WSL2-Linux-Kernel/include/linux/suspend.h

333 строки
12 KiB
C

#ifndef _LINUX_SUSPEND_H
#define _LINUX_SUSPEND_H
#include <linux/swap.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/pm.h>
#include <linux/mm.h>
#include <asm/errno.h>
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_VT) && defined(CONFIG_VT_CONSOLE)
extern void pm_set_vt_switch(int);
extern int pm_prepare_console(void);
extern void pm_restore_console(void);
#else
static inline void pm_set_vt_switch(int do_switch)
{
}
static inline int pm_prepare_console(void)
{
return 0;
}
static inline void pm_restore_console(void)
{
}
#endif
typedef int __bitwise suspend_state_t;
#define PM_SUSPEND_ON ((__force suspend_state_t) 0)
#define PM_SUSPEND_STANDBY ((__force suspend_state_t) 1)
#define PM_SUSPEND_MEM ((__force suspend_state_t) 3)
#define PM_SUSPEND_MAX ((__force suspend_state_t) 4)
/**
* struct platform_suspend_ops - Callbacks for managing platform dependent
* system sleep states.
*
* @valid: Callback to determine if given system sleep state is supported by
* the platform.
* Valid (ie. supported) states are advertised in /sys/power/state. Note
* that it still may be impossible to enter given system sleep state if the
* conditions aren't right.
* There is the %suspend_valid_only_mem function available that can be
* assigned to this if the platform only supports mem sleep.
*
* @begin: Initialise a transition to given system sleep state.
* @begin() is executed right prior to suspending devices. The information
* conveyed to the platform code by @begin() should be disregarded by it as
* soon as @end() is executed. If @begin() fails (ie. returns nonzero),
* @prepare(), @enter() and @finish() will not be called by the PM core.
* This callback is optional. However, if it is implemented, the argument
* passed to @enter() is redundant and should be ignored.
*
* @prepare: Prepare the platform for entering the system sleep state indicated
* by @begin().
* @prepare() is called right after devices have been suspended (ie. the
* appropriate .suspend() method has been executed for each device) and
* before device drivers' late suspend callbacks are executed. It returns
* 0 on success or a negative error code otherwise, in which case the
* system cannot enter the desired sleep state (@prepare_late(), @enter(),
* @wake(), and @finish() will not be called in that case).
*
* @prepare_late: Finish preparing the platform for entering the system sleep
* state indicated by @begin().
* @prepare_late is called before disabling nonboot CPUs and after
* device drivers' late suspend callbacks have been executed. It returns
* 0 on success or a negative error code otherwise, in which case the
* system cannot enter the desired sleep state (@enter() and @wake()).
*
* @enter: Enter the system sleep state indicated by @begin() or represented by
* the argument if @begin() is not implemented.
* This callback is mandatory. It returns 0 on success or a negative
* error code otherwise, in which case the system cannot enter the desired
* sleep state.
*
* @wake: Called when the system has just left a sleep state, right after
* the nonboot CPUs have been enabled and before device drivers' early
* resume callbacks are executed.
* This callback is optional, but should be implemented by the platforms
* that implement @prepare_late(). If implemented, it is always called
* after @enter(), even if @enter() fails.
*
* @finish: Finish wake-up of the platform.
* @finish is called right prior to calling device drivers' regular suspend
* callbacks.
* This callback is optional, but should be implemented by the platforms
* that implement @prepare(). If implemented, it is always called after
* @enter() and @wake(), if implemented, even if any of them fails.
*
* @end: Called by the PM core right after resuming devices, to indicate to
* the platform that the system has returned to the working state or
* the transition to the sleep state has been aborted.
* This callback is optional, but should be implemented by the platforms
* that implement @begin(). Accordingly, platforms implementing @begin()
* should also provide a @end() which cleans up transitions aborted before
* @enter().
*
* @recover: Recover the platform from a suspend failure.
* Called by the PM core if the suspending of devices fails.
* This callback is optional and should only be implemented by platforms
* which require special recovery actions in that situation.
*/
struct platform_suspend_ops {
int (*valid)(suspend_state_t state);
int (*begin)(suspend_state_t state);
int (*prepare)(void);
int (*prepare_late)(void);
int (*enter)(suspend_state_t state);
void (*wake)(void);
void (*finish)(void);
void (*end)(void);
void (*recover)(void);
};
#ifdef CONFIG_SUSPEND
/**
* suspend_set_ops - set platform dependent suspend operations
* @ops: The new suspend operations to set.
*/
extern void suspend_set_ops(struct platform_suspend_ops *ops);
extern int suspend_valid_only_mem(suspend_state_t state);
/**
* arch_suspend_disable_irqs - disable IRQs for suspend
*
* Disables IRQs (in the default case). This is a weak symbol in the common
* code and thus allows architectures to override it if more needs to be
* done. Not called for suspend to disk.
*/
extern void arch_suspend_disable_irqs(void);
/**
* arch_suspend_enable_irqs - enable IRQs after suspend
*
* Enables IRQs (in the default case). This is a weak symbol in the common
* code and thus allows architectures to override it if more needs to be
* done. Not called for suspend to disk.
*/
extern void arch_suspend_enable_irqs(void);
extern int pm_suspend(suspend_state_t state);
#else /* !CONFIG_SUSPEND */
#define suspend_valid_only_mem NULL
static inline void suspend_set_ops(struct platform_suspend_ops *ops) {}
static inline int pm_suspend(suspend_state_t state) { return -ENOSYS; }
#endif /* !CONFIG_SUSPEND */
/* struct pbe is used for creating lists of pages that should be restored
* atomically during the resume from disk, because the page frames they have
* occupied before the suspend are in use.
*/
struct pbe {
void *address; /* address of the copy */
void *orig_address; /* original address of a page */
struct pbe *next;
};
/* mm/page_alloc.c */
extern void mark_free_pages(struct zone *zone);
/**
* struct platform_hibernation_ops - hibernation platform support
*
* The methods in this structure allow a platform to carry out special
* operations required by it during a hibernation transition.
*
* All the methods below, except for @recover(), must be implemented.
*
* @begin: Tell the platform driver that we're starting hibernation.
* Called right after shrinking memory and before freezing devices.
*
* @end: Called by the PM core right after resuming devices, to indicate to
* the platform that the system has returned to the working state.
*
* @pre_snapshot: Prepare the platform for creating the hibernation image.
* Called right after devices have been frozen and before the nonboot
* CPUs are disabled (runs with IRQs on).
*
* @finish: Restore the previous state of the platform after the hibernation
* image has been created *or* put the platform into the normal operation
* mode after the hibernation (the same method is executed in both cases).
* Called right after the nonboot CPUs have been enabled and before
* thawing devices (runs with IRQs on).
*
* @prepare: Prepare the platform for entering the low power state.
* Called right after the hibernation image has been saved and before
* devices are prepared for entering the low power state.
*
* @enter: Put the system into the low power state after the hibernation image
* has been saved to disk.
* Called after the nonboot CPUs have been disabled and all of the low
* level devices have been shut down (runs with IRQs off).
*
* @leave: Perform the first stage of the cleanup after the system sleep state
* indicated by @set_target() has been left.
* Called right after the control has been passed from the boot kernel to
* the image kernel, before the nonboot CPUs are enabled and before devices
* are resumed. Executed with interrupts disabled.
*
* @pre_restore: Prepare system for the restoration from a hibernation image.
* Called right after devices have been frozen and before the nonboot
* CPUs are disabled (runs with IRQs on).
*
* @restore_cleanup: Clean up after a failing image restoration.
* Called right after the nonboot CPUs have been enabled and before
* thawing devices (runs with IRQs on).
*
* @recover: Recover the platform from a failure to suspend devices.
* Called by the PM core if the suspending of devices during hibernation
* fails. This callback is optional and should only be implemented by
* platforms which require special recovery actions in that situation.
*/
struct platform_hibernation_ops {
int (*begin)(void);
void (*end)(void);
int (*pre_snapshot)(void);
void (*finish)(void);
int (*prepare)(void);
int (*enter)(void);
void (*leave)(void);
int (*pre_restore)(void);
void (*restore_cleanup)(void);
void (*recover)(void);
};
#ifdef CONFIG_HIBERNATION
/* kernel/power/snapshot.c */
extern void __register_nosave_region(unsigned long b, unsigned long e, int km);
static inline void __init register_nosave_region(unsigned long b, unsigned long e)
{
__register_nosave_region(b, e, 0);
}
static inline void __init register_nosave_region_late(unsigned long b, unsigned long e)
{
__register_nosave_region(b, e, 1);
}
extern int swsusp_page_is_forbidden(struct page *);
extern void swsusp_set_page_free(struct page *);
extern void swsusp_unset_page_free(struct page *);
extern unsigned long get_safe_page(gfp_t gfp_mask);
extern void hibernation_set_ops(struct platform_hibernation_ops *ops);
extern int hibernate(void);
extern bool system_entering_hibernation(void);
#else /* CONFIG_HIBERNATION */
static inline int swsusp_page_is_forbidden(struct page *p) { return 0; }
static inline void swsusp_set_page_free(struct page *p) {}
static inline void swsusp_unset_page_free(struct page *p) {}
static inline void hibernation_set_ops(struct platform_hibernation_ops *ops) {}
static inline int hibernate(void) { return -ENOSYS; }
static inline bool system_entering_hibernation(void) { return false; }
#endif /* CONFIG_HIBERNATION */
#ifdef CONFIG_SUSPEND_NVS
extern int suspend_nvs_register(unsigned long start, unsigned long size);
extern int suspend_nvs_alloc(void);
extern void suspend_nvs_free(void);
extern void suspend_nvs_save(void);
extern void suspend_nvs_restore(void);
#else /* CONFIG_SUSPEND_NVS */
static inline int suspend_nvs_register(unsigned long a, unsigned long b)
{
return 0;
}
static inline int suspend_nvs_alloc(void) { return 0; }
static inline void suspend_nvs_free(void) {}
static inline void suspend_nvs_save(void) {}
static inline void suspend_nvs_restore(void) {}
#endif /* CONFIG_SUSPEND_NVS */
#ifdef CONFIG_PM_SLEEP
void save_processor_state(void);
void restore_processor_state(void);
/* kernel/power/main.c */
extern int register_pm_notifier(struct notifier_block *nb);
extern int unregister_pm_notifier(struct notifier_block *nb);
#define pm_notifier(fn, pri) { \
static struct notifier_block fn##_nb = \
{ .notifier_call = fn, .priority = pri }; \
register_pm_notifier(&fn##_nb); \
}
#else /* !CONFIG_PM_SLEEP */
static inline int register_pm_notifier(struct notifier_block *nb)
{
return 0;
}
static inline int unregister_pm_notifier(struct notifier_block *nb)
{
return 0;
}
#define pm_notifier(fn, pri) do { (void)(fn); } while (0)
#endif /* !CONFIG_PM_SLEEP */
extern struct mutex pm_mutex;
#ifndef CONFIG_HIBERNATION
static inline void register_nosave_region(unsigned long b, unsigned long e)
{
}
static inline void register_nosave_region_late(unsigned long b, unsigned long e)
{
}
static inline void lock_system_sleep(void) {}
static inline void unlock_system_sleep(void) {}
#else
/* Let some subsystems like memory hotadd exclude hibernation */
static inline void lock_system_sleep(void)
{
mutex_lock(&pm_mutex);
}
static inline void unlock_system_sleep(void)
{
mutex_unlock(&pm_mutex);
}
#endif
#endif /* _LINUX_SUSPEND_H */