425 строки
12 KiB
C
425 строки
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Generic Reed Solomon encoder / decoder library
|
|
*
|
|
* Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
|
|
*
|
|
* Reed Solomon code lifted from reed solomon library written by Phil Karn
|
|
* Copyright 2002 Phil Karn, KA9Q
|
|
*
|
|
* Description:
|
|
*
|
|
* The generic Reed Solomon library provides runtime configurable
|
|
* encoding / decoding of RS codes.
|
|
*
|
|
* Each user must call init_rs to get a pointer to a rs_control structure
|
|
* for the given rs parameters. The control struct is unique per instance.
|
|
* It points to a codec which can be shared by multiple control structures.
|
|
* If a codec is newly allocated then the polynomial arrays for fast
|
|
* encoding / decoding are built. This can take some time so make sure not
|
|
* to call this function from a time critical path. Usually a module /
|
|
* driver should initialize the necessary rs_control structure on module /
|
|
* driver init and release it on exit.
|
|
*
|
|
* The encoding puts the calculated syndrome into a given syndrome buffer.
|
|
*
|
|
* The decoding is a two step process. The first step calculates the
|
|
* syndrome over the received (data + syndrome) and calls the second stage,
|
|
* which does the decoding / error correction itself. Many hw encoders
|
|
* provide a syndrome calculation over the received data + syndrome and can
|
|
* call the second stage directly.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rslib.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mutex.h>
|
|
|
|
enum {
|
|
RS_DECODE_LAMBDA,
|
|
RS_DECODE_SYN,
|
|
RS_DECODE_B,
|
|
RS_DECODE_T,
|
|
RS_DECODE_OMEGA,
|
|
RS_DECODE_ROOT,
|
|
RS_DECODE_REG,
|
|
RS_DECODE_LOC,
|
|
RS_DECODE_NUM_BUFFERS
|
|
};
|
|
|
|
/* This list holds all currently allocated rs codec structures */
|
|
static LIST_HEAD(codec_list);
|
|
/* Protection for the list */
|
|
static DEFINE_MUTEX(rslistlock);
|
|
|
|
/**
|
|
* codec_init - Initialize a Reed-Solomon codec
|
|
* @symsize: symbol size, bits (1-8)
|
|
* @gfpoly: Field generator polynomial coefficients
|
|
* @gffunc: Field generator function
|
|
* @fcr: first root of RS code generator polynomial, index form
|
|
* @prim: primitive element to generate polynomial roots
|
|
* @nroots: RS code generator polynomial degree (number of roots)
|
|
* @gfp: GFP_ flags for allocations
|
|
*
|
|
* Allocate a codec structure and the polynom arrays for faster
|
|
* en/decoding. Fill the arrays according to the given parameters.
|
|
*/
|
|
static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int),
|
|
int fcr, int prim, int nroots, gfp_t gfp)
|
|
{
|
|
int i, j, sr, root, iprim;
|
|
struct rs_codec *rs;
|
|
|
|
rs = kzalloc(sizeof(*rs), gfp);
|
|
if (!rs)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&rs->list);
|
|
|
|
rs->mm = symsize;
|
|
rs->nn = (1 << symsize) - 1;
|
|
rs->fcr = fcr;
|
|
rs->prim = prim;
|
|
rs->nroots = nroots;
|
|
rs->gfpoly = gfpoly;
|
|
rs->gffunc = gffunc;
|
|
|
|
/* Allocate the arrays */
|
|
rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp);
|
|
if (rs->alpha_to == NULL)
|
|
goto err;
|
|
|
|
rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp);
|
|
if (rs->index_of == NULL)
|
|
goto err;
|
|
|
|
rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp);
|
|
if(rs->genpoly == NULL)
|
|
goto err;
|
|
|
|
/* Generate Galois field lookup tables */
|
|
rs->index_of[0] = rs->nn; /* log(zero) = -inf */
|
|
rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */
|
|
if (gfpoly) {
|
|
sr = 1;
|
|
for (i = 0; i < rs->nn; i++) {
|
|
rs->index_of[sr] = i;
|
|
rs->alpha_to[i] = sr;
|
|
sr <<= 1;
|
|
if (sr & (1 << symsize))
|
|
sr ^= gfpoly;
|
|
sr &= rs->nn;
|
|
}
|
|
} else {
|
|
sr = gffunc(0);
|
|
for (i = 0; i < rs->nn; i++) {
|
|
rs->index_of[sr] = i;
|
|
rs->alpha_to[i] = sr;
|
|
sr = gffunc(sr);
|
|
}
|
|
}
|
|
/* If it's not primitive, exit */
|
|
if(sr != rs->alpha_to[0])
|
|
goto err;
|
|
|
|
/* Find prim-th root of 1, used in decoding */
|
|
for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
|
|
/* prim-th root of 1, index form */
|
|
rs->iprim = iprim / prim;
|
|
|
|
/* Form RS code generator polynomial from its roots */
|
|
rs->genpoly[0] = 1;
|
|
for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
|
|
rs->genpoly[i + 1] = 1;
|
|
/* Multiply rs->genpoly[] by @**(root + x) */
|
|
for (j = i; j > 0; j--) {
|
|
if (rs->genpoly[j] != 0) {
|
|
rs->genpoly[j] = rs->genpoly[j -1] ^
|
|
rs->alpha_to[rs_modnn(rs,
|
|
rs->index_of[rs->genpoly[j]] + root)];
|
|
} else
|
|
rs->genpoly[j] = rs->genpoly[j - 1];
|
|
}
|
|
/* rs->genpoly[0] can never be zero */
|
|
rs->genpoly[0] =
|
|
rs->alpha_to[rs_modnn(rs,
|
|
rs->index_of[rs->genpoly[0]] + root)];
|
|
}
|
|
/* convert rs->genpoly[] to index form for quicker encoding */
|
|
for (i = 0; i <= nroots; i++)
|
|
rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
|
|
|
|
rs->users = 1;
|
|
list_add(&rs->list, &codec_list);
|
|
return rs;
|
|
|
|
err:
|
|
kfree(rs->genpoly);
|
|
kfree(rs->index_of);
|
|
kfree(rs->alpha_to);
|
|
kfree(rs);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* free_rs - Free the rs control structure
|
|
* @rs: The control structure which is not longer used by the
|
|
* caller
|
|
*
|
|
* Free the control structure. If @rs is the last user of the associated
|
|
* codec, free the codec as well.
|
|
*/
|
|
void free_rs(struct rs_control *rs)
|
|
{
|
|
struct rs_codec *cd;
|
|
|
|
if (!rs)
|
|
return;
|
|
|
|
cd = rs->codec;
|
|
mutex_lock(&rslistlock);
|
|
cd->users--;
|
|
if(!cd->users) {
|
|
list_del(&cd->list);
|
|
kfree(cd->alpha_to);
|
|
kfree(cd->index_of);
|
|
kfree(cd->genpoly);
|
|
kfree(cd);
|
|
}
|
|
mutex_unlock(&rslistlock);
|
|
kfree(rs);
|
|
}
|
|
EXPORT_SYMBOL_GPL(free_rs);
|
|
|
|
/**
|
|
* init_rs_internal - Allocate rs control, find a matching codec or allocate a new one
|
|
* @symsize: the symbol size (number of bits)
|
|
* @gfpoly: the extended Galois field generator polynomial coefficients,
|
|
* with the 0th coefficient in the low order bit. The polynomial
|
|
* must be primitive;
|
|
* @gffunc: pointer to function to generate the next field element,
|
|
* or the multiplicative identity element if given 0. Used
|
|
* instead of gfpoly if gfpoly is 0
|
|
* @fcr: the first consecutive root of the rs code generator polynomial
|
|
* in index form
|
|
* @prim: primitive element to generate polynomial roots
|
|
* @nroots: RS code generator polynomial degree (number of roots)
|
|
* @gfp: GFP_ flags for allocations
|
|
*/
|
|
static struct rs_control *init_rs_internal(int symsize, int gfpoly,
|
|
int (*gffunc)(int), int fcr,
|
|
int prim, int nroots, gfp_t gfp)
|
|
{
|
|
struct list_head *tmp;
|
|
struct rs_control *rs;
|
|
unsigned int bsize;
|
|
|
|
/* Sanity checks */
|
|
if (symsize < 1)
|
|
return NULL;
|
|
if (fcr < 0 || fcr >= (1<<symsize))
|
|
return NULL;
|
|
if (prim <= 0 || prim >= (1<<symsize))
|
|
return NULL;
|
|
if (nroots < 0 || nroots >= (1<<symsize))
|
|
return NULL;
|
|
|
|
/*
|
|
* The decoder needs buffers in each control struct instance to
|
|
* avoid variable size or large fixed size allocations on
|
|
* stack. Size the buffers to arrays of [nroots + 1].
|
|
*/
|
|
bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1);
|
|
rs = kzalloc(sizeof(*rs) + bsize, gfp);
|
|
if (!rs)
|
|
return NULL;
|
|
|
|
mutex_lock(&rslistlock);
|
|
|
|
/* Walk through the list and look for a matching entry */
|
|
list_for_each(tmp, &codec_list) {
|
|
struct rs_codec *cd = list_entry(tmp, struct rs_codec, list);
|
|
|
|
if (symsize != cd->mm)
|
|
continue;
|
|
if (gfpoly != cd->gfpoly)
|
|
continue;
|
|
if (gffunc != cd->gffunc)
|
|
continue;
|
|
if (fcr != cd->fcr)
|
|
continue;
|
|
if (prim != cd->prim)
|
|
continue;
|
|
if (nroots != cd->nroots)
|
|
continue;
|
|
/* We have a matching one already */
|
|
cd->users++;
|
|
rs->codec = cd;
|
|
goto out;
|
|
}
|
|
|
|
/* Create a new one */
|
|
rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp);
|
|
if (!rs->codec) {
|
|
kfree(rs);
|
|
rs = NULL;
|
|
}
|
|
out:
|
|
mutex_unlock(&rslistlock);
|
|
return rs;
|
|
}
|
|
|
|
/**
|
|
* init_rs_gfp - Create a RS control struct and initialize it
|
|
* @symsize: the symbol size (number of bits)
|
|
* @gfpoly: the extended Galois field generator polynomial coefficients,
|
|
* with the 0th coefficient in the low order bit. The polynomial
|
|
* must be primitive;
|
|
* @fcr: the first consecutive root of the rs code generator polynomial
|
|
* in index form
|
|
* @prim: primitive element to generate polynomial roots
|
|
* @nroots: RS code generator polynomial degree (number of roots)
|
|
* @gfp: Memory allocation flags.
|
|
*/
|
|
struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim,
|
|
int nroots, gfp_t gfp)
|
|
{
|
|
return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(init_rs_gfp);
|
|
|
|
/**
|
|
* init_rs_non_canonical - Allocate rs control struct for fields with
|
|
* non-canonical representation
|
|
* @symsize: the symbol size (number of bits)
|
|
* @gffunc: pointer to function to generate the next field element,
|
|
* or the multiplicative identity element if given 0. Used
|
|
* instead of gfpoly if gfpoly is 0
|
|
* @fcr: the first consecutive root of the rs code generator polynomial
|
|
* in index form
|
|
* @prim: primitive element to generate polynomial roots
|
|
* @nroots: RS code generator polynomial degree (number of roots)
|
|
*/
|
|
struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
|
|
int fcr, int prim, int nroots)
|
|
{
|
|
return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots,
|
|
GFP_KERNEL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(init_rs_non_canonical);
|
|
|
|
#ifdef CONFIG_REED_SOLOMON_ENC8
|
|
/**
|
|
* encode_rs8 - Calculate the parity for data values (8bit data width)
|
|
* @rsc: the rs control structure
|
|
* @data: data field of a given type
|
|
* @len: data length
|
|
* @par: parity data, must be initialized by caller (usually all 0)
|
|
* @invmsk: invert data mask (will be xored on data)
|
|
*
|
|
* The parity uses a uint16_t data type to enable
|
|
* symbol size > 8. The calling code must take care of encoding of the
|
|
* syndrome result for storage itself.
|
|
*/
|
|
int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par,
|
|
uint16_t invmsk)
|
|
{
|
|
#include "encode_rs.c"
|
|
}
|
|
EXPORT_SYMBOL_GPL(encode_rs8);
|
|
#endif
|
|
|
|
#ifdef CONFIG_REED_SOLOMON_DEC8
|
|
/**
|
|
* decode_rs8 - Decode codeword (8bit data width)
|
|
* @rsc: the rs control structure
|
|
* @data: data field of a given type
|
|
* @par: received parity data field
|
|
* @len: data length
|
|
* @s: syndrome data field, must be in index form
|
|
* (if NULL, syndrome is calculated)
|
|
* @no_eras: number of erasures
|
|
* @eras_pos: position of erasures, can be NULL
|
|
* @invmsk: invert data mask (will be xored on data, not on parity!)
|
|
* @corr: buffer to store correction bitmask on eras_pos
|
|
*
|
|
* The syndrome and parity uses a uint16_t data type to enable
|
|
* symbol size > 8. The calling code must take care of decoding of the
|
|
* syndrome result and the received parity before calling this code.
|
|
*
|
|
* Note: The rs_control struct @rsc contains buffers which are used for
|
|
* decoding, so the caller has to ensure that decoder invocations are
|
|
* serialized.
|
|
*
|
|
* Returns the number of corrected symbols or -EBADMSG for uncorrectable
|
|
* errors. The count includes errors in the parity.
|
|
*/
|
|
int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len,
|
|
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
|
|
uint16_t *corr)
|
|
{
|
|
#include "decode_rs.c"
|
|
}
|
|
EXPORT_SYMBOL_GPL(decode_rs8);
|
|
#endif
|
|
|
|
#ifdef CONFIG_REED_SOLOMON_ENC16
|
|
/**
|
|
* encode_rs16 - Calculate the parity for data values (16bit data width)
|
|
* @rsc: the rs control structure
|
|
* @data: data field of a given type
|
|
* @len: data length
|
|
* @par: parity data, must be initialized by caller (usually all 0)
|
|
* @invmsk: invert data mask (will be xored on data, not on parity!)
|
|
*
|
|
* Each field in the data array contains up to symbol size bits of valid data.
|
|
*/
|
|
int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par,
|
|
uint16_t invmsk)
|
|
{
|
|
#include "encode_rs.c"
|
|
}
|
|
EXPORT_SYMBOL_GPL(encode_rs16);
|
|
#endif
|
|
|
|
#ifdef CONFIG_REED_SOLOMON_DEC16
|
|
/**
|
|
* decode_rs16 - Decode codeword (16bit data width)
|
|
* @rsc: the rs control structure
|
|
* @data: data field of a given type
|
|
* @par: received parity data field
|
|
* @len: data length
|
|
* @s: syndrome data field, must be in index form
|
|
* (if NULL, syndrome is calculated)
|
|
* @no_eras: number of erasures
|
|
* @eras_pos: position of erasures, can be NULL
|
|
* @invmsk: invert data mask (will be xored on data, not on parity!)
|
|
* @corr: buffer to store correction bitmask on eras_pos
|
|
*
|
|
* Each field in the data array contains up to symbol size bits of valid data.
|
|
*
|
|
* Note: The rc_control struct @rsc contains buffers which are used for
|
|
* decoding, so the caller has to ensure that decoder invocations are
|
|
* serialized.
|
|
*
|
|
* Returns the number of corrected symbols or -EBADMSG for uncorrectable
|
|
* errors. The count includes errors in the parity.
|
|
*/
|
|
int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len,
|
|
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
|
|
uint16_t *corr)
|
|
{
|
|
#include "decode_rs.c"
|
|
}
|
|
EXPORT_SYMBOL_GPL(decode_rs16);
|
|
#endif
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
|
|
MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
|
|
|