|
dspi->pushr_cmd = 0;
|
|
dspi->pushr_tx = 2;
|
|
} else {
|
|
dspi->pushr_cmd = 2;
|
|
dspi->pushr_tx = 0;
|
|
}
|
|
|
|
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
|
|
ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
|
|
else
|
|
ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(base)) {
|
|
ret = PTR_ERR(base);
|
|
goto out_ctlr_put;
|
|
}
|
|
|
|
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
|
|
regmap_config = &dspi_xspi_regmap_config[0];
|
|
else
|
|
regmap_config = &dspi_regmap_config;
|
|
dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
|
|
if (IS_ERR(dspi->regmap)) {
|
|
dev_err(&pdev->dev, "failed to init regmap: %ld\n",
|
|
PTR_ERR(dspi->regmap));
|
|
ret = PTR_ERR(dspi->regmap);
|
|
goto out_ctlr_put;
|
|
}
|
|
|
|
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
|
|
dspi->regmap_pushr = devm_regmap_init_mmio(
|
|
&pdev->dev, base + SPI_PUSHR,
|
|
&dspi_xspi_regmap_config[1]);
|
|
if (IS_ERR(dspi->regmap_pushr)) {
|
|
dev_err(&pdev->dev,
|
|
"failed to init pushr regmap: %ld\n",
|
|
PTR_ERR(dspi->regmap_pushr));
|
|
ret = PTR_ERR(dspi->regmap_pushr);
|
|
goto out_ctlr_put;
|
|
}
|
|
}
|
|
|
|
dspi->clk = devm_clk_get(&pdev->dev, "dspi");
|
|
if (IS_ERR(dspi->clk)) {
|
|
ret = PTR_ERR(dspi->clk);
|
|
dev_err(&pdev->dev, "unable to get clock\n");
|
|
goto out_ctlr_put;
|
|
}
|
|
ret = clk_prepare_enable(dspi->clk);
|
|
if (ret)
|
|
goto out_ctlr_put;
|
|
|
|
ret = dspi_init(dspi);
|
|
if (ret)
|
|
goto out_clk_put;
|
|
|
|
dspi->irq = platform_get_irq(pdev, 0);
|
|
if (dspi->irq <= 0) {
|
|
dev_info(&pdev->dev,
|
|
"can't get platform irq, using poll mode\n");
|
|
dspi->irq = 0;
|
|
goto poll_mode;
|
|
}
|
|
|
|
init_completion(&dspi->xfer_done);
|
|
|
|
ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
|
|
IRQF_SHARED, pdev->name, dspi);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
|
|
goto out_clk_put;
|
|
}
|
|
|
|
poll_mode:
|
|
|
|
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
|
|
ret = dspi_request_dma(dspi, res->start);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "can't get dma channels\n");
|
|
goto out_free_irq;
|
|
}
|
|
}
|
|
|
|
ctlr->max_speed_hz =
|
|
clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
|
|
|
|
if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
|
|
ctlr->ptp_sts_supported = true;
|
|
|
|
ret = spi_register_controller(ctlr);
|
|
if (ret != 0) {
|
|
dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
|
|
goto out_free_irq;
|
|
}
|
|
|
|
return ret;
|
|
|
|
out_free_irq:
|
|
if (dspi->irq)
|
|
free_irq(dspi->irq, dspi);
|
|
out_clk_put:
|
|
clk_disable_unprepare(dspi->clk);
|
|
out_ctlr_put:
|
|
spi_controller_put(ctlr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dspi_remove(struct platform_device *pdev)
|
|
{
|
|
struct fsl_dspi *dspi = platform_get_drvdata(pdev);
|
|
|
|
/* Disconnect from the SPI framework */
|
|
spi_unregister_controller(dspi->ctlr);
|
|
|
|
/* Disable RX and TX */
|
|
regmap_update_bits(dspi->regmap, SPI_MCR,
|
|
SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
|
|
SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
|
|
|
|
/* Stop Running */
|
|
regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
|
|
|
|
dspi_release_dma(dspi);
|
|
if (dspi->irq)
|
|
free_irq(dspi->irq, dspi);
|
|
clk_disable_unprepare(dspi->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dspi_shutdown(struct platform_device *pdev)
|
|
{
|
|
dspi_remove(pdev);
|
|
}
|
|
|
|
static struct platform_driver fsl_dspi_driver = {
|
|
.driver.name = DRIVER_NAME,
|
|
.driver.of_match_table = fsl_dspi_dt_ids,
|
|
.driver.owner = THIS_MODULE,
|
|
.driver.pm = &dspi_pm,
|
|
.probe = dspi_probe,
|
|
.remove = dspi_remove,
|
|
.shutdown = dspi_shutdown,
|
|
};
|
|
module_platform_driver(fsl_dspi_driver);
|
|
|
|
MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:" DRIVER_NAME);
|