289 строки
6.6 KiB
C
289 строки
6.6 KiB
C
/*
|
|
* linux/arch/arm/vfp/vfpmodule.c
|
|
*
|
|
* Copyright (C) 2004 ARM Limited.
|
|
* Written by Deep Blue Solutions Limited.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/config.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <asm/vfp.h>
|
|
|
|
#include "vfpinstr.h"
|
|
#include "vfp.h"
|
|
|
|
/*
|
|
* Our undef handlers (in entry.S)
|
|
*/
|
|
void vfp_testing_entry(void);
|
|
void vfp_support_entry(void);
|
|
|
|
void (*vfp_vector)(void) = vfp_testing_entry;
|
|
union vfp_state *last_VFP_context;
|
|
|
|
/*
|
|
* Dual-use variable.
|
|
* Used in startup: set to non-zero if VFP checks fail
|
|
* After startup, holds VFP architecture
|
|
*/
|
|
unsigned int VFP_arch;
|
|
|
|
/*
|
|
* Per-thread VFP initialisation.
|
|
*/
|
|
void vfp_flush_thread(union vfp_state *vfp)
|
|
{
|
|
memset(vfp, 0, sizeof(union vfp_state));
|
|
|
|
vfp->hard.fpexc = FPEXC_ENABLE;
|
|
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
|
|
|
|
/*
|
|
* Disable VFP to ensure we initialise it first.
|
|
*/
|
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
|
|
|
|
/*
|
|
* Ensure we don't try to overwrite our newly initialised
|
|
* state information on the first fault.
|
|
*/
|
|
if (last_VFP_context == vfp)
|
|
last_VFP_context = NULL;
|
|
}
|
|
|
|
/*
|
|
* Per-thread VFP cleanup.
|
|
*/
|
|
void vfp_release_thread(union vfp_state *vfp)
|
|
{
|
|
if (last_VFP_context == vfp)
|
|
last_VFP_context = NULL;
|
|
}
|
|
|
|
/*
|
|
* Raise a SIGFPE for the current process.
|
|
* sicode describes the signal being raised.
|
|
*/
|
|
void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
|
|
info.si_signo = SIGFPE;
|
|
info.si_code = sicode;
|
|
info.si_addr = (void *)(instruction_pointer(regs) - 4);
|
|
|
|
/*
|
|
* This is the same as NWFPE, because it's not clear what
|
|
* this is used for
|
|
*/
|
|
current->thread.error_code = 0;
|
|
current->thread.trap_no = 6;
|
|
|
|
send_sig_info(SIGFPE, &info, current);
|
|
}
|
|
|
|
static void vfp_panic(char *reason)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_ERR "VFP: Error: %s\n", reason);
|
|
printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
|
|
fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
|
|
for (i = 0; i < 32; i += 2)
|
|
printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
|
|
i, vfp_get_float(i), i+1, vfp_get_float(i+1));
|
|
}
|
|
|
|
/*
|
|
* Process bitmask of exception conditions.
|
|
*/
|
|
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
|
|
{
|
|
int si_code = 0;
|
|
|
|
pr_debug("VFP: raising exceptions %08x\n", exceptions);
|
|
|
|
if (exceptions == (u32)-1) {
|
|
vfp_panic("unhandled bounce");
|
|
vfp_raise_sigfpe(0, regs);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If any of the status flags are set, update the FPSCR.
|
|
* Comparison instructions always return at least one of
|
|
* these flags set.
|
|
*/
|
|
if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
|
|
fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
|
|
|
|
fpscr |= exceptions;
|
|
|
|
fmxr(FPSCR, fpscr);
|
|
|
|
#define RAISE(stat,en,sig) \
|
|
if (exceptions & stat && fpscr & en) \
|
|
si_code = sig;
|
|
|
|
/*
|
|
* These are arranged in priority order, least to highest.
|
|
*/
|
|
RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
|
|
RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
|
|
RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
|
|
RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
|
|
|
|
if (si_code)
|
|
vfp_raise_sigfpe(si_code, regs);
|
|
}
|
|
|
|
/*
|
|
* Emulate a VFP instruction.
|
|
*/
|
|
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
|
|
{
|
|
u32 exceptions = (u32)-1;
|
|
|
|
pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
|
|
|
|
if (INST_CPRTDO(inst)) {
|
|
if (!INST_CPRT(inst)) {
|
|
/*
|
|
* CPDO
|
|
*/
|
|
if (vfp_single(inst)) {
|
|
exceptions = vfp_single_cpdo(inst, fpscr);
|
|
} else {
|
|
exceptions = vfp_double_cpdo(inst, fpscr);
|
|
}
|
|
} else {
|
|
/*
|
|
* A CPRT instruction can not appear in FPINST2, nor
|
|
* can it cause an exception. Therefore, we do not
|
|
* have to emulate it.
|
|
*/
|
|
}
|
|
} else {
|
|
/*
|
|
* A CPDT instruction can not appear in FPINST2, nor can
|
|
* it cause an exception. Therefore, we do not have to
|
|
* emulate it.
|
|
*/
|
|
}
|
|
return exceptions;
|
|
}
|
|
|
|
/*
|
|
* Package up a bounce condition.
|
|
*/
|
|
void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
|
{
|
|
u32 fpscr, orig_fpscr, exceptions, inst;
|
|
|
|
pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
|
|
|
|
/*
|
|
* Enable access to the VFP so we can handle the bounce.
|
|
*/
|
|
fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
|
|
|
|
orig_fpscr = fpscr = fmrx(FPSCR);
|
|
|
|
/*
|
|
* If we are running with inexact exceptions enabled, we need to
|
|
* emulate the trigger instruction. Note that as we're emulating
|
|
* the trigger instruction, we need to increment PC.
|
|
*/
|
|
if (fpscr & FPSCR_IXE) {
|
|
regs->ARM_pc += 4;
|
|
goto emulate;
|
|
}
|
|
|
|
barrier();
|
|
|
|
/*
|
|
* Modify fpscr to indicate the number of iterations remaining
|
|
*/
|
|
if (fpexc & FPEXC_EXCEPTION) {
|
|
u32 len;
|
|
|
|
len = fpexc + (1 << FPEXC_LENGTH_BIT);
|
|
|
|
fpscr &= ~FPSCR_LENGTH_MASK;
|
|
fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
|
|
}
|
|
|
|
/*
|
|
* Handle the first FP instruction. We used to take note of the
|
|
* FPEXC bounce reason, but this appears to be unreliable.
|
|
* Emulate the bounced instruction instead.
|
|
*/
|
|
inst = fmrx(FPINST);
|
|
exceptions = vfp_emulate_instruction(inst, fpscr, regs);
|
|
if (exceptions)
|
|
vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
|
|
|
|
/*
|
|
* If there isn't a second FP instruction, exit now.
|
|
*/
|
|
if (!(fpexc & FPEXC_FPV2))
|
|
return;
|
|
|
|
/*
|
|
* The barrier() here prevents fpinst2 being read
|
|
* before the condition above.
|
|
*/
|
|
barrier();
|
|
trigger = fmrx(FPINST2);
|
|
fpscr = fmrx(FPSCR);
|
|
|
|
emulate:
|
|
exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
|
|
if (exceptions)
|
|
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
|
|
}
|
|
|
|
/*
|
|
* VFP support code initialisation.
|
|
*/
|
|
static int __init vfp_init(void)
|
|
{
|
|
unsigned int vfpsid;
|
|
|
|
/*
|
|
* First check that there is a VFP that we can use.
|
|
* The handler is already setup to just log calls, so
|
|
* we just need to read the VFPSID register.
|
|
*/
|
|
vfpsid = fmrx(FPSID);
|
|
|
|
printk(KERN_INFO "VFP support v0.3: ");
|
|
if (VFP_arch) {
|
|
printk("not present\n");
|
|
} else if (vfpsid & FPSID_NODOUBLE) {
|
|
printk("no double precision support\n");
|
|
} else {
|
|
VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
|
|
printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
|
|
(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
|
|
(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
|
|
(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
|
|
(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
|
|
(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
|
|
vfp_vector = vfp_support_entry;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(vfp_init);
|