WSL2-Linux-Kernel/sound/pci/ctxfi/cthw20k2.c

2361 строка
52 KiB
C

/**
* Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
*
* This source file is released under GPL v2 license (no other versions).
* See the COPYING file included in the main directory of this source
* distribution for the license terms and conditions.
*
* @File cthw20k2.c
*
* @Brief
* This file contains the implementation of hardware access method for 20k2.
*
* @Author Liu Chun
* @Date May 14 2008
*
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include "cthw20k2.h"
#include "ct20k2reg.h"
#if BITS_PER_LONG == 32
#define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */
#else
#define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */
#endif
struct hw20k2 {
struct hw hw;
/* for i2c */
unsigned char dev_id;
unsigned char addr_size;
unsigned char data_size;
int mic_source;
};
static u32 hw_read_20kx(struct hw *hw, u32 reg);
static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
/*
* Type definition block.
* The layout of control structures can be directly applied on 20k2 chip.
*/
/*
* SRC control block definitions.
*/
/* SRC resource control block */
#define SRCCTL_STATE 0x00000007
#define SRCCTL_BM 0x00000008
#define SRCCTL_RSR 0x00000030
#define SRCCTL_SF 0x000001C0
#define SRCCTL_WR 0x00000200
#define SRCCTL_PM 0x00000400
#define SRCCTL_ROM 0x00001800
#define SRCCTL_VO 0x00002000
#define SRCCTL_ST 0x00004000
#define SRCCTL_IE 0x00008000
#define SRCCTL_ILSZ 0x000F0000
#define SRCCTL_BP 0x00100000
#define SRCCCR_CISZ 0x000007FF
#define SRCCCR_CWA 0x001FF800
#define SRCCCR_D 0x00200000
#define SRCCCR_RS 0x01C00000
#define SRCCCR_NAL 0x3E000000
#define SRCCCR_RA 0xC0000000
#define SRCCA_CA 0x0FFFFFFF
#define SRCCA_RS 0xE0000000
#define SRCSA_SA 0x0FFFFFFF
#define SRCLA_LA 0x0FFFFFFF
/* Mixer Parameter Ring ram Low and Hight register.
* Fixed-point value in 8.24 format for parameter channel */
#define MPRLH_PITCH 0xFFFFFFFF
/* SRC resource register dirty flags */
union src_dirty {
struct {
u16 ctl:1;
u16 ccr:1;
u16 sa:1;
u16 la:1;
u16 ca:1;
u16 mpr:1;
u16 czbfs:1; /* Clear Z-Buffers */
u16 rsv:9;
} bf;
u16 data;
};
struct src_rsc_ctrl_blk {
unsigned int ctl;
unsigned int ccr;
unsigned int ca;
unsigned int sa;
unsigned int la;
unsigned int mpr;
union src_dirty dirty;
};
/* SRC manager control block */
union src_mgr_dirty {
struct {
u16 enb0:1;
u16 enb1:1;
u16 enb2:1;
u16 enb3:1;
u16 enb4:1;
u16 enb5:1;
u16 enb6:1;
u16 enb7:1;
u16 enbsa:1;
u16 rsv:7;
} bf;
u16 data;
};
struct src_mgr_ctrl_blk {
unsigned int enbsa;
unsigned int enb[8];
union src_mgr_dirty dirty;
};
/* SRCIMP manager control block */
#define SRCAIM_ARC 0x00000FFF
#define SRCAIM_NXT 0x00FF0000
#define SRCAIM_SRC 0xFF000000
struct srcimap {
unsigned int srcaim;
unsigned int idx;
};
/* SRCIMP manager register dirty flags */
union srcimp_mgr_dirty {
struct {
u16 srcimap:1;
u16 rsv:15;
} bf;
u16 data;
};
struct srcimp_mgr_ctrl_blk {
struct srcimap srcimap;
union srcimp_mgr_dirty dirty;
};
/*
* Function implementation block.
*/
static int src_get_rsc_ctrl_blk(void **rblk)
{
struct src_rsc_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int src_put_rsc_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int src_set_state(void *blk, unsigned int state)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_STATE, state);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_bm(void *blk, unsigned int bm)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_BM, bm);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_rsr(void *blk, unsigned int rsr)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_RSR, rsr);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_sf(void *blk, unsigned int sf)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_SF, sf);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_wr(void *blk, unsigned int wr)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_WR, wr);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_pm(void *blk, unsigned int pm)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_PM, pm);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_rom(void *blk, unsigned int rom)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_ROM, rom);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_vo(void *blk, unsigned int vo)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_VO, vo);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_st(void *blk, unsigned int st)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_ST, st);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_ie(void *blk, unsigned int ie)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_IE, ie);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_ilsz(void *blk, unsigned int ilsz)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_bp(void *blk, unsigned int bp)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_BP, bp);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_cisz(void *blk, unsigned int cisz)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
ctl->dirty.bf.ccr = 1;
return 0;
}
static int src_set_ca(void *blk, unsigned int ca)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ca, SRCCA_CA, ca);
ctl->dirty.bf.ca = 1;
return 0;
}
static int src_set_sa(void *blk, unsigned int sa)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->sa, SRCSA_SA, sa);
ctl->dirty.bf.sa = 1;
return 0;
}
static int src_set_la(void *blk, unsigned int la)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->la, SRCLA_LA, la);
ctl->dirty.bf.la = 1;
return 0;
}
static int src_set_pitch(void *blk, unsigned int pitch)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->mpr, MPRLH_PITCH, pitch);
ctl->dirty.bf.mpr = 1;
return 0;
}
static int src_set_clear_zbufs(void *blk, unsigned int clear)
{
((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
return 0;
}
static int src_set_dirty(void *blk, unsigned int flags)
{
((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
return 0;
}
static int src_set_dirty_all(void *blk)
{
((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
return 0;
}
#define AR_SLOT_SIZE 4096
#define AR_SLOT_BLOCK_SIZE 16
#define AR_PTS_PITCH 6
#define AR_PARAM_SRC_OFFSET 0x60
static unsigned int src_param_pitch_mixer(unsigned int src_idx)
{
return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
- AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
}
static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
{
struct src_rsc_ctrl_blk *ctl = blk;
int i;
if (ctl->dirty.bf.czbfs) {
/* Clear Z-Buffer registers */
for (i = 0; i < 8; i++)
hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
for (i = 0; i < 4; i++)
hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
for (i = 0; i < 8; i++)
hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
ctl->dirty.bf.czbfs = 0;
}
if (ctl->dirty.bf.mpr) {
/* Take the parameter mixer resource in the same group as that
* the idx src is in for simplicity. Unlike src, all conjugate
* parameter mixer resources must be programmed for
* corresponding conjugate src resources. */
unsigned int pm_idx = src_param_pitch_mixer(idx);
hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
ctl->dirty.bf.mpr = 0;
}
if (ctl->dirty.bf.sa) {
hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
ctl->dirty.bf.sa = 0;
}
if (ctl->dirty.bf.la) {
hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
ctl->dirty.bf.la = 0;
}
if (ctl->dirty.bf.ca) {
hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
ctl->dirty.bf.ca = 0;
}
/* Write srccf register */
hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
if (ctl->dirty.bf.ccr) {
hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
ctl->dirty.bf.ccr = 0;
}
if (ctl->dirty.bf.ctl) {
hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
ctl->dirty.bf.ctl = 0;
}
return 0;
}
static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
{
struct src_rsc_ctrl_blk *ctl = blk;
ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
ctl->dirty.bf.ca = 0;
return get_field(ctl->ca, SRCCA_CA);
}
static unsigned int src_get_dirty(void *blk)
{
return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
}
static unsigned int src_dirty_conj_mask(void)
{
return 0x20;
}
static int src_mgr_enbs_src(void *blk, unsigned int idx)
{
((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
return 0;
}
static int src_mgr_enb_src(void *blk, unsigned int idx)
{
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
return 0;
}
static int src_mgr_dsb_src(void *blk, unsigned int idx)
{
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
return 0;
}
static int src_mgr_commit_write(struct hw *hw, void *blk)
{
struct src_mgr_ctrl_blk *ctl = blk;
int i;
unsigned int ret;
if (ctl->dirty.bf.enbsa) {
do {
ret = hw_read_20kx(hw, SRC_ENBSTAT);
} while (ret & 0x1);
hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
ctl->dirty.bf.enbsa = 0;
}
for (i = 0; i < 8; i++) {
if ((ctl->dirty.data & (0x1 << i))) {
hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
ctl->dirty.data &= ~(0x1 << i);
}
}
return 0;
}
static int src_mgr_get_ctrl_blk(void **rblk)
{
struct src_mgr_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int src_mgr_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int srcimp_mgr_get_ctrl_blk(void **rblk)
{
struct srcimp_mgr_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int srcimp_mgr_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
ctl->dirty.bf.srcimap = 1;
return 0;
}
static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
ctl->dirty.bf.srcimap = 1;
return 0;
}
static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
ctl->dirty.bf.srcimap = 1;
return 0;
}
static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
{
((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
return 0;
}
static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
if (ctl->dirty.bf.srcimap) {
hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
ctl->srcimap.srcaim);
ctl->dirty.bf.srcimap = 0;
}
return 0;
}
/*
* AMIXER control block definitions.
*/
#define AMOPLO_M 0x00000003
#define AMOPLO_IV 0x00000004
#define AMOPLO_X 0x0003FFF0
#define AMOPLO_Y 0xFFFC0000
#define AMOPHI_SADR 0x000000FF
#define AMOPHI_SE 0x80000000
/* AMIXER resource register dirty flags */
union amixer_dirty {
struct {
u16 amoplo:1;
u16 amophi:1;
u16 rsv:14;
} bf;
u16 data;
};
/* AMIXER resource control block */
struct amixer_rsc_ctrl_blk {
unsigned int amoplo;
unsigned int amophi;
union amixer_dirty dirty;
};
static int amixer_set_mode(void *blk, unsigned int mode)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amoplo, AMOPLO_M, mode);
ctl->dirty.bf.amoplo = 1;
return 0;
}
static int amixer_set_iv(void *blk, unsigned int iv)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amoplo, AMOPLO_IV, iv);
ctl->dirty.bf.amoplo = 1;
return 0;
}
static int amixer_set_x(void *blk, unsigned int x)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amoplo, AMOPLO_X, x);
ctl->dirty.bf.amoplo = 1;
return 0;
}
static int amixer_set_y(void *blk, unsigned int y)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amoplo, AMOPLO_Y, y);
ctl->dirty.bf.amoplo = 1;
return 0;
}
static int amixer_set_sadr(void *blk, unsigned int sadr)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amophi, AMOPHI_SADR, sadr);
ctl->dirty.bf.amophi = 1;
return 0;
}
static int amixer_set_se(void *blk, unsigned int se)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amophi, AMOPHI_SE, se);
ctl->dirty.bf.amophi = 1;
return 0;
}
static int amixer_set_dirty(void *blk, unsigned int flags)
{
((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
return 0;
}
static int amixer_set_dirty_all(void *blk)
{
((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
return 0;
}
static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
ctl->dirty.bf.amoplo = 0;
hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
ctl->dirty.bf.amophi = 0;
}
return 0;
}
static int amixer_get_y(void *blk)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
return get_field(ctl->amoplo, AMOPLO_Y);
}
static unsigned int amixer_get_dirty(void *blk)
{
return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
}
static int amixer_rsc_get_ctrl_blk(void **rblk)
{
struct amixer_rsc_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int amixer_rsc_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int amixer_mgr_get_ctrl_blk(void **rblk)
{
*rblk = NULL;
return 0;
}
static int amixer_mgr_put_ctrl_blk(void *blk)
{
return 0;
}
/*
* DAIO control block definitions.
*/
/* Receiver Sample Rate Tracker Control register */
#define SRTCTL_SRCO 0x000000FF
#define SRTCTL_SRCM 0x0000FF00
#define SRTCTL_RSR 0x00030000
#define SRTCTL_DRAT 0x00300000
#define SRTCTL_EC 0x01000000
#define SRTCTL_ET 0x10000000
/* DAIO Receiver register dirty flags */
union dai_dirty {
struct {
u16 srt:1;
u16 rsv:15;
} bf;
u16 data;
};
/* DAIO Receiver control block */
struct dai_ctrl_blk {
unsigned int srt;
union dai_dirty dirty;
};
/* Audio Input Mapper RAM */
#define AIM_ARC 0x00000FFF
#define AIM_NXT 0x007F0000
struct daoimap {
unsigned int aim;
unsigned int idx;
};
/* Audio Transmitter Control and Status register */
#define ATXCTL_EN 0x00000001
#define ATXCTL_MODE 0x00000010
#define ATXCTL_CD 0x00000020
#define ATXCTL_RAW 0x00000100
#define ATXCTL_MT 0x00000200
#define ATXCTL_NUC 0x00003000
#define ATXCTL_BEN 0x00010000
#define ATXCTL_BMUX 0x00700000
#define ATXCTL_B24 0x01000000
#define ATXCTL_CPF 0x02000000
#define ATXCTL_RIV 0x10000000
#define ATXCTL_LIV 0x20000000
#define ATXCTL_RSAT 0x40000000
#define ATXCTL_LSAT 0x80000000
/* XDIF Transmitter register dirty flags */
union dao_dirty {
struct {
u16 atxcsl:1;
u16 rsv:15;
} bf;
u16 data;
};
/* XDIF Transmitter control block */
struct dao_ctrl_blk {
/* XDIF Transmitter Channel Status Low Register */
unsigned int atxcsl;
union dao_dirty dirty;
};
/* Audio Receiver Control register */
#define ARXCTL_EN 0x00000001
/* DAIO manager register dirty flags */
union daio_mgr_dirty {
struct {
u32 atxctl:8;
u32 arxctl:8;
u32 daoimap:1;
u32 rsv:15;
} bf;
u32 data;
};
/* DAIO manager control block */
struct daio_mgr_ctrl_blk {
struct daoimap daoimap;
unsigned int txctl[8];
unsigned int rxctl[8];
union daio_mgr_dirty dirty;
};
static int dai_srt_set_srco(void *blk, unsigned int src)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srt, SRTCTL_SRCO, src);
ctl->dirty.bf.srt = 1;
return 0;
}
static int dai_srt_set_srcm(void *blk, unsigned int src)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srt, SRTCTL_SRCM, src);
ctl->dirty.bf.srt = 1;
return 0;
}
static int dai_srt_set_rsr(void *blk, unsigned int rsr)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srt, SRTCTL_RSR, rsr);
ctl->dirty.bf.srt = 1;
return 0;
}
static int dai_srt_set_drat(void *blk, unsigned int drat)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srt, SRTCTL_DRAT, drat);
ctl->dirty.bf.srt = 1;
return 0;
}
static int dai_srt_set_ec(void *blk, unsigned int ec)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
ctl->dirty.bf.srt = 1;
return 0;
}
static int dai_srt_set_et(void *blk, unsigned int et)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
ctl->dirty.bf.srt = 1;
return 0;
}
static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
{
struct dai_ctrl_blk *ctl = blk;
if (ctl->dirty.bf.srt) {
hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
ctl->dirty.bf.srt = 0;
}
return 0;
}
static int dai_get_ctrl_blk(void **rblk)
{
struct dai_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int dai_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int dao_set_spos(void *blk, unsigned int spos)
{
((struct dao_ctrl_blk *)blk)->atxcsl = spos;
((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
return 0;
}
static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
{
struct dao_ctrl_blk *ctl = blk;
if (ctl->dirty.bf.atxcsl) {
if (idx < 4) {
/* S/PDIF SPOSx */
hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
ctl->atxcsl);
}
ctl->dirty.bf.atxcsl = 0;
}
return 0;
}
static int dao_get_spos(void *blk, unsigned int *spos)
{
*spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
return 0;
}
static int dao_get_ctrl_blk(void **rblk)
{
struct dao_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int dao_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int daio_mgr_enb_dai(void *blk, unsigned int idx)
{
struct daio_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
ctl->dirty.bf.arxctl |= (0x1 << idx);
return 0;
}
static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
{
struct daio_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
ctl->dirty.bf.arxctl |= (0x1 << idx);
return 0;
}
static int daio_mgr_enb_dao(void *blk, unsigned int idx)
{
struct daio_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
ctl->dirty.bf.atxctl |= (0x1 << idx);
return 0;
}
static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
{
struct daio_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
ctl->dirty.bf.atxctl |= (0x1 << idx);
return 0;
}
static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
{
struct daio_mgr_ctrl_blk *ctl = blk;
if (idx < 4) {
/* S/PDIF output */
switch ((conf & 0x7)) {
case 1:
set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
break;
case 2:
set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
break;
case 4:
set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
break;
case 8:
set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
break;
default:
break;
}
/* CDIF */
set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
/* Non-audio */
set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
/* Non-audio */
set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
set_field(&ctl->txctl[idx], ATXCTL_RAW,
((conf >> 3) & 0x1) ? 0 : 0);
ctl->dirty.bf.atxctl |= (0x1 << idx);
} else {
/* I2S output */
/*idx %= 4; */
}
return 0;
}
static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
{
struct daio_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->daoimap.aim, AIM_ARC, slot);
ctl->dirty.bf.daoimap = 1;
return 0;
}
static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
{
struct daio_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->daoimap.aim, AIM_NXT, next);
ctl->dirty.bf.daoimap = 1;
return 0;
}
static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
{
((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
return 0;
}
static int daio_mgr_commit_write(struct hw *hw, void *blk)
{
struct daio_mgr_ctrl_blk *ctl = blk;
unsigned int data;
int i;
for (i = 0; i < 8; i++) {
if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
data = ctl->txctl[i];
hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
ctl->dirty.bf.atxctl &= ~(0x1 << i);
mdelay(1);
}
if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
data = ctl->rxctl[i];
hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
ctl->dirty.bf.arxctl &= ~(0x1 << i);
mdelay(1);
}
}
if (ctl->dirty.bf.daoimap) {
hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
ctl->daoimap.aim);
ctl->dirty.bf.daoimap = 0;
}
return 0;
}
static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
{
struct daio_mgr_ctrl_blk *blk;
int i;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
for (i = 0; i < 8; i++) {
blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
}
*rblk = blk;
return 0;
}
static int daio_mgr_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
/* Timer interrupt */
static int set_timer_irq(struct hw *hw, int enable)
{
hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
return 0;
}
static int set_timer_tick(struct hw *hw, unsigned int ticks)
{
if (ticks)
ticks |= TIMR_IE | TIMR_IP;
hw_write_20kx(hw, TIMR, ticks);
return 0;
}
static unsigned int get_wc(struct hw *hw)
{
return hw_read_20kx(hw, WC);
}
/* Card hardware initialization block */
struct dac_conf {
unsigned int msr; /* master sample rate in rsrs */
};
struct adc_conf {
unsigned int msr; /* master sample rate in rsrs */
unsigned char input; /* the input source of ADC */
unsigned char mic20db; /* boost mic by 20db if input is microphone */
};
struct daio_conf {
unsigned int msr; /* master sample rate in rsrs */
};
struct trn_conf {
unsigned long vm_pgt_phys;
};
static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
{
u32 data;
int i;
/* Program I2S with proper sample rate and enable the correct I2S
* channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
if (1 == info->msr) {
hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
} else if (2 == info->msr) {
if (hw->model != CTSB1270) {
hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
} else {
/* PCM4220 on Titanium HD is different. */
hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
}
/* Specify all playing 96khz
* EA [0] - Enabled
* RTA [4:5] - 96kHz
* EB [8] - Enabled
* RTB [12:13] - 96kHz
* EC [16] - Enabled
* RTC [20:21] - 96kHz
* ED [24] - Enabled
* RTD [28:29] - 96kHz */
hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
} else if ((4 == info->msr) && (hw->model == CTSB1270)) {
hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
} else {
dev_alert(hw->card->dev,
"ERROR!!! Invalid sampling rate!!!\n");
return -EINVAL;
}
for (i = 0; i < 8; i++) {
if (i <= 3) {
/* This comment looks wrong since loop is over 4 */
/* channels and emu20k2 supports 4 spdif IOs. */
/* 1st 3 channels are SPDIFs (SB0960) */
if (i == 3)
data = 0x1001001;
else
data = 0x1000001;
hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
/* Initialize the SPDIF Out Channel status registers.
* The value specified here is based on the typical
* values provided in the specification, namely: Clock
* Accuracy of 1000ppm, Sample Rate of 48KHz,
* unspecified source number, Generation status = 1,
* Category code = 0x12 (Digital Signal Mixer),
* Mode = 0, Emph = 0, Copy Permitted, AN = 0
* (indicating that we're transmitting digital audio,
* and the Professional Use bit is 0. */
hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
0x02109204); /* Default to 48kHz */
hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
} else {
/* Again, loop is over 4 channels not 5. */
/* Next 5 channels are I2S (SB0960) */
data = 0x11;
hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
if (2 == info->msr) {
/* Four channels per sample period */
data |= 0x1000;
} else if (4 == info->msr) {
/* FIXME: check this against the chip spec */
data |= 0x2000;
}
hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
}
}
return 0;
}
/* TRANSPORT operations */
static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
{
u32 vmctl, data;
u32 ptp_phys_low, ptp_phys_high;
int i;
/* Set up device page table */
if ((~0UL) == info->vm_pgt_phys) {
dev_alert(hw->card->dev,
"Wrong device page table page address!!!\n");
return -1;
}
vmctl = 0x80000C0F; /* 32-bit, 4k-size page */
ptp_phys_low = (u32)info->vm_pgt_phys;
ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
if (sizeof(void *) == 8) /* 64bit address */
vmctl |= (3 << 8);
/* Write page table physical address to all PTPAL registers */
for (i = 0; i < 64; i++) {
hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
}
/* Enable virtual memory transfer */
hw_write_20kx(hw, VMEM_CTL, vmctl);
/* Enable transport bus master and queueing of request */
hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
/* Enable transport ring */
data = hw_read_20kx(hw, TRANSPORT_ENB);
hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
return 0;
}
/* Card initialization */
#define GCTL_AIE 0x00000001
#define GCTL_UAA 0x00000002
#define GCTL_DPC 0x00000004
#define GCTL_DBP 0x00000008
#define GCTL_ABP 0x00000010
#define GCTL_TBP 0x00000020
#define GCTL_SBP 0x00000040
#define GCTL_FBP 0x00000080
#define GCTL_ME 0x00000100
#define GCTL_AID 0x00001000
#define PLLCTL_SRC 0x00000007
#define PLLCTL_SPE 0x00000008
#define PLLCTL_RD 0x000000F0
#define PLLCTL_FD 0x0001FF00
#define PLLCTL_OD 0x00060000
#define PLLCTL_B 0x00080000
#define PLLCTL_AS 0x00100000
#define PLLCTL_LF 0x03E00000
#define PLLCTL_SPS 0x1C000000
#define PLLCTL_AD 0x60000000
#define PLLSTAT_CCS 0x00000007
#define PLLSTAT_SPL 0x00000008
#define PLLSTAT_CRD 0x000000F0
#define PLLSTAT_CFD 0x0001FF00
#define PLLSTAT_SL 0x00020000
#define PLLSTAT_FAS 0x00040000
#define PLLSTAT_B 0x00080000
#define PLLSTAT_PD 0x00100000
#define PLLSTAT_OCA 0x00200000
#define PLLSTAT_NCA 0x00400000
static int hw_pll_init(struct hw *hw, unsigned int rsr)
{
unsigned int pllenb;
unsigned int pllctl;
unsigned int pllstat;
int i;
pllenb = 0xB;
hw_write_20kx(hw, PLL_ENB, pllenb);
pllctl = 0x20C00000;
set_field(&pllctl, PLLCTL_B, 0);
set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
hw_write_20kx(hw, PLL_CTL, pllctl);
mdelay(40);
pllctl = hw_read_20kx(hw, PLL_CTL);
set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
hw_write_20kx(hw, PLL_CTL, pllctl);
mdelay(40);
for (i = 0; i < 1000; i++) {
pllstat = hw_read_20kx(hw, PLL_STAT);
if (get_field(pllstat, PLLSTAT_PD))
continue;
if (get_field(pllstat, PLLSTAT_B) !=
get_field(pllctl, PLLCTL_B))
continue;
if (get_field(pllstat, PLLSTAT_CCS) !=
get_field(pllctl, PLLCTL_SRC))
continue;
if (get_field(pllstat, PLLSTAT_CRD) !=
get_field(pllctl, PLLCTL_RD))
continue;
if (get_field(pllstat, PLLSTAT_CFD) !=
get_field(pllctl, PLLCTL_FD))
continue;
break;
}
if (i >= 1000) {
dev_alert(hw->card->dev,
"PLL initialization failed!!!\n");
return -EBUSY;
}
return 0;
}
static int hw_auto_init(struct hw *hw)
{
unsigned int gctl;
int i;
gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
set_field(&gctl, GCTL_AIE, 0);
hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
set_field(&gctl, GCTL_AIE, 1);
hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
mdelay(10);
for (i = 0; i < 400000; i++) {
gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
if (get_field(gctl, GCTL_AID))
break;
}
if (!get_field(gctl, GCTL_AID)) {
dev_alert(hw->card->dev, "Card Auto-init failed!!!\n");
return -EBUSY;
}
return 0;
}
/* DAC operations */
#define CS4382_MC1 0x1
#define CS4382_MC2 0x2
#define CS4382_MC3 0x3
#define CS4382_FC 0x4
#define CS4382_IC 0x5
#define CS4382_XC1 0x6
#define CS4382_VCA1 0x7
#define CS4382_VCB1 0x8
#define CS4382_XC2 0x9
#define CS4382_VCA2 0xA
#define CS4382_VCB2 0xB
#define CS4382_XC3 0xC
#define CS4382_VCA3 0xD
#define CS4382_VCB3 0xE
#define CS4382_XC4 0xF
#define CS4382_VCA4 0x10
#define CS4382_VCB4 0x11
#define CS4382_CREV 0x12
/* I2C status */
#define STATE_LOCKED 0x00
#define STATE_UNLOCKED 0xAA
#define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */
#define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */
#define I2C_STATUS_DCM 0x00000001
#define I2C_STATUS_BC 0x00000006
#define I2C_STATUS_APD 0x00000008
#define I2C_STATUS_AB 0x00010000
#define I2C_STATUS_DR 0x00800000
#define I2C_ADDRESS_PTAD 0x0000FFFF
#define I2C_ADDRESS_SLAD 0x007F0000
struct regs_cs4382 {
u32 mode_control_1;
u32 mode_control_2;
u32 mode_control_3;
u32 filter_control;
u32 invert_control;
u32 mix_control_P1;
u32 vol_control_A1;
u32 vol_control_B1;
u32 mix_control_P2;
u32 vol_control_A2;
u32 vol_control_B2;
u32 mix_control_P3;
u32 vol_control_A3;
u32 vol_control_B3;
u32 mix_control_P4;
u32 vol_control_A4;
u32 vol_control_B4;
};
static int hw20k2_i2c_unlock_full_access(struct hw *hw)
{
u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4};
/* Send keys for forced BIOS mode */
hw_write_20kx(hw, I2C_IF_WLOCK,
UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
hw_write_20kx(hw, I2C_IF_WLOCK,
UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
/* Check whether the chip is unlocked */
if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
return 0;
return -1;
}
static int hw20k2_i2c_lock_chip(struct hw *hw)
{
/* Write twice */
hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
return 0;
return -1;
}
static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
{
struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
int err;
unsigned int i2c_status;
unsigned int i2c_addr;
err = hw20k2_i2c_unlock_full_access(hw);
if (err < 0)
return err;
hw20k2->addr_size = addr_size;
hw20k2->data_size = data_size;
hw20k2->dev_id = dev_id;
i2c_addr = 0;
set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
return 0;
}
static int hw20k2_i2c_uninit(struct hw *hw)
{
unsigned int i2c_status;
unsigned int i2c_addr;
i2c_addr = 0;
set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
return hw20k2_i2c_lock_chip(hw);
}
static int hw20k2_i2c_wait_data_ready(struct hw *hw)
{
int i = 0x400000;
unsigned int ret;
do {
ret = hw_read_20kx(hw, I2C_IF_STATUS);
} while ((!(ret & DATA_READY)) && --i);
return i;
}
static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
{
struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
unsigned int i2c_status;
i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
set_field(&i2c_status, I2C_STATUS_BC,
(4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
if (!hw20k2_i2c_wait_data_ready(hw))
return -1;
hw_write_20kx(hw, I2C_IF_WDATA, addr);
if (!hw20k2_i2c_wait_data_ready(hw))
return -1;
/* Force a read operation */
hw_write_20kx(hw, I2C_IF_RDATA, 0);
if (!hw20k2_i2c_wait_data_ready(hw))
return -1;
*datap = hw_read_20kx(hw, I2C_IF_RDATA);
return 0;
}
static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
{
struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
unsigned int i2c_status;
i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
set_field(&i2c_status, I2C_STATUS_BC,
(4 == (hw20k2->addr_size + hw20k2->data_size)) ?
0 : (hw20k2->addr_size + hw20k2->data_size));
hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
hw20k2_i2c_wait_data_ready(hw);
/* Dummy write to trigger the write operation */
hw_write_20kx(hw, I2C_IF_WDATA, 0);
hw20k2_i2c_wait_data_ready(hw);
/* This is the real data */
hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
hw20k2_i2c_wait_data_ready(hw);
return 0;
}
static void hw_dac_stop(struct hw *hw)
{
u32 data;
data = hw_read_20kx(hw, GPIO_DATA);
data &= 0xFFFFFFFD;
hw_write_20kx(hw, GPIO_DATA, data);
mdelay(10);
}
static void hw_dac_start(struct hw *hw)
{
u32 data;
data = hw_read_20kx(hw, GPIO_DATA);
data |= 0x2;
hw_write_20kx(hw, GPIO_DATA, data);
mdelay(50);
}
static void hw_dac_reset(struct hw *hw)
{
hw_dac_stop(hw);
hw_dac_start(hw);
}
static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
{
int err;
u32 data;
int i;
struct regs_cs4382 cs_read = {0};
struct regs_cs4382 cs_def = {
0x00000001, /* Mode Control 1 */
0x00000000, /* Mode Control 2 */
0x00000084, /* Mode Control 3 */
0x00000000, /* Filter Control */
0x00000000, /* Invert Control */
0x00000024, /* Mixing Control Pair 1 */
0x00000000, /* Vol Control A1 */
0x00000000, /* Vol Control B1 */
0x00000024, /* Mixing Control Pair 2 */
0x00000000, /* Vol Control A2 */
0x00000000, /* Vol Control B2 */
0x00000024, /* Mixing Control Pair 3 */
0x00000000, /* Vol Control A3 */
0x00000000, /* Vol Control B3 */
0x00000024, /* Mixing Control Pair 4 */
0x00000000, /* Vol Control A4 */
0x00000000 /* Vol Control B4 */
};
if (hw->model == CTSB1270) {
hw_dac_stop(hw);
data = hw_read_20kx(hw, GPIO_DATA);
data &= ~0x0600;
if (1 == info->msr)
data |= 0x0000; /* Single Speed Mode 0-50kHz */
else if (2 == info->msr)
data |= 0x0200; /* Double Speed Mode 50-100kHz */
else
data |= 0x0600; /* Quad Speed Mode 100-200kHz */
hw_write_20kx(hw, GPIO_DATA, data);
hw_dac_start(hw);
return 0;
}
/* Set DAC reset bit as output */
data = hw_read_20kx(hw, GPIO_CTRL);
data |= 0x02;
hw_write_20kx(hw, GPIO_CTRL, data);
err = hw20k2_i2c_init(hw, 0x18, 1, 1);
if (err < 0)
goto End;
for (i = 0; i < 2; i++) {
/* Reset DAC twice just in-case the chip
* didn't initialized properly */
hw_dac_reset(hw);
hw_dac_reset(hw);
if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1))
continue;
if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2))
continue;
if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3))
continue;
if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control))
continue;
if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control))
continue;
if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1))
continue;
if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
continue;
if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
continue;
if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2))
continue;
if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
continue;
if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
continue;
if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3))
continue;
if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
continue;
if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
continue;
if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4))
continue;
if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
continue;
if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
continue;
if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
continue;
else
break;
}
if (i >= 2)
goto End;
/* Note: Every I2C write must have some delay.
* This is not a requirement but the delay works here... */
hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
if (1 == info->msr) {
hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
} else if (2 == info->msr) {
hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
} else {
hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
}
return 0;
End:
hw20k2_i2c_uninit(hw);
return -1;
}
/* ADC operations */
#define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
#define MAKE_WM8775_DATA(data) (u32)(data&0xFF)
#define WM8775_IC 0x0B
#define WM8775_MMC 0x0C
#define WM8775_AADCL 0x0E
#define WM8775_AADCR 0x0F
#define WM8775_ADCMC 0x15
#define WM8775_RESET 0x17
static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
{
u32 data;
if (hw->model == CTSB1270) {
/* Titanium HD has two ADC chips, one for line in and one */
/* for MIC. We don't need to switch the ADC input. */
return 1;
}
data = hw_read_20kx(hw, GPIO_DATA);
switch (type) {
case ADC_MICIN:
data = (data & (0x1 << 14)) ? 1 : 0;
break;
case ADC_LINEIN:
data = (data & (0x1 << 14)) ? 0 : 1;
break;
default:
data = 0;
}
return data;
}
#define MIC_BOOST_0DB 0xCF
#define MIC_BOOST_STEPS_PER_DB 2
static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
{
u32 adcmc, gain;
if (input > 3)
input = 3;
adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
MAKE_WM8775_DATA(adcmc));
if (gain_in_db < -103)
gain_in_db = -103;
if (gain_in_db > 24)
gain_in_db = 24;
gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
MAKE_WM8775_DATA(gain));
/* ...so there should be no need for the following. */
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
MAKE_WM8775_DATA(gain));
}
static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
{
u32 data;
data = hw_read_20kx(hw, GPIO_DATA);
switch (type) {
case ADC_MICIN:
data |= (0x1 << 14);
hw_write_20kx(hw, GPIO_DATA, data);
hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
break;
case ADC_LINEIN:
data &= ~(0x1 << 14);
hw_write_20kx(hw, GPIO_DATA, data);
hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
break;
default:
break;
}
return 0;
}
static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
{
int err;
u32 data, ctl;
/* Set ADC reset bit as output */
data = hw_read_20kx(hw, GPIO_CTRL);
data |= (0x1 << 15);
hw_write_20kx(hw, GPIO_CTRL, data);
/* Initialize I2C */
err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
if (err < 0) {
dev_alert(hw->card->dev, "Failure to acquire I2C!!!\n");
goto error;
}
/* Reset the ADC (reset is active low). */
data = hw_read_20kx(hw, GPIO_DATA);
data &= ~(0x1 << 15);
hw_write_20kx(hw, GPIO_DATA, data);
if (hw->model == CTSB1270) {
/* Set up the PCM4220 ADC on Titanium HD */
data &= ~0x0C;
if (1 == info->msr)
data |= 0x00; /* Single Speed Mode 32-50kHz */
else if (2 == info->msr)
data |= 0x08; /* Double Speed Mode 50-108kHz */
else
data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
hw_write_20kx(hw, GPIO_DATA, data);
}
mdelay(10);
/* Return the ADC to normal operation. */
data |= (0x1 << 15);
hw_write_20kx(hw, GPIO_DATA, data);
mdelay(50);
/* I2C write to register offset 0x0B to set ADC LRCLK polarity */
/* invert bit, interface format to I2S, word length to 24-bit, */
/* enable ADC high pass filter. Fixes bug 5323? */
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
MAKE_WM8775_DATA(0x26));
/* Set the master mode (256fs) */
if (1 == info->msr) {
/* slave mode, 128x oversampling 256fs */
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
MAKE_WM8775_DATA(0x02));
} else if ((2 == info->msr) || (4 == info->msr)) {
/* slave mode, 64x oversampling, 256fs */
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
MAKE_WM8775_DATA(0x0A));
} else {
dev_alert(hw->card->dev,
"Invalid master sampling rate (msr %d)!!!\n",
info->msr);
err = -EINVAL;
goto error;
}
if (hw->model != CTSB1270) {
/* Configure GPIO bit 14 change to line-in/mic-in */
ctl = hw_read_20kx(hw, GPIO_CTRL);
ctl |= 0x1 << 14;
hw_write_20kx(hw, GPIO_CTRL, ctl);
hw_adc_input_select(hw, ADC_LINEIN);
} else {
hw_wm8775_input_select(hw, 0, 0);
}
return 0;
error:
hw20k2_i2c_uninit(hw);
return err;
}
static struct capabilities hw_capabilities(struct hw *hw)
{
struct capabilities cap;
cap.digit_io_switch = 0;
cap.dedicated_mic = hw->model == CTSB1270;
cap.output_switch = hw->model == CTSB1270;
cap.mic_source_switch = hw->model == CTSB1270;
return cap;
}
static int hw_output_switch_get(struct hw *hw)
{
u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
switch (data & 0x30) {
case 0x00:
return 0;
case 0x10:
return 1;
case 0x20:
return 2;
default:
return 3;
}
}
static int hw_output_switch_put(struct hw *hw, int position)
{
u32 data;
if (position == hw_output_switch_get(hw))
return 0;
/* Mute line and headphones (intended for anti-pop). */
data = hw_read_20kx(hw, GPIO_DATA);
data |= (0x03 << 11);
hw_write_20kx(hw, GPIO_DATA, data);
data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
switch (position) {
case 0:
break;
case 1:
data |= 0x10;
break;
default:
data |= 0x20;
}
hw_write_20kx(hw, GPIO_EXT_DATA, data);
/* Unmute line and headphones. */
data = hw_read_20kx(hw, GPIO_DATA);
data &= ~(0x03 << 11);
hw_write_20kx(hw, GPIO_DATA, data);
return 1;
}
static int hw_mic_source_switch_get(struct hw *hw)
{
struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
return hw20k2->mic_source;
}
static int hw_mic_source_switch_put(struct hw *hw, int position)
{
struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
if (position == hw20k2->mic_source)
return 0;
switch (position) {
case 0:
hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
break;
case 1:
hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
break;
case 2:
hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
break;
default:
return 0;
}
hw20k2->mic_source = position;
return 1;
}
static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
{
struct hw *hw = dev_id;
unsigned int status;
status = hw_read_20kx(hw, GIP);
if (!status)
return IRQ_NONE;
if (hw->irq_callback)
hw->irq_callback(hw->irq_callback_data, status);
hw_write_20kx(hw, GIP, status);
return IRQ_HANDLED;
}
static int hw_card_start(struct hw *hw)
{
int err = 0;
struct pci_dev *pci = hw->pci;
unsigned int gctl;
err = pci_enable_device(pci);
if (err < 0)
return err;
/* Set DMA transfer mask */
if (dma_set_mask(&pci->dev, CT_XFI_DMA_MASK) < 0 ||
dma_set_coherent_mask(&pci->dev, CT_XFI_DMA_MASK) < 0) {
dev_err(hw->card->dev,
"architecture does not support PCI busmaster DMA with mask 0x%llx\n",
CT_XFI_DMA_MASK);
err = -ENXIO;
goto error1;
}
if (!hw->io_base) {
err = pci_request_regions(pci, "XFi");
if (err < 0)
goto error1;
hw->io_base = pci_resource_start(hw->pci, 2);
hw->mem_base = ioremap(hw->io_base,
pci_resource_len(hw->pci, 2));
if (!hw->mem_base) {
err = -ENOENT;
goto error2;
}
}
/* Switch to 20k2 mode from UAA mode. */
gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
set_field(&gctl, GCTL_UAA, 0);
hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
if (hw->irq < 0) {
err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
KBUILD_MODNAME, hw);
if (err < 0) {
dev_err(hw->card->dev,
"XFi: Cannot get irq %d\n", pci->irq);
goto error2;
}
hw->irq = pci->irq;
}
pci_set_master(pci);
return 0;
/*error3:
iounmap((void *)hw->mem_base);
hw->mem_base = (unsigned long)NULL;*/
error2:
pci_release_regions(pci);
hw->io_base = 0;
error1:
pci_disable_device(pci);
return err;
}
static int hw_card_stop(struct hw *hw)
{
unsigned int data;
/* disable transport bus master and queueing of request */
hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
/* disable pll */
data = hw_read_20kx(hw, PLL_ENB);
hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
/* TODO: Disable interrupt and so on... */
return 0;
}
static int hw_card_shutdown(struct hw *hw)
{
if (hw->irq >= 0)
free_irq(hw->irq, hw);
hw->irq = -1;
iounmap(hw->mem_base);
hw->mem_base = NULL;
if (hw->io_base)
pci_release_regions(hw->pci);
hw->io_base = 0;
pci_disable_device(hw->pci);
return 0;
}
static int hw_card_init(struct hw *hw, struct card_conf *info)
{
int err;
unsigned int gctl;
u32 data = 0;
struct dac_conf dac_info = {0};
struct adc_conf adc_info = {0};
struct daio_conf daio_info = {0};
struct trn_conf trn_info = {0};
/* Get PCI io port/memory base address and
* do 20kx core switch if needed. */
err = hw_card_start(hw);
if (err)
return err;
/* PLL init */
err = hw_pll_init(hw, info->rsr);
if (err < 0)
return err;
/* kick off auto-init */
err = hw_auto_init(hw);
if (err < 0)
return err;
gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
set_field(&gctl, GCTL_DBP, 1);
set_field(&gctl, GCTL_TBP, 1);
set_field(&gctl, GCTL_FBP, 1);
set_field(&gctl, GCTL_DPC, 0);
hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
/* Reset all global pending interrupts */
hw_write_20kx(hw, GIE, 0);
/* Reset all SRC pending interrupts */
hw_write_20kx(hw, SRC_IP, 0);
if (hw->model != CTSB1270) {
/* TODO: detect the card ID and configure GPIO accordingly. */
/* Configures GPIO (0xD802 0x98028) */
/*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
/* Configures GPIO (SB0880) */
/*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
hw_write_20kx(hw, GPIO_CTRL, 0xD802);
} else {
hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
}
/* Enable audio ring */
hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
trn_info.vm_pgt_phys = info->vm_pgt_phys;
err = hw_trn_init(hw, &trn_info);
if (err < 0)
return err;
daio_info.msr = info->msr;
err = hw_daio_init(hw, &daio_info);
if (err < 0)
return err;
dac_info.msr = info->msr;
err = hw_dac_init(hw, &dac_info);
if (err < 0)
return err;
adc_info.msr = info->msr;
adc_info.input = ADC_LINEIN;
adc_info.mic20db = 0;
err = hw_adc_init(hw, &adc_info);
if (err < 0)
return err;
data = hw_read_20kx(hw, SRC_MCTL);
data |= 0x1; /* Enables input from the audio ring */
hw_write_20kx(hw, SRC_MCTL, data);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int hw_suspend(struct hw *hw)
{
hw_card_stop(hw);
return 0;
}
static int hw_resume(struct hw *hw, struct card_conf *info)
{
/* Re-initialize card hardware. */
return hw_card_init(hw, info);
}
#endif
static u32 hw_read_20kx(struct hw *hw, u32 reg)
{
return readl(hw->mem_base + reg);
}
static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
{
writel(data, hw->mem_base + reg);
}
static struct hw ct20k2_preset = {
.irq = -1,
.card_init = hw_card_init,
.card_stop = hw_card_stop,
.pll_init = hw_pll_init,
.is_adc_source_selected = hw_is_adc_input_selected,
.select_adc_source = hw_adc_input_select,
.capabilities = hw_capabilities,
.output_switch_get = hw_output_switch_get,
.output_switch_put = hw_output_switch_put,
.mic_source_switch_get = hw_mic_source_switch_get,
.mic_source_switch_put = hw_mic_source_switch_put,
#ifdef CONFIG_PM_SLEEP
.suspend = hw_suspend,
.resume = hw_resume,
#endif
.src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
.src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
.src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
.src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
.src_set_state = src_set_state,
.src_set_bm = src_set_bm,
.src_set_rsr = src_set_rsr,
.src_set_sf = src_set_sf,
.src_set_wr = src_set_wr,
.src_set_pm = src_set_pm,
.src_set_rom = src_set_rom,
.src_set_vo = src_set_vo,
.src_set_st = src_set_st,
.src_set_ie = src_set_ie,
.src_set_ilsz = src_set_ilsz,
.src_set_bp = src_set_bp,
.src_set_cisz = src_set_cisz,
.src_set_ca = src_set_ca,
.src_set_sa = src_set_sa,
.src_set_la = src_set_la,
.src_set_pitch = src_set_pitch,
.src_set_dirty = src_set_dirty,
.src_set_clear_zbufs = src_set_clear_zbufs,
.src_set_dirty_all = src_set_dirty_all,
.src_commit_write = src_commit_write,
.src_get_ca = src_get_ca,
.src_get_dirty = src_get_dirty,
.src_dirty_conj_mask = src_dirty_conj_mask,
.src_mgr_enbs_src = src_mgr_enbs_src,
.src_mgr_enb_src = src_mgr_enb_src,
.src_mgr_dsb_src = src_mgr_dsb_src,
.src_mgr_commit_write = src_mgr_commit_write,
.srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
.srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
.srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
.srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
.srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
.srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
.srcimp_mgr_commit_write = srcimp_mgr_commit_write,
.amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
.amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
.amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
.amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
.amixer_set_mode = amixer_set_mode,
.amixer_set_iv = amixer_set_iv,
.amixer_set_x = amixer_set_x,
.amixer_set_y = amixer_set_y,
.amixer_set_sadr = amixer_set_sadr,
.amixer_set_se = amixer_set_se,
.amixer_set_dirty = amixer_set_dirty,
.amixer_set_dirty_all = amixer_set_dirty_all,
.amixer_commit_write = amixer_commit_write,
.amixer_get_y = amixer_get_y,
.amixer_get_dirty = amixer_get_dirty,
.dai_get_ctrl_blk = dai_get_ctrl_blk,
.dai_put_ctrl_blk = dai_put_ctrl_blk,
.dai_srt_set_srco = dai_srt_set_srco,
.dai_srt_set_srcm = dai_srt_set_srcm,
.dai_srt_set_rsr = dai_srt_set_rsr,
.dai_srt_set_drat = dai_srt_set_drat,
.dai_srt_set_ec = dai_srt_set_ec,
.dai_srt_set_et = dai_srt_set_et,
.dai_commit_write = dai_commit_write,
.dao_get_ctrl_blk = dao_get_ctrl_blk,
.dao_put_ctrl_blk = dao_put_ctrl_blk,
.dao_set_spos = dao_set_spos,
.dao_commit_write = dao_commit_write,
.dao_get_spos = dao_get_spos,
.daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
.daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
.daio_mgr_enb_dai = daio_mgr_enb_dai,
.daio_mgr_dsb_dai = daio_mgr_dsb_dai,
.daio_mgr_enb_dao = daio_mgr_enb_dao,
.daio_mgr_dsb_dao = daio_mgr_dsb_dao,
.daio_mgr_dao_init = daio_mgr_dao_init,
.daio_mgr_set_imaparc = daio_mgr_set_imaparc,
.daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
.daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
.daio_mgr_commit_write = daio_mgr_commit_write,
.set_timer_irq = set_timer_irq,
.set_timer_tick = set_timer_tick,
.get_wc = get_wc,
};
int create_20k2_hw_obj(struct hw **rhw)
{
struct hw20k2 *hw20k2;
*rhw = NULL;
hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
if (!hw20k2)
return -ENOMEM;
hw20k2->hw = ct20k2_preset;
*rhw = &hw20k2->hw;
return 0;
}
int destroy_20k2_hw_obj(struct hw *hw)
{
if (hw->io_base)
hw_card_shutdown(hw);
kfree(hw);
return 0;
}