634 строки
20 KiB
C
634 строки
20 KiB
C
#ifndef __LINUX_PERCPU_H
|
|
#define __LINUX_PERCPU_H
|
|
|
|
#include <linux/preempt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/percpu.h>
|
|
|
|
/* enough to cover all DEFINE_PER_CPUs in modules */
|
|
#ifdef CONFIG_MODULES
|
|
#define PERCPU_MODULE_RESERVE (8 << 10)
|
|
#else
|
|
#define PERCPU_MODULE_RESERVE 0
|
|
#endif
|
|
|
|
#ifndef PERCPU_ENOUGH_ROOM
|
|
#define PERCPU_ENOUGH_ROOM \
|
|
(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
|
|
PERCPU_MODULE_RESERVE)
|
|
#endif
|
|
|
|
/*
|
|
* Must be an lvalue. Since @var must be a simple identifier,
|
|
* we force a syntax error here if it isn't.
|
|
*/
|
|
#define get_cpu_var(var) (*({ \
|
|
preempt_disable(); \
|
|
&__get_cpu_var(var); }))
|
|
|
|
/*
|
|
* The weird & is necessary because sparse considers (void)(var) to be
|
|
* a direct dereference of percpu variable (var).
|
|
*/
|
|
#define put_cpu_var(var) do { \
|
|
(void)&(var); \
|
|
preempt_enable(); \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/* minimum unit size, also is the maximum supported allocation size */
|
|
#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
|
|
|
|
/*
|
|
* Percpu allocator can serve percpu allocations before slab is
|
|
* initialized which allows slab to depend on the percpu allocator.
|
|
* The following two parameters decide how much resource to
|
|
* preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
|
|
* larger than PERCPU_DYNAMIC_EARLY_SIZE.
|
|
*/
|
|
#define PERCPU_DYNAMIC_EARLY_SLOTS 128
|
|
#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
|
|
|
|
/*
|
|
* PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
|
|
* back on the first chunk for dynamic percpu allocation if arch is
|
|
* manually allocating and mapping it for faster access (as a part of
|
|
* large page mapping for example).
|
|
*
|
|
* The following values give between one and two pages of free space
|
|
* after typical minimal boot (2-way SMP, single disk and NIC) with
|
|
* both defconfig and a distro config on x86_64 and 32. More
|
|
* intelligent way to determine this would be nice.
|
|
*/
|
|
#if BITS_PER_LONG > 32
|
|
#define PERCPU_DYNAMIC_RESERVE (20 << 10)
|
|
#else
|
|
#define PERCPU_DYNAMIC_RESERVE (12 << 10)
|
|
#endif
|
|
|
|
extern void *pcpu_base_addr;
|
|
extern const unsigned long *pcpu_unit_offsets;
|
|
|
|
struct pcpu_group_info {
|
|
int nr_units; /* aligned # of units */
|
|
unsigned long base_offset; /* base address offset */
|
|
unsigned int *cpu_map; /* unit->cpu map, empty
|
|
* entries contain NR_CPUS */
|
|
};
|
|
|
|
struct pcpu_alloc_info {
|
|
size_t static_size;
|
|
size_t reserved_size;
|
|
size_t dyn_size;
|
|
size_t unit_size;
|
|
size_t atom_size;
|
|
size_t alloc_size;
|
|
size_t __ai_size; /* internal, don't use */
|
|
int nr_groups; /* 0 if grouping unnecessary */
|
|
struct pcpu_group_info groups[];
|
|
};
|
|
|
|
enum pcpu_fc {
|
|
PCPU_FC_AUTO,
|
|
PCPU_FC_EMBED,
|
|
PCPU_FC_PAGE,
|
|
|
|
PCPU_FC_NR,
|
|
};
|
|
extern const char *pcpu_fc_names[PCPU_FC_NR];
|
|
|
|
extern enum pcpu_fc pcpu_chosen_fc;
|
|
|
|
typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
|
|
size_t align);
|
|
typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
|
|
typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
|
|
typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
|
|
|
|
extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
|
|
int nr_units);
|
|
extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
|
|
|
|
extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
|
|
void *base_addr);
|
|
|
|
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
|
|
extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
|
|
size_t atom_size,
|
|
pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
|
|
pcpu_fc_alloc_fn_t alloc_fn,
|
|
pcpu_fc_free_fn_t free_fn);
|
|
#endif
|
|
|
|
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
|
|
extern int __init pcpu_page_first_chunk(size_t reserved_size,
|
|
pcpu_fc_alloc_fn_t alloc_fn,
|
|
pcpu_fc_free_fn_t free_fn,
|
|
pcpu_fc_populate_pte_fn_t populate_pte_fn);
|
|
#endif
|
|
|
|
/*
|
|
* Use this to get to a cpu's version of the per-cpu object
|
|
* dynamically allocated. Non-atomic access to the current CPU's
|
|
* version should probably be combined with get_cpu()/put_cpu().
|
|
*/
|
|
#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
|
|
|
|
extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
|
|
extern bool is_kernel_percpu_address(unsigned long addr);
|
|
|
|
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
|
|
extern void __init setup_per_cpu_areas(void);
|
|
#endif
|
|
extern void __init percpu_init_late(void);
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
|
|
|
|
/* can't distinguish from other static vars, always false */
|
|
static inline bool is_kernel_percpu_address(unsigned long addr)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void __init setup_per_cpu_areas(void) { }
|
|
|
|
static inline void __init percpu_init_late(void) { }
|
|
|
|
static inline void *pcpu_lpage_remapped(void *kaddr)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
extern void __percpu *__alloc_percpu(size_t size, size_t align);
|
|
extern void free_percpu(void __percpu *__pdata);
|
|
extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
|
|
|
|
#define alloc_percpu(type) \
|
|
(typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
|
|
|
|
/*
|
|
* Optional methods for optimized non-lvalue per-cpu variable access.
|
|
*
|
|
* @var can be a percpu variable or a field of it and its size should
|
|
* equal char, int or long. percpu_read() evaluates to a lvalue and
|
|
* all others to void.
|
|
*
|
|
* These operations are guaranteed to be atomic w.r.t. preemption.
|
|
* The generic versions use plain get/put_cpu_var(). Archs are
|
|
* encouraged to implement single-instruction alternatives which don't
|
|
* require preemption protection.
|
|
*/
|
|
#ifndef percpu_read
|
|
# define percpu_read(var) \
|
|
({ \
|
|
typeof(var) *pr_ptr__ = &(var); \
|
|
typeof(var) pr_ret__; \
|
|
pr_ret__ = get_cpu_var(*pr_ptr__); \
|
|
put_cpu_var(*pr_ptr__); \
|
|
pr_ret__; \
|
|
})
|
|
#endif
|
|
|
|
#define __percpu_generic_to_op(var, val, op) \
|
|
do { \
|
|
typeof(var) *pgto_ptr__ = &(var); \
|
|
get_cpu_var(*pgto_ptr__) op val; \
|
|
put_cpu_var(*pgto_ptr__); \
|
|
} while (0)
|
|
|
|
#ifndef percpu_write
|
|
# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
|
|
#endif
|
|
|
|
#ifndef percpu_add
|
|
# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
|
|
#endif
|
|
|
|
#ifndef percpu_sub
|
|
# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
|
|
#endif
|
|
|
|
#ifndef percpu_and
|
|
# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
|
|
#endif
|
|
|
|
#ifndef percpu_or
|
|
# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
|
|
#endif
|
|
|
|
#ifndef percpu_xor
|
|
# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
|
|
#endif
|
|
|
|
/*
|
|
* Branching function to split up a function into a set of functions that
|
|
* are called for different scalar sizes of the objects handled.
|
|
*/
|
|
|
|
extern void __bad_size_call_parameter(void);
|
|
|
|
#define __pcpu_size_call_return(stem, variable) \
|
|
({ typeof(variable) pscr_ret__; \
|
|
__verify_pcpu_ptr(&(variable)); \
|
|
switch(sizeof(variable)) { \
|
|
case 1: pscr_ret__ = stem##1(variable);break; \
|
|
case 2: pscr_ret__ = stem##2(variable);break; \
|
|
case 4: pscr_ret__ = stem##4(variable);break; \
|
|
case 8: pscr_ret__ = stem##8(variable);break; \
|
|
default: \
|
|
__bad_size_call_parameter();break; \
|
|
} \
|
|
pscr_ret__; \
|
|
})
|
|
|
|
#define __pcpu_size_call(stem, variable, ...) \
|
|
do { \
|
|
__verify_pcpu_ptr(&(variable)); \
|
|
switch(sizeof(variable)) { \
|
|
case 1: stem##1(variable, __VA_ARGS__);break; \
|
|
case 2: stem##2(variable, __VA_ARGS__);break; \
|
|
case 4: stem##4(variable, __VA_ARGS__);break; \
|
|
case 8: stem##8(variable, __VA_ARGS__);break; \
|
|
default: \
|
|
__bad_size_call_parameter();break; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Optimized manipulation for memory allocated through the per cpu
|
|
* allocator or for addresses of per cpu variables.
|
|
*
|
|
* These operation guarantee exclusivity of access for other operations
|
|
* on the *same* processor. The assumption is that per cpu data is only
|
|
* accessed by a single processor instance (the current one).
|
|
*
|
|
* The first group is used for accesses that must be done in a
|
|
* preemption safe way since we know that the context is not preempt
|
|
* safe. Interrupts may occur. If the interrupt modifies the variable
|
|
* too then RMW actions will not be reliable.
|
|
*
|
|
* The arch code can provide optimized functions in two ways:
|
|
*
|
|
* 1. Override the function completely. F.e. define this_cpu_add().
|
|
* The arch must then ensure that the various scalar format passed
|
|
* are handled correctly.
|
|
*
|
|
* 2. Provide functions for certain scalar sizes. F.e. provide
|
|
* this_cpu_add_2() to provide per cpu atomic operations for 2 byte
|
|
* sized RMW actions. If arch code does not provide operations for
|
|
* a scalar size then the fallback in the generic code will be
|
|
* used.
|
|
*/
|
|
|
|
#define _this_cpu_generic_read(pcp) \
|
|
({ typeof(pcp) ret__; \
|
|
preempt_disable(); \
|
|
ret__ = *this_cpu_ptr(&(pcp)); \
|
|
preempt_enable(); \
|
|
ret__; \
|
|
})
|
|
|
|
#ifndef this_cpu_read
|
|
# ifndef this_cpu_read_1
|
|
# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
|
|
# endif
|
|
# ifndef this_cpu_read_2
|
|
# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
|
|
# endif
|
|
# ifndef this_cpu_read_4
|
|
# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
|
|
# endif
|
|
# ifndef this_cpu_read_8
|
|
# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
|
|
# endif
|
|
# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
|
|
#endif
|
|
|
|
#define _this_cpu_generic_to_op(pcp, val, op) \
|
|
do { \
|
|
preempt_disable(); \
|
|
*__this_cpu_ptr(&(pcp)) op val; \
|
|
preempt_enable(); \
|
|
} while (0)
|
|
|
|
#ifndef this_cpu_write
|
|
# ifndef this_cpu_write_1
|
|
# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef this_cpu_write_2
|
|
# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef this_cpu_write_4
|
|
# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef this_cpu_write_8
|
|
# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_add
|
|
# ifndef this_cpu_add_1
|
|
# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef this_cpu_add_2
|
|
# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef this_cpu_add_4
|
|
# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef this_cpu_add_8
|
|
# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_sub
|
|
# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_inc
|
|
# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef this_cpu_dec
|
|
# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef this_cpu_and
|
|
# ifndef this_cpu_and_1
|
|
# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef this_cpu_and_2
|
|
# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef this_cpu_and_4
|
|
# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef this_cpu_and_8
|
|
# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_or
|
|
# ifndef this_cpu_or_1
|
|
# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef this_cpu_or_2
|
|
# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef this_cpu_or_4
|
|
# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef this_cpu_or_8
|
|
# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_xor
|
|
# ifndef this_cpu_xor_1
|
|
# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef this_cpu_xor_2
|
|
# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef this_cpu_xor_4
|
|
# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef this_cpu_xor_8
|
|
# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
|
|
#endif
|
|
|
|
/*
|
|
* Generic percpu operations that do not require preemption handling.
|
|
* Either we do not care about races or the caller has the
|
|
* responsibility of handling preemptions issues. Arch code can still
|
|
* override these instructions since the arch per cpu code may be more
|
|
* efficient and may actually get race freeness for free (that is the
|
|
* case for x86 for example).
|
|
*
|
|
* If there is no other protection through preempt disable and/or
|
|
* disabling interupts then one of these RMW operations can show unexpected
|
|
* behavior because the execution thread was rescheduled on another processor
|
|
* or an interrupt occurred and the same percpu variable was modified from
|
|
* the interrupt context.
|
|
*/
|
|
#ifndef __this_cpu_read
|
|
# ifndef __this_cpu_read_1
|
|
# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
|
|
# endif
|
|
# ifndef __this_cpu_read_2
|
|
# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
|
|
# endif
|
|
# ifndef __this_cpu_read_4
|
|
# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
|
|
# endif
|
|
# ifndef __this_cpu_read_8
|
|
# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
|
|
# endif
|
|
# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
|
|
#endif
|
|
|
|
#define __this_cpu_generic_to_op(pcp, val, op) \
|
|
do { \
|
|
*__this_cpu_ptr(&(pcp)) op val; \
|
|
} while (0)
|
|
|
|
#ifndef __this_cpu_write
|
|
# ifndef __this_cpu_write_1
|
|
# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef __this_cpu_write_2
|
|
# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef __this_cpu_write_4
|
|
# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef __this_cpu_write_8
|
|
# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_add
|
|
# ifndef __this_cpu_add_1
|
|
# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef __this_cpu_add_2
|
|
# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef __this_cpu_add_4
|
|
# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef __this_cpu_add_8
|
|
# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_sub
|
|
# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_inc
|
|
# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef __this_cpu_dec
|
|
# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef __this_cpu_and
|
|
# ifndef __this_cpu_and_1
|
|
# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef __this_cpu_and_2
|
|
# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef __this_cpu_and_4
|
|
# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef __this_cpu_and_8
|
|
# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_or
|
|
# ifndef __this_cpu_or_1
|
|
# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef __this_cpu_or_2
|
|
# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef __this_cpu_or_4
|
|
# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef __this_cpu_or_8
|
|
# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_xor
|
|
# ifndef __this_cpu_xor_1
|
|
# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef __this_cpu_xor_2
|
|
# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef __this_cpu_xor_4
|
|
# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef __this_cpu_xor_8
|
|
# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
|
|
#endif
|
|
|
|
/*
|
|
* IRQ safe versions of the per cpu RMW operations. Note that these operations
|
|
* are *not* safe against modification of the same variable from another
|
|
* processors (which one gets when using regular atomic operations)
|
|
. They are guaranteed to be atomic vs. local interrupts and
|
|
* preemption only.
|
|
*/
|
|
#define irqsafe_cpu_generic_to_op(pcp, val, op) \
|
|
do { \
|
|
unsigned long flags; \
|
|
local_irq_save(flags); \
|
|
*__this_cpu_ptr(&(pcp)) op val; \
|
|
local_irq_restore(flags); \
|
|
} while (0)
|
|
|
|
#ifndef irqsafe_cpu_add
|
|
# ifndef irqsafe_cpu_add_1
|
|
# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_add_2
|
|
# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_add_4
|
|
# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_add_8
|
|
# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef irqsafe_cpu_sub
|
|
# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
|
|
#endif
|
|
|
|
#ifndef irqsafe_cpu_inc
|
|
# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef irqsafe_cpu_dec
|
|
# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef irqsafe_cpu_and
|
|
# ifndef irqsafe_cpu_and_1
|
|
# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_and_2
|
|
# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_and_4
|
|
# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_and_8
|
|
# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
|
|
#endif
|
|
|
|
#ifndef irqsafe_cpu_or
|
|
# ifndef irqsafe_cpu_or_1
|
|
# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_or_2
|
|
# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_or_4
|
|
# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_or_8
|
|
# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
|
|
#endif
|
|
|
|
#ifndef irqsafe_cpu_xor
|
|
# ifndef irqsafe_cpu_xor_1
|
|
# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_xor_2
|
|
# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_xor_4
|
|
# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef irqsafe_cpu_xor_8
|
|
# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
|
|
#endif
|
|
|
|
#endif /* __LINUX_PERCPU_H */
|