WSL2-Linux-Kernel/drivers/edac/amd64_edac.c

3088 строки
84 KiB
C

#include "amd64_edac.h"
#include <asm/k8.h>
static struct edac_pci_ctl_info *amd64_ctl_pci;
static int report_gart_errors;
module_param(report_gart_errors, int, 0644);
/*
* Set by command line parameter. If BIOS has enabled the ECC, this override is
* cleared to prevent re-enabling the hardware by this driver.
*/
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);
static struct msr __percpu *msrs;
/* Lookup table for all possible MC control instances */
struct amd64_pvt;
static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
/*
* Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
* later.
*/
static int ddr2_dbam_revCG[] = {
[0] = 32,
[1] = 64,
[2] = 128,
[3] = 256,
[4] = 512,
[5] = 1024,
[6] = 2048,
};
static int ddr2_dbam_revD[] = {
[0] = 32,
[1] = 64,
[2 ... 3] = 128,
[4] = 256,
[5] = 512,
[6] = 256,
[7] = 512,
[8 ... 9] = 1024,
[10] = 2048,
};
static int ddr2_dbam[] = { [0] = 128,
[1] = 256,
[2 ... 4] = 512,
[5 ... 6] = 1024,
[7 ... 8] = 2048,
[9 ... 10] = 4096,
[11] = 8192,
};
static int ddr3_dbam[] = { [0] = -1,
[1] = 256,
[2] = 512,
[3 ... 4] = -1,
[5 ... 6] = 1024,
[7 ... 8] = 2048,
[9 ... 10] = 4096,
[11] = 8192,
};
/*
* Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
* bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
* or higher value'.
*
*FIXME: Produce a better mapping/linearisation.
*/
struct scrubrate scrubrates[] = {
{ 0x01, 1600000000UL},
{ 0x02, 800000000UL},
{ 0x03, 400000000UL},
{ 0x04, 200000000UL},
{ 0x05, 100000000UL},
{ 0x06, 50000000UL},
{ 0x07, 25000000UL},
{ 0x08, 12284069UL},
{ 0x09, 6274509UL},
{ 0x0A, 3121951UL},
{ 0x0B, 1560975UL},
{ 0x0C, 781440UL},
{ 0x0D, 390720UL},
{ 0x0E, 195300UL},
{ 0x0F, 97650UL},
{ 0x10, 48854UL},
{ 0x11, 24427UL},
{ 0x12, 12213UL},
{ 0x13, 6101UL},
{ 0x14, 3051UL},
{ 0x15, 1523UL},
{ 0x16, 761UL},
{ 0x00, 0UL}, /* scrubbing off */
};
/*
* Memory scrubber control interface. For K8, memory scrubbing is handled by
* hardware and can involve L2 cache, dcache as well as the main memory. With
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
* functionality.
*
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
* bytes/sec for the setting.
*
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
* other archs, we might not have access to the caches directly.
*/
/*
* scan the scrub rate mapping table for a close or matching bandwidth value to
* issue. If requested is too big, then use last maximum value found.
*/
static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
u32 min_scrubrate)
{
u32 scrubval;
int i;
/*
* map the configured rate (new_bw) to a value specific to the AMD64
* memory controller and apply to register. Search for the first
* bandwidth entry that is greater or equal than the setting requested
* and program that. If at last entry, turn off DRAM scrubbing.
*/
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
/*
* skip scrub rates which aren't recommended
* (see F10 BKDG, F3x58)
*/
if (scrubrates[i].scrubval < min_scrubrate)
continue;
if (scrubrates[i].bandwidth <= new_bw)
break;
/*
* if no suitable bandwidth found, turn off DRAM scrubbing
* entirely by falling back to the last element in the
* scrubrates array.
*/
}
scrubval = scrubrates[i].scrubval;
if (scrubval)
edac_printk(KERN_DEBUG, EDAC_MC,
"Setting scrub rate bandwidth: %u\n",
scrubrates[i].bandwidth);
else
edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
return 0;
}
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 min_scrubrate = 0x0;
switch (boot_cpu_data.x86) {
case 0xf:
min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
break;
case 0x10:
min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
break;
case 0x11:
min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
break;
default:
amd64_printk(KERN_ERR, "Unsupported family!\n");
break;
}
return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
min_scrubrate);
}
static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 scrubval = 0;
int status = -1, i;
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
scrubval = scrubval & 0x001F;
edac_printk(KERN_DEBUG, EDAC_MC,
"pci-read, sdram scrub control value: %d \n", scrubval);
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
if (scrubrates[i].scrubval == scrubval) {
*bw = scrubrates[i].bandwidth;
status = 0;
break;
}
}
return status;
}
/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
return csrow;
else
return csrow >> 1;
}
/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
{
if (dct == 0)
return pvt->dcsb0[csrow];
else
return pvt->dcsb1[csrow];
}
/*
* Return the 'mask' address the i'th CS entry. This function is needed because
* there number of DCSM registers on Rev E and prior vs Rev F and later is
* different.
*/
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
{
if (dct == 0)
return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
else
return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
}
/*
* In *base and *limit, pass back the full 40-bit base and limit physical
* addresses for the node given by node_id. This information is obtained from
* DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
* base and limit addresses are of type SysAddr, as defined at the start of
* section 3.4.4 (p. 70). They are the lowest and highest physical addresses
* in the address range they represent.
*/
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
u64 *base, u64 *limit)
{
*base = pvt->dram_base[node_id];
*limit = pvt->dram_limit[node_id];
}
/*
* Return 1 if the SysAddr given by sys_addr matches the base/limit associated
* with node_id
*/
static int amd64_base_limit_match(struct amd64_pvt *pvt,
u64 sys_addr, int node_id)
{
u64 base, limit, addr;
amd64_get_base_and_limit(pvt, node_id, &base, &limit);
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
* all ones if the most significant implemented address bit is 1.
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
* Application Programming.
*/
addr = sys_addr & 0x000000ffffffffffull;
return (addr >= base) && (addr <= limit);
}
/*
* Attempt to map a SysAddr to a node. On success, return a pointer to the
* mem_ctl_info structure for the node that the SysAddr maps to.
*
* On failure, return NULL.
*/
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
u64 sys_addr)
{
struct amd64_pvt *pvt;
int node_id;
u32 intlv_en, bits;
/*
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
* 3.4.4.2) registers to map the SysAddr to a node ID.
*/
pvt = mci->pvt_info;
/*
* The value of this field should be the same for all DRAM Base
* registers. Therefore we arbitrarily choose to read it from the
* register for node 0.
*/
intlv_en = pvt->dram_IntlvEn[0];
if (intlv_en == 0) {
for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
if (amd64_base_limit_match(pvt, sys_addr, node_id))
goto found;
}
goto err_no_match;
}
if (unlikely((intlv_en != 0x01) &&
(intlv_en != 0x03) &&
(intlv_en != 0x07))) {
amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
"IntlvEn field of DRAM Base Register for node 0: "
"this probably indicates a BIOS bug.\n", intlv_en);
return NULL;
}
bits = (((u32) sys_addr) >> 12) & intlv_en;
for (node_id = 0; ; ) {
if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
break; /* intlv_sel field matches */
if (++node_id >= DRAM_REG_COUNT)
goto err_no_match;
}
/* sanity test for sys_addr */
if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
amd64_printk(KERN_WARNING,
"%s(): sys_addr 0x%llx falls outside base/limit "
"address range for node %d with node interleaving "
"enabled.\n",
__func__, sys_addr, node_id);
return NULL;
}
found:
return edac_mc_find(node_id);
err_no_match:
debugf2("sys_addr 0x%lx doesn't match any node\n",
(unsigned long)sys_addr);
return NULL;
}
/*
* Extract the DRAM CS base address from selected csrow register.
*/
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
{
return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
pvt->dcs_shift;
}
/*
* Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
*/
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
{
u64 dcsm_bits, other_bits;
u64 mask;
/* Extract bits from DRAM CS Mask. */
dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
other_bits = pvt->dcsm_mask;
other_bits = ~(other_bits << pvt->dcs_shift);
/*
* The extracted bits from DCSM belong in the spaces represented by
* the cleared bits in other_bits.
*/
mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
return mask;
}
/*
* @input_addr is an InputAddr associated with the node given by mci. Return the
* csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
*/
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
struct amd64_pvt *pvt;
int csrow;
u64 base, mask;
pvt = mci->pvt_info;
/*
* Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
* base/mask register pair, test the condition shown near the start of
* section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
*/
for (csrow = 0; csrow < pvt->cs_count; csrow++) {
/* This DRAM chip select is disabled on this node */
if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
continue;
base = base_from_dct_base(pvt, csrow);
mask = ~mask_from_dct_mask(pvt, csrow);
if ((input_addr & mask) == (base & mask)) {
debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
(unsigned long)input_addr, csrow,
pvt->mc_node_id);
return csrow;
}
}
debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
(unsigned long)input_addr, pvt->mc_node_id);
return -1;
}
/*
* Return the base value defined by the DRAM Base register for the node
* represented by mci. This function returns the full 40-bit value despite the
* fact that the register only stores bits 39-24 of the value. See section
* 3.4.4.1 (BKDG #26094, K8, revA-E)
*/
static inline u64 get_dram_base(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
return pvt->dram_base[pvt->mc_node_id];
}
/*
* Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
* for the node represented by mci. Info is passed back in *hole_base,
* *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
* info is invalid. Info may be invalid for either of the following reasons:
*
* - The revision of the node is not E or greater. In this case, the DRAM Hole
* Address Register does not exist.
*
* - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
* indicating that its contents are not valid.
*
* The values passed back in *hole_base, *hole_offset, and *hole_size are
* complete 32-bit values despite the fact that the bitfields in the DHAR
* only represent bits 31-24 of the base and offset values.
*/
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
u64 *hole_offset, u64 *hole_size)
{
struct amd64_pvt *pvt = mci->pvt_info;
u64 base;
/* only revE and later have the DRAM Hole Address Register */
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
debugf1(" revision %d for node %d does not support DHAR\n",
pvt->ext_model, pvt->mc_node_id);
return 1;
}
/* only valid for Fam10h */
if (boot_cpu_data.x86 == 0x10 &&
(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
return 1;
}
if ((pvt->dhar & DHAR_VALID) == 0) {
debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
pvt->mc_node_id);
return 1;
}
/* This node has Memory Hoisting */
/* +------------------+--------------------+--------------------+-----
* | memory | DRAM hole | relocated |
* | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
* | | | DRAM hole |
* | | | [0x100000000, |
* | | | (0x100000000+ |
* | | | (0xffffffff-x))] |
* +------------------+--------------------+--------------------+-----
*
* Above is a diagram of physical memory showing the DRAM hole and the
* relocated addresses from the DRAM hole. As shown, the DRAM hole
* starts at address x (the base address) and extends through address
* 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
* addresses in the hole so that they start at 0x100000000.
*/
base = dhar_base(pvt->dhar);
*hole_base = base;
*hole_size = (0x1ull << 32) - base;
if (boot_cpu_data.x86 > 0xf)
*hole_offset = f10_dhar_offset(pvt->dhar);
else
*hole_offset = k8_dhar_offset(pvt->dhar);
debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
pvt->mc_node_id, (unsigned long)*hole_base,
(unsigned long)*hole_offset, (unsigned long)*hole_size);
return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
/*
* Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
* assumed that sys_addr maps to the node given by mci.
*
* The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
* 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
* SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
* then it is also involved in translating a SysAddr to a DramAddr. Sections
* 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
* These parts of the documentation are unclear. I interpret them as follows:
*
* When node n receives a SysAddr, it processes the SysAddr as follows:
*
* 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
* Limit registers for node n. If the SysAddr is not within the range
* specified by the base and limit values, then node n ignores the Sysaddr
* (since it does not map to node n). Otherwise continue to step 2 below.
*
* 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
* disabled so skip to step 3 below. Otherwise see if the SysAddr is within
* the range of relocated addresses (starting at 0x100000000) from the DRAM
* hole. If not, skip to step 3 below. Else get the value of the
* DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
* offset defined by this value from the SysAddr.
*
* 3. Obtain the base address for node n from the DRAMBase field of the DRAM
* Base register for node n. To obtain the DramAddr, subtract the base
* address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
*/
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
int ret = 0;
dram_base = get_dram_base(mci);
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
&hole_size);
if (!ret) {
if ((sys_addr >= (1ull << 32)) &&
(sys_addr < ((1ull << 32) + hole_size))) {
/* use DHAR to translate SysAddr to DramAddr */
dram_addr = sys_addr - hole_offset;
debugf2("using DHAR to translate SysAddr 0x%lx to "
"DramAddr 0x%lx\n",
(unsigned long)sys_addr,
(unsigned long)dram_addr);
return dram_addr;
}
}
/*
* Translate the SysAddr to a DramAddr as shown near the start of
* section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
* only deals with 40-bit values. Therefore we discard bits 63-40 of
* sys_addr below. If bit 39 of sys_addr is 1 then the bits we
* discard are all 1s. Otherwise the bits we discard are all 0s. See
* section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
* Programmer's Manual Volume 1 Application Programming.
*/
dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
"DramAddr 0x%lx\n", (unsigned long)sys_addr,
(unsigned long)dram_addr);
return dram_addr;
}
/*
* @intlv_en is the value of the IntlvEn field from a DRAM Base register
* (section 3.4.4.1). Return the number of bits from a SysAddr that are used
* for node interleaving.
*/
static int num_node_interleave_bits(unsigned intlv_en)
{
static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
int n;
BUG_ON(intlv_en > 7);
n = intlv_shift_table[intlv_en];
return n;
}
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
struct amd64_pvt *pvt;
int intlv_shift;
u64 input_addr;
pvt = mci->pvt_info;
/*
* See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
* concerning translating a DramAddr to an InputAddr.
*/
intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
(dram_addr & 0xfff);
debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
intlv_shift, (unsigned long)dram_addr,
(unsigned long)input_addr);
return input_addr;
}
/*
* Translate the SysAddr represented by @sys_addr to an InputAddr. It is
* assumed that @sys_addr maps to the node given by mci.
*/
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
u64 input_addr;
input_addr =
dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
(unsigned long)sys_addr, (unsigned long)input_addr);
return input_addr;
}
/*
* @input_addr is an InputAddr associated with the node represented by mci.
* Translate @input_addr to a DramAddr and return the result.
*/
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
struct amd64_pvt *pvt;
int node_id, intlv_shift;
u64 bits, dram_addr;
u32 intlv_sel;
/*
* Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
* shows how to translate a DramAddr to an InputAddr. Here we reverse
* this procedure. When translating from a DramAddr to an InputAddr, the
* bits used for node interleaving are discarded. Here we recover these
* bits from the IntlvSel field of the DRAM Limit register (section
* 3.4.4.2) for the node that input_addr is associated with.
*/
pvt = mci->pvt_info;
node_id = pvt->mc_node_id;
BUG_ON((node_id < 0) || (node_id > 7));
intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
if (intlv_shift == 0) {
debugf1(" InputAddr 0x%lx translates to DramAddr of "
"same value\n", (unsigned long)input_addr);
return input_addr;
}
bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
(input_addr & 0xfff);
intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
dram_addr = bits + (intlv_sel << 12);
debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
"(%d node interleave bits)\n", (unsigned long)input_addr,
(unsigned long)dram_addr, intlv_shift);
return dram_addr;
}
/*
* @dram_addr is a DramAddr that maps to the node represented by mci. Convert
* @dram_addr to a SysAddr.
*/
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
struct amd64_pvt *pvt = mci->pvt_info;
u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
int ret = 0;
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
&hole_size);
if (!ret) {
if ((dram_addr >= hole_base) &&
(dram_addr < (hole_base + hole_size))) {
sys_addr = dram_addr + hole_offset;
debugf1("using DHAR to translate DramAddr 0x%lx to "
"SysAddr 0x%lx\n", (unsigned long)dram_addr,
(unsigned long)sys_addr);
return sys_addr;
}
}
amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
sys_addr = dram_addr + base;
/*
* The sys_addr we have computed up to this point is a 40-bit value
* because the k8 deals with 40-bit values. However, the value we are
* supposed to return is a full 64-bit physical address. The AMD
* x86-64 architecture specifies that the most significant implemented
* address bit through bit 63 of a physical address must be either all
* 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
* 64-bit value below. See section 3.4.2 of AMD publication 24592:
* AMD x86-64 Architecture Programmer's Manual Volume 1 Application
* Programming.
*/
sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
pvt->mc_node_id, (unsigned long)dram_addr,
(unsigned long)sys_addr);
return sys_addr;
}
/*
* @input_addr is an InputAddr associated with the node given by mci. Translate
* @input_addr to a SysAddr.
*/
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
u64 input_addr)
{
return dram_addr_to_sys_addr(mci,
input_addr_to_dram_addr(mci, input_addr));
}
/*
* Find the minimum and maximum InputAddr values that map to the given @csrow.
* Pass back these values in *input_addr_min and *input_addr_max.
*/
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
u64 *input_addr_min, u64 *input_addr_max)
{
struct amd64_pvt *pvt;
u64 base, mask;
pvt = mci->pvt_info;
BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
base = base_from_dct_base(pvt, csrow);
mask = mask_from_dct_mask(pvt, csrow);
*input_addr_min = base & ~mask;
*input_addr_max = base | mask | pvt->dcs_mask_notused;
}
/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
u32 *page, u32 *offset)
{
*page = (u32) (error_address >> PAGE_SHIFT);
*offset = ((u32) error_address) & ~PAGE_MASK;
}
/*
* @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
* Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
* of a node that detected an ECC memory error. mci represents the node that
* the error address maps to (possibly different from the node that detected
* the error). Return the number of the csrow that sys_addr maps to, or -1 on
* error.
*/
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
int csrow;
csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
if (csrow == -1)
amd64_mc_printk(mci, KERN_ERR,
"Failed to translate InputAddr to csrow for "
"address 0x%lx\n", (unsigned long)sys_addr);
return csrow;
}
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
static void amd64_cpu_display_info(struct amd64_pvt *pvt)
{
if (boot_cpu_data.x86 == 0x11)
edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
else if (boot_cpu_data.x86 == 0x10)
edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
else if (boot_cpu_data.x86 == 0xf)
edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
(pvt->ext_model >= K8_REV_F) ?
"Rev F or later" : "Rev E or earlier");
else
/* we'll hardly ever ever get here */
edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
}
/*
* Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
* are ECC capable.
*/
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
int bit;
enum dev_type edac_cap = EDAC_FLAG_NONE;
bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
? 19
: 17;
if (pvt->dclr0 & BIT(bit))
edac_cap = EDAC_FLAG_SECDED;
return edac_cap;
}
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
(dclr & BIT(16)) ? "un" : "",
(dclr & BIT(19)) ? "yes" : "no");
debugf1(" PAR/ERR parity: %s\n",
(dclr & BIT(8)) ? "enabled" : "disabled");
debugf1(" DCT 128bit mode width: %s\n",
(dclr & BIT(11)) ? "128b" : "64b");
debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
(dclr & BIT(12)) ? "yes" : "no",
(dclr & BIT(13)) ? "yes" : "no",
(dclr & BIT(14)) ? "yes" : "no",
(dclr & BIT(15)) ? "yes" : "no");
}
/* Display and decode various NB registers for debug purposes. */
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
{
int ganged;
debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
debugf1(" NB two channel DRAM capable: %s\n",
(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
amd64_dump_dramcfg_low(pvt->dclr0, 0);
debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
"offset: 0x%08x\n",
pvt->dhar,
dhar_base(pvt->dhar),
(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
: f10_dhar_offset(pvt->dhar));
debugf1(" DramHoleValid: %s\n",
(pvt->dhar & DHAR_VALID) ? "yes" : "no");
/* everything below this point is Fam10h and above */
if (boot_cpu_data.x86 == 0xf) {
amd64_debug_display_dimm_sizes(0, pvt);
return;
}
/* Only if NOT ganged does dclr1 have valid info */
if (!dct_ganging_enabled(pvt))
amd64_dump_dramcfg_low(pvt->dclr1, 1);
/*
* Determine if ganged and then dump memory sizes for first controller,
* and if NOT ganged dump info for 2nd controller.
*/
ganged = dct_ganging_enabled(pvt);
amd64_debug_display_dimm_sizes(0, pvt);
if (!ganged)
amd64_debug_display_dimm_sizes(1, pvt);
}
/* Read in both of DBAM registers */
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
{
amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
if (boot_cpu_data.x86 >= 0x10)
amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
}
/*
* NOTE: CPU Revision Dependent code: Rev E and Rev F
*
* Set the DCSB and DCSM mask values depending on the CPU revision value. Also
* set the shift factor for the DCSB and DCSM values.
*
* ->dcs_mask_notused, RevE:
*
* To find the max InputAddr for the csrow, start with the base address and set
* all bits that are "don't care" bits in the test at the start of section
* 3.5.4 (p. 84).
*
* The "don't care" bits are all set bits in the mask and all bits in the gaps
* between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
* represents bits [24:20] and [12:0], which are all bits in the above-mentioned
* gaps.
*
* ->dcs_mask_notused, RevF and later:
*
* To find the max InputAddr for the csrow, start with the base address and set
* all bits that are "don't care" bits in the test at the start of NPT section
* 4.5.4 (p. 87).
*
* The "don't care" bits are all set bits in the mask and all bits in the gaps
* between bit ranges [36:27] and [21:13].
*
* The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
* which are all bits in the above-mentioned gaps.
*/
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
{
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
pvt->dcs_shift = REV_E_DCS_SHIFT;
pvt->cs_count = 8;
pvt->num_dcsm = 8;
} else {
pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
if (boot_cpu_data.x86 == 0x11) {
pvt->cs_count = 4;
pvt->num_dcsm = 2;
} else {
pvt->cs_count = 8;
pvt->num_dcsm = 4;
}
}
}
/*
* Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
*/
static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
{
int cs, reg;
amd64_set_dct_base_and_mask(pvt);
for (cs = 0; cs < pvt->cs_count; cs++) {
reg = K8_DCSB0 + (cs * 4);
if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
cs, pvt->dcsb0[cs], reg);
/* If DCT are NOT ganged, then read in DCT1's base */
if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
reg = F10_DCSB1 + (cs * 4);
if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
&pvt->dcsb1[cs]))
debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
cs, pvt->dcsb1[cs], reg);
} else {
pvt->dcsb1[cs] = 0;
}
}
for (cs = 0; cs < pvt->num_dcsm; cs++) {
reg = K8_DCSM0 + (cs * 4);
if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
cs, pvt->dcsm0[cs], reg);
/* If DCT are NOT ganged, then read in DCT1's mask */
if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
reg = F10_DCSM1 + (cs * 4);
if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
&pvt->dcsm1[cs]))
debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
cs, pvt->dcsm1[cs], reg);
} else {
pvt->dcsm1[cs] = 0;
}
}
}
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
{
enum mem_type type;
if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
if (pvt->dchr0 & DDR3_MODE)
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
else
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
} else {
type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
}
debugf1(" Memory type is: %s\n", edac_mem_types[type]);
return type;
}
/*
* Read the DRAM Configuration Low register. It differs between CG, D & E revs
* and the later RevF memory controllers (DDR vs DDR2)
*
* Return:
* number of memory channels in operation
* Pass back:
* contents of the DCL0_LOW register
*/
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
int flag, err = 0;
err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
if (err)
return err;
if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
/* RevF (NPT) and later */
flag = pvt->dclr0 & F10_WIDTH_128;
} else {
/* RevE and earlier */
flag = pvt->dclr0 & REVE_WIDTH_128;
}
/* not used */
pvt->dclr1 = 0;
return (flag) ? 2 : 1;
}
/* extract the ERROR ADDRESS for the K8 CPUs */
static u64 k8_get_error_address(struct mem_ctl_info *mci,
struct err_regs *info)
{
return (((u64) (info->nbeah & 0xff)) << 32) +
(info->nbeal & ~0x03);
}
/*
* Read the Base and Limit registers for K8 based Memory controllers; extract
* fields from the 'raw' reg into separate data fields
*
* Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
*/
static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
u32 low;
u32 off = dram << 3; /* 8 bytes between DRAM entries */
amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
/* Extract parts into separate data entries */
pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
pvt->dram_rw_en[dram] = (low & 0x3);
amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
/*
* Extract parts into separate data entries. Limit is the HIGHEST memory
* location of the region, so lower 24 bits need to be all ones
*/
pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
pvt->dram_DstNode[dram] = (low & 0x7);
}
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
struct err_regs *info,
u64 sys_addr)
{
struct mem_ctl_info *src_mci;
unsigned short syndrome;
int channel, csrow;
u32 page, offset;
/* Extract the syndrome parts and form a 16-bit syndrome */
syndrome = HIGH_SYNDROME(info->nbsl) << 8;
syndrome |= LOW_SYNDROME(info->nbsh);
/* CHIPKILL enabled */
if (info->nbcfg & K8_NBCFG_CHIPKILL) {
channel = get_channel_from_ecc_syndrome(mci, syndrome);
if (channel < 0) {
/*
* Syndrome didn't map, so we don't know which of the
* 2 DIMMs is in error. So we need to ID 'both' of them
* as suspect.
*/
amd64_mc_printk(mci, KERN_WARNING,
"unknown syndrome 0x%x - possible error "
"reporting race\n", syndrome);
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
return;
}
} else {
/*
* non-chipkill ecc mode
*
* The k8 documentation is unclear about how to determine the
* channel number when using non-chipkill memory. This method
* was obtained from email communication with someone at AMD.
* (Wish the email was placed in this comment - norsk)
*/
channel = ((sys_addr & BIT(3)) != 0);
}
/*
* Find out which node the error address belongs to. This may be
* different from the node that detected the error.
*/
src_mci = find_mc_by_sys_addr(mci, sys_addr);
if (!src_mci) {
amd64_mc_printk(mci, KERN_ERR,
"failed to map error address 0x%lx to a node\n",
(unsigned long)sys_addr);
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
return;
}
/* Now map the sys_addr to a CSROW */
csrow = sys_addr_to_csrow(src_mci, sys_addr);
if (csrow < 0) {
edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
} else {
error_address_to_page_and_offset(sys_addr, &page, &offset);
edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
channel, EDAC_MOD_STR);
}
}
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
{
int *dbam_map;
if (pvt->ext_model >= K8_REV_F)
dbam_map = ddr2_dbam;
else if (pvt->ext_model >= K8_REV_D)
dbam_map = ddr2_dbam_revD;
else
dbam_map = ddr2_dbam_revCG;
return dbam_map[cs_mode];
}
/*
* Get the number of DCT channels in use.
*
* Return:
* number of Memory Channels in operation
* Pass back:
* contents of the DCL0_LOW register
*/
static int f10_early_channel_count(struct amd64_pvt *pvt)
{
int dbams[] = { DBAM0, DBAM1 };
int i, j, channels = 0;
u32 dbam;
/* If we are in 128 bit mode, then we are using 2 channels */
if (pvt->dclr0 & F10_WIDTH_128) {
channels = 2;
return channels;
}
/*
* Need to check if in unganged mode: In such, there are 2 channels,
* but they are not in 128 bit mode and thus the above 'dclr0' status
* bit will be OFF.
*
* Need to check DCT0[0] and DCT1[0] to see if only one of them has
* their CSEnable bit on. If so, then SINGLE DIMM case.
*/
debugf0("Data width is not 128 bits - need more decoding\n");
/*
* Check DRAM Bank Address Mapping values for each DIMM to see if there
* is more than just one DIMM present in unganged mode. Need to check
* both controllers since DIMMs can be placed in either one.
*/
for (i = 0; i < ARRAY_SIZE(dbams); i++) {
if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
goto err_reg;
for (j = 0; j < 4; j++) {
if (DBAM_DIMM(j, dbam) > 0) {
channels++;
break;
}
}
}
if (channels > 2)
channels = 2;
debugf0("MCT channel count: %d\n", channels);
return channels;
err_reg:
return -1;
}
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
{
int *dbam_map;
if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
dbam_map = ddr3_dbam;
else
dbam_map = ddr2_dbam;
return dbam_map[cs_mode];
}
/* Enable extended configuration access via 0xCF8 feature */
static void amd64_setup(struct amd64_pvt *pvt)
{
u32 reg;
amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
}
/* Restore the extended configuration access via 0xCF8 feature */
static void amd64_teardown(struct amd64_pvt *pvt)
{
u32 reg;
amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
if (pvt->flags.cf8_extcfg)
reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
}
static u64 f10_get_error_address(struct mem_ctl_info *mci,
struct err_regs *info)
{
return (((u64) (info->nbeah & 0xffff)) << 32) +
(info->nbeal & ~0x01);
}
/*
* Read the Base and Limit registers for F10 based Memory controllers. Extract
* fields from the 'raw' reg into separate data fields.
*
* Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
*/
static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
low_offset = K8_DRAM_BASE_LOW + (dram << 3);
high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
/* read the 'raw' DRAM BASE Address register */
amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
/* Read from the ECS data register */
amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
/* Extract parts into separate data entries */
pvt->dram_rw_en[dram] = (low_base & 0x3);
if (pvt->dram_rw_en[dram] == 0)
return;
pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
(((u64)low_base & 0xFFFF0000) << 8);
low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
/* read the 'raw' LIMIT registers */
amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
/* Read from the ECS data register for the HIGH portion */
amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
pvt->dram_DstNode[dram] = (low_limit & 0x7);
pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
/*
* Extract address values and form a LIMIT address. Limit is the HIGHEST
* memory location of the region, so low 24 bits need to be all ones.
*/
pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
(((u64) low_limit & 0xFFFF0000) << 8) |
0x00FFFFFF;
}
static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{
if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
&pvt->dram_ctl_select_low)) {
debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
"High range addresses at: 0x%x\n",
pvt->dram_ctl_select_low,
dct_sel_baseaddr(pvt));
debugf0(" DCT mode: %s, All DCTs on: %s\n",
(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
(dct_dram_enabled(pvt) ? "yes" : "no"));
if (!dct_ganging_enabled(pvt))
debugf0(" Address range split per DCT: %s\n",
(dct_high_range_enabled(pvt) ? "yes" : "no"));
debugf0(" DCT data interleave for ECC: %s, "
"DRAM cleared since last warm reset: %s\n",
(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
(dct_memory_cleared(pvt) ? "yes" : "no"));
debugf0(" DCT channel interleave: %s, "
"DCT interleave bits selector: 0x%x\n",
(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
dct_sel_interleave_addr(pvt));
}
amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
&pvt->dram_ctl_select_high);
}
/*
* determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
* Interleaving Modes.
*/
static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
int hi_range_sel, u32 intlv_en)
{
u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
if (dct_ganging_enabled(pvt))
cs = 0;
else if (hi_range_sel)
cs = dct_sel_high;
else if (dct_interleave_enabled(pvt)) {
/*
* see F2x110[DctSelIntLvAddr] - channel interleave mode
*/
if (dct_sel_interleave_addr(pvt) == 0)
cs = sys_addr >> 6 & 1;
else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
if (dct_sel_interleave_addr(pvt) & 1)
cs = (sys_addr >> 9 & 1) ^ temp;
else
cs = (sys_addr >> 6 & 1) ^ temp;
} else if (intlv_en & 4)
cs = sys_addr >> 15 & 1;
else if (intlv_en & 2)
cs = sys_addr >> 14 & 1;
else if (intlv_en & 1)
cs = sys_addr >> 13 & 1;
else
cs = sys_addr >> 12 & 1;
} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
cs = ~dct_sel_high & 1;
else
cs = 0;
return cs;
}
static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
{
if (intlv_en == 1)
return 1;
else if (intlv_en == 3)
return 2;
else if (intlv_en == 7)
return 3;
return 0;
}
/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
u32 dct_sel_base_addr,
u64 dct_sel_base_off,
u32 hole_valid, u32 hole_off,
u64 dram_base)
{
u64 chan_off;
if (hi_range_sel) {
if (!(dct_sel_base_addr & 0xFFFFF800) &&
hole_valid && (sys_addr >= 0x100000000ULL))
chan_off = hole_off << 16;
else
chan_off = dct_sel_base_off;
} else {
if (hole_valid && (sys_addr >= 0x100000000ULL))
chan_off = hole_off << 16;
else
chan_off = dram_base & 0xFFFFF8000000ULL;
}
return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
(chan_off & 0x0000FFFFFF800000ULL);
}
/* Hack for the time being - Can we get this from BIOS?? */
#define CH0SPARE_RANK 0
#define CH1SPARE_RANK 1
/*
* checks if the csrow passed in is marked as SPARED, if so returns the new
* spare row
*/
static inline int f10_process_possible_spare(int csrow,
u32 cs, struct amd64_pvt *pvt)
{
u32 swap_done;
u32 bad_dram_cs;
/* Depending on channel, isolate respective SPARING info */
if (cs) {
swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
if (swap_done && (csrow == bad_dram_cs))
csrow = CH1SPARE_RANK;
} else {
swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
if (swap_done && (csrow == bad_dram_cs))
csrow = CH0SPARE_RANK;
}
return csrow;
}
/*
* Iterate over the DRAM DCT "base" and "mask" registers looking for a
* SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
*
* Return:
* -EINVAL: NOT FOUND
* 0..csrow = Chip-Select Row
*/
static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
{
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
u32 cs_base, cs_mask;
int cs_found = -EINVAL;
int csrow;
mci = mci_lookup[nid];
if (!mci)
return cs_found;
pvt = mci->pvt_info;
debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
for (csrow = 0; csrow < pvt->cs_count; csrow++) {
cs_base = amd64_get_dct_base(pvt, cs, csrow);
if (!(cs_base & K8_DCSB_CS_ENABLE))
continue;
/*
* We have an ENABLED CSROW, Isolate just the MASK bits of the
* target: [28:19] and [13:5], which map to [36:27] and [21:13]
* of the actual address.
*/
cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
/*
* Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
* [4:0] to become ON. Then mask off bits [28:0] ([36:8])
*/
cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
csrow, cs_base, cs_mask);
cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
debugf1(" Final CSMask=0x%x\n", cs_mask);
debugf1(" (InputAddr & ~CSMask)=0x%x "
"(CSBase & ~CSMask)=0x%x\n",
(in_addr & ~cs_mask), (cs_base & ~cs_mask));
if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
cs_found = f10_process_possible_spare(csrow, cs, pvt);
debugf1(" MATCH csrow=%d\n", cs_found);
break;
}
}
return cs_found;
}
/* For a given @dram_range, check if @sys_addr falls within it. */
static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
u64 sys_addr, int *nid, int *chan_sel)
{
int node_id, cs_found = -EINVAL, high_range = 0;
u32 intlv_en, intlv_sel, intlv_shift, hole_off;
u32 hole_valid, tmp, dct_sel_base, channel;
u64 dram_base, chan_addr, dct_sel_base_off;
dram_base = pvt->dram_base[dram_range];
intlv_en = pvt->dram_IntlvEn[dram_range];
node_id = pvt->dram_DstNode[dram_range];
intlv_sel = pvt->dram_IntlvSel[dram_range];
debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
/*
* This assumes that one node's DHAR is the same as all the other
* nodes' DHAR.
*/
hole_off = (pvt->dhar & 0x0000FF80);
hole_valid = (pvt->dhar & 0x1);
dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
hole_off, hole_valid, intlv_sel);
if (intlv_en ||
(intlv_sel != ((sys_addr >> 12) & intlv_en)))
return -EINVAL;
dct_sel_base = dct_sel_baseaddr(pvt);
/*
* check whether addresses >= DctSelBaseAddr[47:27] are to be used to
* select between DCT0 and DCT1.
*/
if (dct_high_range_enabled(pvt) &&
!dct_ganging_enabled(pvt) &&
((sys_addr >> 27) >= (dct_sel_base >> 11)))
high_range = 1;
channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
dct_sel_base_off, hole_valid,
hole_off, dram_base);
intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
/* remove Node ID (in case of memory interleaving) */
tmp = chan_addr & 0xFC0;
chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
/* remove channel interleave and hash */
if (dct_interleave_enabled(pvt) &&
!dct_high_range_enabled(pvt) &&
!dct_ganging_enabled(pvt)) {
if (dct_sel_interleave_addr(pvt) != 1)
chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
else {
tmp = chan_addr & 0xFC0;
chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
| tmp;
}
}
debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
chan_addr, (u32)(chan_addr >> 8));
cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
if (cs_found >= 0) {
*nid = node_id;
*chan_sel = channel;
}
return cs_found;
}
static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
int *node, int *chan_sel)
{
int dram_range, cs_found = -EINVAL;
u64 dram_base, dram_limit;
for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
if (!pvt->dram_rw_en[dram_range])
continue;
dram_base = pvt->dram_base[dram_range];
dram_limit = pvt->dram_limit[dram_range];
if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
cs_found = f10_match_to_this_node(pvt, dram_range,
sys_addr, node,
chan_sel);
if (cs_found >= 0)
break;
}
}
return cs_found;
}
/*
* For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
* a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
*
* The @sys_addr is usually an error address received from the hardware
* (MCX_ADDR).
*/
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
struct err_regs *info,
u64 sys_addr)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 page, offset;
unsigned short syndrome;
int nid, csrow, chan = 0;
csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
if (csrow < 0) {
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
return;
}
error_address_to_page_and_offset(sys_addr, &page, &offset);
syndrome = HIGH_SYNDROME(info->nbsl) << 8;
syndrome |= LOW_SYNDROME(info->nbsh);
/*
* We need the syndromes for channel detection only when we're
* ganged. Otherwise @chan should already contain the channel at
* this point.
*/
if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
chan = get_channel_from_ecc_syndrome(mci, syndrome);
if (chan >= 0)
edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
EDAC_MOD_STR);
else
/*
* Channel unknown, report all channels on this CSROW as failed.
*/
for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
edac_mc_handle_ce(mci, page, offset, syndrome,
csrow, chan, EDAC_MOD_STR);
}
/*
* debug routine to display the memory sizes of all logical DIMMs and its
* CSROWs as well
*/
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
{
int dimm, size0, size1, factor = 0;
u32 dbam;
u32 *dcsb;
if (boot_cpu_data.x86 == 0xf) {
if (pvt->dclr0 & F10_WIDTH_128)
factor = 1;
/* K8 families < revF not supported yet */
if (pvt->ext_model < K8_REV_F)
return;
else
WARN_ON(ctrl != 0);
}
debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
/* Dump memory sizes for DIMM and its CSROWs */
for (dimm = 0; dimm < 4; dimm++) {
size0 = 0;
if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
size1 = 0;
if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
dimm * 2, size0 << factor,
dimm * 2 + 1, size1 << factor);
}
}
/*
* There currently are 3 types type of MC devices for AMD Athlon/Opterons
* (as per PCI DEVICE_IDs):
*
* Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
* DEVICE ID, even though there is differences between the different Revisions
* (CG,D,E,F).
*
* Family F10h and F11h.
*
*/
static struct amd64_family_type amd64_family_types[] = {
[K8_CPUS] = {
.ctl_name = "RevF",
.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
.ops = {
.early_channel_count = k8_early_channel_count,
.get_error_address = k8_get_error_address,
.read_dram_base_limit = k8_read_dram_base_limit,
.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
.dbam_to_cs = k8_dbam_to_chip_select,
}
},
[F10_CPUS] = {
.ctl_name = "Family 10h",
.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
.ops = {
.early_channel_count = f10_early_channel_count,
.get_error_address = f10_get_error_address,
.read_dram_base_limit = f10_read_dram_base_limit,
.read_dram_ctl_register = f10_read_dram_ctl_register,
.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
.dbam_to_cs = f10_dbam_to_chip_select,
}
},
[F11_CPUS] = {
.ctl_name = "Family 11h",
.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
.ops = {
.early_channel_count = f10_early_channel_count,
.get_error_address = f10_get_error_address,
.read_dram_base_limit = f10_read_dram_base_limit,
.read_dram_ctl_register = f10_read_dram_ctl_register,
.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
.dbam_to_cs = f10_dbam_to_chip_select,
}
},
};
static struct pci_dev *pci_get_related_function(unsigned int vendor,
unsigned int device,
struct pci_dev *related)
{
struct pci_dev *dev = NULL;
dev = pci_get_device(vendor, device, dev);
while (dev) {
if ((dev->bus->number == related->bus->number) &&
(PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
break;
dev = pci_get_device(vendor, device, dev);
}
return dev;
}
/*
* These are tables of eigenvectors (one per line) which can be used for the
* construction of the syndrome tables. The modified syndrome search algorithm
* uses those to find the symbol in error and thus the DIMM.
*
* Algorithm courtesy of Ross LaFetra from AMD.
*/
static u16 x4_vectors[] = {
0x2f57, 0x1afe, 0x66cc, 0xdd88,
0x11eb, 0x3396, 0x7f4c, 0xeac8,
0x0001, 0x0002, 0x0004, 0x0008,
0x1013, 0x3032, 0x4044, 0x8088,
0x106b, 0x30d6, 0x70fc, 0xe0a8,
0x4857, 0xc4fe, 0x13cc, 0x3288,
0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
0x1f39, 0x251e, 0xbd6c, 0x6bd8,
0x15c1, 0x2a42, 0x89ac, 0x4758,
0x2b03, 0x1602, 0x4f0c, 0xca08,
0x1f07, 0x3a0e, 0x6b04, 0xbd08,
0x8ba7, 0x465e, 0x244c, 0x1cc8,
0x2b87, 0x164e, 0x642c, 0xdc18,
0x40b9, 0x80de, 0x1094, 0x20e8,
0x27db, 0x1eb6, 0x9dac, 0x7b58,
0x11c1, 0x2242, 0x84ac, 0x4c58,
0x1be5, 0x2d7a, 0x5e34, 0xa718,
0x4b39, 0x8d1e, 0x14b4, 0x28d8,
0x4c97, 0xc87e, 0x11fc, 0x33a8,
0x8e97, 0x497e, 0x2ffc, 0x1aa8,
0x16b3, 0x3d62, 0x4f34, 0x8518,
0x1e2f, 0x391a, 0x5cac, 0xf858,
0x1d9f, 0x3b7a, 0x572c, 0xfe18,
0x15f5, 0x2a5a, 0x5264, 0xa3b8,
0x1dbb, 0x3b66, 0x715c, 0xe3f8,
0x4397, 0xc27e, 0x17fc, 0x3ea8,
0x1617, 0x3d3e, 0x6464, 0xb8b8,
0x23ff, 0x12aa, 0xab6c, 0x56d8,
0x2dfb, 0x1ba6, 0x913c, 0x7328,
0x185d, 0x2ca6, 0x7914, 0x9e28,
0x171b, 0x3e36, 0x7d7c, 0xebe8,
0x4199, 0x82ee, 0x19f4, 0x2e58,
0x4807, 0xc40e, 0x130c, 0x3208,
0x1905, 0x2e0a, 0x5804, 0xac08,
0x213f, 0x132a, 0xadfc, 0x5ba8,
0x19a9, 0x2efe, 0xb5cc, 0x6f88,
};
static u16 x8_vectors[] = {
0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};
static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
int v_dim)
{
unsigned int i, err_sym;
for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
u16 s = syndrome;
int v_idx = err_sym * v_dim;
int v_end = (err_sym + 1) * v_dim;
/* walk over all 16 bits of the syndrome */
for (i = 1; i < (1U << 16); i <<= 1) {
/* if bit is set in that eigenvector... */
if (v_idx < v_end && vectors[v_idx] & i) {
u16 ev_comp = vectors[v_idx++];
/* ... and bit set in the modified syndrome, */
if (s & i) {
/* remove it. */
s ^= ev_comp;
if (!s)
return err_sym;
}
} else if (s & i)
/* can't get to zero, move to next symbol */
break;
}
}
debugf0("syndrome(%x) not found\n", syndrome);
return -1;
}
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
if (sym_size == 4)
switch (err_sym) {
case 0x20:
case 0x21:
return 0;
break;
case 0x22:
case 0x23:
return 1;
break;
default:
return err_sym >> 4;
break;
}
/* x8 symbols */
else
switch (err_sym) {
/* imaginary bits not in a DIMM */
case 0x10:
WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
err_sym);
return -1;
break;
case 0x11:
return 0;
break;
case 0x12:
return 1;
break;
default:
return err_sym >> 3;
break;
}
return -1;
}
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 value = 0;
int err_sym = 0;
if (boot_cpu_data.x86 == 0x10) {
amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
/* F3x180[EccSymbolSize]=1 => x8 symbols */
if (boot_cpu_data.x86_model > 7 &&
value & BIT(25)) {
err_sym = decode_syndrome(syndrome, x8_vectors,
ARRAY_SIZE(x8_vectors), 8);
return map_err_sym_to_channel(err_sym, 8);
}
}
err_sym = decode_syndrome(syndrome, x4_vectors, ARRAY_SIZE(x4_vectors), 4);
return map_err_sym_to_channel(err_sym, 4);
}
/*
* Check for valid error in the NB Status High register. If so, proceed to read
* NB Status Low, NB Address Low and NB Address High registers and store data
* into error structure.
*
* Returns:
* - 1: if hardware regs contains valid error info
* - 0: if no valid error is indicated
*/
static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
struct err_regs *regs)
{
struct amd64_pvt *pvt;
struct pci_dev *misc_f3_ctl;
pvt = mci->pvt_info;
misc_f3_ctl = pvt->misc_f3_ctl;
if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
return 0;
if (!(regs->nbsh & K8_NBSH_VALID_BIT))
return 0;
/* valid error, read remaining error information registers */
if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
return 0;
return 1;
}
/*
* This function is called to retrieve the error data from hardware and store it
* in the info structure.
*
* Returns:
* - 1: if a valid error is found
* - 0: if no error is found
*/
static int amd64_get_error_info(struct mem_ctl_info *mci,
struct err_regs *info)
{
struct amd64_pvt *pvt;
struct err_regs regs;
pvt = mci->pvt_info;
if (!amd64_get_error_info_regs(mci, info))
return 0;
/*
* Here's the problem with the K8's EDAC reporting: There are four
* registers which report pieces of error information. They are shared
* between CEs and UEs. Furthermore, contrary to what is stated in the
* BKDG, the overflow bit is never used! Every error always updates the
* reporting registers.
*
* Can you see the race condition? All four error reporting registers
* must be read before a new error updates them! There is no way to read
* all four registers atomically. The best than can be done is to detect
* that a race has occured and then report the error without any kind of
* precision.
*
* What is still positive is that errors are still reported and thus
* problems can still be detected - just not localized because the
* syndrome and address are spread out across registers.
*
* Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
* UEs and CEs should have separate register sets with proper overflow
* bits that are used! At very least the problem can be fixed by
* honoring the ErrValid bit in 'nbsh' and not updating registers - just
* set the overflow bit - unless the current error is CE and the new
* error is UE which would be the only situation for overwriting the
* current values.
*/
regs = *info;
/* Use info from the second read - most current */
if (unlikely(!amd64_get_error_info_regs(mci, info)))
return 0;
/* clear the error bits in hardware */
pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
/* Check for the possible race condition */
if ((regs.nbsh != info->nbsh) ||
(regs.nbsl != info->nbsl) ||
(regs.nbeah != info->nbeah) ||
(regs.nbeal != info->nbeal)) {
amd64_mc_printk(mci, KERN_WARNING,
"hardware STATUS read access race condition "
"detected!\n");
return 0;
}
return 1;
}
/*
* Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
* ADDRESS and process.
*/
static void amd64_handle_ce(struct mem_ctl_info *mci,
struct err_regs *info)
{
struct amd64_pvt *pvt = mci->pvt_info;
u64 sys_addr;
/* Ensure that the Error Address is VALID */
if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
amd64_mc_printk(mci, KERN_ERR,
"HW has no ERROR_ADDRESS available\n");
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
return;
}
sys_addr = pvt->ops->get_error_address(mci, info);
amd64_mc_printk(mci, KERN_ERR,
"CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
}
/* Handle any Un-correctable Errors (UEs) */
static void amd64_handle_ue(struct mem_ctl_info *mci,
struct err_regs *info)
{
struct amd64_pvt *pvt = mci->pvt_info;
struct mem_ctl_info *log_mci, *src_mci = NULL;
int csrow;
u64 sys_addr;
u32 page, offset;
log_mci = mci;
if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
amd64_mc_printk(mci, KERN_CRIT,
"HW has no ERROR_ADDRESS available\n");
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
return;
}
sys_addr = pvt->ops->get_error_address(mci, info);
/*
* Find out which node the error address belongs to. This may be
* different from the node that detected the error.
*/
src_mci = find_mc_by_sys_addr(mci, sys_addr);
if (!src_mci) {
amd64_mc_printk(mci, KERN_CRIT,
"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
(unsigned long)sys_addr);
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
return;
}
log_mci = src_mci;
csrow = sys_addr_to_csrow(log_mci, sys_addr);
if (csrow < 0) {
amd64_mc_printk(mci, KERN_CRIT,
"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
(unsigned long)sys_addr);
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
} else {
error_address_to_page_and_offset(sys_addr, &page, &offset);
edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
}
}
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
struct err_regs *info)
{
u32 ec = ERROR_CODE(info->nbsl);
u32 xec = EXT_ERROR_CODE(info->nbsl);
int ecc_type = (info->nbsh >> 13) & 0x3;
/* Bail early out if this was an 'observed' error */
if (PP(ec) == K8_NBSL_PP_OBS)
return;
/* Do only ECC errors */
if (xec && xec != F10_NBSL_EXT_ERR_ECC)
return;
if (ecc_type == 2)
amd64_handle_ce(mci, info);
else if (ecc_type == 1)
amd64_handle_ue(mci, info);
/*
* If main error is CE then overflow must be CE. If main error is UE
* then overflow is unknown. We'll call the overflow a CE - if
* panic_on_ue is set then we're already panic'ed and won't arrive
* here. Else, then apparently someone doesn't think that UE's are
* catastrophic.
*/
if (info->nbsh & K8_NBSH_OVERFLOW)
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
}
void amd64_decode_bus_error(int node_id, struct err_regs *regs)
{
struct mem_ctl_info *mci = mci_lookup[node_id];
__amd64_decode_bus_error(mci, regs);
/*
* Check the UE bit of the NB status high register, if set generate some
* logs. If NOT a GART error, then process the event as a NO-INFO event.
* If it was a GART error, skip that process.
*
* FIXME: this should go somewhere else, if at all.
*/
if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
edac_mc_handle_ue_no_info(mci, "UE bit is set");
}
/*
* The main polling 'check' function, called FROM the edac core to perform the
* error checking and if an error is encountered, error processing.
*/
static void amd64_check(struct mem_ctl_info *mci)
{
struct err_regs regs;
if (amd64_get_error_info(mci, &regs)) {
struct amd64_pvt *pvt = mci->pvt_info;
amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
}
}
/*
* Input:
* 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
* 2) AMD Family index value
*
* Ouput:
* Upon return of 0, the following filled in:
*
* struct pvt->addr_f1_ctl
* struct pvt->misc_f3_ctl
*
* Filled in with related device funcitions of 'dram_f2_ctl'
* These devices are "reserved" via the pci_get_device()
*
* Upon return of 1 (error status):
*
* Nothing reserved
*/
static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
{
const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
/* Reserve the ADDRESS MAP Device */
pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
amd64_dev->addr_f1_ctl,
pvt->dram_f2_ctl);
if (!pvt->addr_f1_ctl) {
amd64_printk(KERN_ERR, "error address map device not found: "
"vendor %x device 0x%x (broken BIOS?)\n",
PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
return 1;
}
/* Reserve the MISC Device */
pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
amd64_dev->misc_f3_ctl,
pvt->dram_f2_ctl);
if (!pvt->misc_f3_ctl) {
pci_dev_put(pvt->addr_f1_ctl);
pvt->addr_f1_ctl = NULL;
amd64_printk(KERN_ERR, "error miscellaneous device not found: "
"vendor %x device 0x%x (broken BIOS?)\n",
PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
return 1;
}
debugf1(" Addr Map device PCI Bus ID:\t%s\n",
pci_name(pvt->addr_f1_ctl));
debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
pci_name(pvt->dram_f2_ctl));
debugf1(" Misc device PCI Bus ID:\t%s\n",
pci_name(pvt->misc_f3_ctl));
return 0;
}
static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
{
pci_dev_put(pvt->addr_f1_ctl);
pci_dev_put(pvt->misc_f3_ctl);
}
/*
* Retrieve the hardware registers of the memory controller (this includes the
* 'Address Map' and 'Misc' device regs)
*/
static void amd64_read_mc_registers(struct amd64_pvt *pvt)
{
u64 msr_val;
int dram;
/*
* Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
* those are Read-As-Zero
*/
rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
/* check first whether TOP_MEM2 is enabled */
rdmsrl(MSR_K8_SYSCFG, msr_val);
if (msr_val & (1U << 21)) {
rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
} else
debugf0(" TOP_MEM2 disabled.\n");
amd64_cpu_display_info(pvt);
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
if (pvt->ops->read_dram_ctl_register)
pvt->ops->read_dram_ctl_register(pvt);
for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
/*
* Call CPU specific READ function to get the DRAM Base and
* Limit values from the DCT.
*/
pvt->ops->read_dram_base_limit(pvt, dram);
/*
* Only print out debug info on rows with both R and W Enabled.
* Normal processing, compiler should optimize this whole 'if'
* debug output block away.
*/
if (pvt->dram_rw_en[dram] != 0) {
debugf1(" DRAM-BASE[%d]: 0x%016llx "
"DRAM-LIMIT: 0x%016llx\n",
dram,
pvt->dram_base[dram],
pvt->dram_limit[dram]);
debugf1(" IntlvEn=%s %s %s "
"IntlvSel=%d DstNode=%d\n",
pvt->dram_IntlvEn[dram] ?
"Enabled" : "Disabled",
(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
pvt->dram_IntlvSel[dram],
pvt->dram_DstNode[dram]);
}
}
amd64_read_dct_base_mask(pvt);
amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
amd64_read_dbam_reg(pvt);
amd64_read_pci_cfg(pvt->misc_f3_ctl,
F10_ONLINE_SPARE, &pvt->online_spare);
amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
if (!dct_ganging_enabled(pvt) && boot_cpu_data.x86 >= 0x10) {
amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
}
amd64_dump_misc_regs(pvt);
}
/*
* NOTE: CPU Revision Dependent code
*
* Input:
* @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
* k8 private pointer to -->
* DRAM Bank Address mapping register
* node_id
* DCL register where dual_channel_active is
*
* The DBAM register consists of 4 sets of 4 bits each definitions:
*
* Bits: CSROWs
* 0-3 CSROWs 0 and 1
* 4-7 CSROWs 2 and 3
* 8-11 CSROWs 4 and 5
* 12-15 CSROWs 6 and 7
*
* Values range from: 0 to 15
* The meaning of the values depends on CPU revision and dual-channel state,
* see relevant BKDG more info.
*
* The memory controller provides for total of only 8 CSROWs in its current
* architecture. Each "pair" of CSROWs normally represents just one DIMM in
* single channel or two (2) DIMMs in dual channel mode.
*
* The following code logic collapses the various tables for CSROW based on CPU
* revision.
*
* Returns:
* The number of PAGE_SIZE pages on the specified CSROW number it
* encompasses
*
*/
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
u32 cs_mode, nr_pages;
/*
* The math on this doesn't look right on the surface because x/2*4 can
* be simplified to x*2 but this expression makes use of the fact that
* it is integral math where 1/2=0. This intermediate value becomes the
* number of bits to shift the DBAM register to extract the proper CSROW
* field.
*/
cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
/*
* If dual channel then double the memory size of single channel.
* Channel count is 1 or 2
*/
nr_pages <<= (pvt->channel_count - 1);
debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
debugf0(" nr_pages= %u channel-count = %d\n",
nr_pages, pvt->channel_count);
return nr_pages;
}
/*
* Initialize the array of csrow attribute instances, based on the values
* from pci config hardware registers.
*/
static int amd64_init_csrows(struct mem_ctl_info *mci)
{
struct csrow_info *csrow;
struct amd64_pvt *pvt;
u64 input_addr_min, input_addr_max, sys_addr;
int i, empty = 1;
pvt = mci->pvt_info;
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
);
for (i = 0; i < pvt->cs_count; i++) {
csrow = &mci->csrows[i];
if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
debugf1("----CSROW %d EMPTY for node %d\n", i,
pvt->mc_node_id);
continue;
}
debugf1("----CSROW %d VALID for MC node %d\n",
i, pvt->mc_node_id);
empty = 0;
csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
csrow->page_mask = ~mask_from_dct_mask(pvt, i);
/* 8 bytes of resolution */
csrow->mtype = amd64_determine_memory_type(pvt);
debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
(unsigned long)input_addr_min,
(unsigned long)input_addr_max);
debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
(unsigned long)sys_addr, csrow->page_mask);
debugf1(" nr_pages: %u first_page: 0x%lx "
"last_page: 0x%lx\n",
(unsigned)csrow->nr_pages,
csrow->first_page, csrow->last_page);
/*
* determine whether CHIPKILL or JUST ECC or NO ECC is operating
*/
if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
csrow->edac_mode =
(pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
EDAC_S4ECD4ED : EDAC_SECDED;
else
csrow->edac_mode = EDAC_NONE;
}
return empty;
}
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
int cpu;
for_each_online_cpu(cpu)
if (amd_get_nb_id(cpu) == nid)
cpumask_set_cpu(cpu, mask);
}
/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
cpumask_var_t mask;
int cpu, nbe;
bool ret = false;
if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
__func__);
return false;
}
get_cpus_on_this_dct_cpumask(mask, nid);
rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
for_each_cpu(cpu, mask) {
struct msr *reg = per_cpu_ptr(msrs, cpu);
nbe = reg->l & K8_MSR_MCGCTL_NBE;
debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
cpu, reg->q,
(nbe ? "enabled" : "disabled"));
if (!nbe)
goto out;
}
ret = true;
out:
free_cpumask_var(mask);
return ret;
}
static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
{
cpumask_var_t cmask;
int cpu;
if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
__func__);
return false;
}
get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
for_each_cpu(cpu, cmask) {
struct msr *reg = per_cpu_ptr(msrs, cpu);
if (on) {
if (reg->l & K8_MSR_MCGCTL_NBE)
pvt->flags.nb_mce_enable = 1;
reg->l |= K8_MSR_MCGCTL_NBE;
} else {
/*
* Turn off NB MCE reporting only when it was off before
*/
if (!pvt->flags.nb_mce_enable)
reg->l &= ~K8_MSR_MCGCTL_NBE;
}
}
wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
free_cpumask_var(cmask);
return 0;
}
static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
/* turn on UECCn and CECCEn bits */
pvt->old_nbctl = value & mask;
pvt->nbctl_mcgctl_saved = 1;
value |= mask;
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
if (amd64_toggle_ecc_err_reporting(pvt, ON))
amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
"MCGCTL!\n");
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
if (!(value & K8_NBCFG_ECC_ENABLE)) {
amd64_printk(KERN_WARNING,
"This node reports that DRAM ECC is "
"currently Disabled; ENABLING now\n");
pvt->flags.nb_ecc_prev = 0;
/* Attempt to turn on DRAM ECC Enable */
value |= K8_NBCFG_ECC_ENABLE;
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
if (!(value & K8_NBCFG_ECC_ENABLE)) {
amd64_printk(KERN_WARNING,
"Hardware rejects Enabling DRAM ECC checking\n"
"Check memory DIMM configuration\n");
} else {
amd64_printk(KERN_DEBUG,
"Hardware accepted DRAM ECC Enable\n");
}
} else {
pvt->flags.nb_ecc_prev = 1;
}
debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
pvt->ctl_error_info.nbcfg = value;
}
static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
{
u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
if (!pvt->nbctl_mcgctl_saved)
return;
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
value &= ~mask;
value |= pvt->old_nbctl;
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
/* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
if (!pvt->flags.nb_ecc_prev) {
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
value &= ~K8_NBCFG_ECC_ENABLE;
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
}
/* restore the NB Enable MCGCTL bit */
if (amd64_toggle_ecc_err_reporting(pvt, OFF))
amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
}
/*
* EDAC requires that the BIOS have ECC enabled before taking over the
* processing of ECC errors. This is because the BIOS can properly initialize
* the memory system completely. A command line option allows to force-enable
* hardware ECC later in amd64_enable_ecc_error_reporting().
*/
static const char *ecc_msg =
"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
" Either enable ECC checking or force module loading by setting "
"'ecc_enable_override'.\n"
" (Note that use of the override may cause unknown side effects.)\n";
static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
{
u32 value;
u8 ecc_enabled = 0;
bool nb_mce_en = false;
amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
if (!ecc_enabled)
amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
"is currently disabled, set F3x%x[22] (%s).\n",
K8_NBCFG, pci_name(pvt->misc_f3_ctl));
else
amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
if (!nb_mce_en)
amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
"0x%08x[4] on node %d to enable.\n",
MSR_IA32_MCG_CTL, pvt->mc_node_id);
if (!ecc_enabled || !nb_mce_en) {
if (!ecc_enable_override) {
amd64_printk(KERN_NOTICE, "%s", ecc_msg);
return -ENODEV;
} else {
amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
}
}
return 0;
}
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
ARRAY_SIZE(amd64_inj_attrs) +
1];
struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
{
unsigned int i = 0, j = 0;
for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
sysfs_attrs[i] = amd64_dbg_attrs[i];
for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
sysfs_attrs[i] = amd64_inj_attrs[j];
sysfs_attrs[i] = terminator;
mci->mc_driver_sysfs_attributes = sysfs_attrs;
}
static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
if (pvt->nbcap & K8_NBCAP_SECDED)
mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
if (pvt->nbcap & K8_NBCAP_CHIPKILL)
mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
mci->edac_cap = amd64_determine_edac_cap(pvt);
mci->mod_name = EDAC_MOD_STR;
mci->mod_ver = EDAC_AMD64_VERSION;
mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
mci->dev_name = pci_name(pvt->dram_f2_ctl);
mci->ctl_page_to_phys = NULL;
/* IMPORTANT: Set the polling 'check' function in this module */
mci->edac_check = amd64_check;
/* memory scrubber interface */
mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}
/*
* Init stuff for this DRAM Controller device.
*
* Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
* Space feature MUST be enabled on ALL Processors prior to actually reading
* from the ECS registers. Since the loading of the module can occur on any
* 'core', and cores don't 'see' all the other processors ECS data when the
* others are NOT enabled. Our solution is to first enable ECS access in this
* routine on all processors, gather some data in a amd64_pvt structure and
* later come back in a finish-setup function to perform that final
* initialization. See also amd64_init_2nd_stage() for that.
*/
static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
int mc_type_index)
{
struct amd64_pvt *pvt = NULL;
int err = 0, ret;
ret = -ENOMEM;
pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
if (!pvt)
goto err_exit;
pvt->mc_node_id = get_node_id(dram_f2_ctl);
pvt->dram_f2_ctl = dram_f2_ctl;
pvt->ext_model = boot_cpu_data.x86_model >> 4;
pvt->mc_type_index = mc_type_index;
pvt->ops = family_ops(mc_type_index);
/*
* We have the dram_f2_ctl device as an argument, now go reserve its
* sibling devices from the PCI system.
*/
ret = -ENODEV;
err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
if (err)
goto err_free;
ret = -EINVAL;
err = amd64_check_ecc_enabled(pvt);
if (err)
goto err_put;
/*
* Key operation here: setup of HW prior to performing ops on it. Some
* setup is required to access ECS data. After this is performed, the
* 'teardown' function must be called upon error and normal exit paths.
*/
if (boot_cpu_data.x86 >= 0x10)
amd64_setup(pvt);
/*
* Save the pointer to the private data for use in 2nd initialization
* stage
*/
pvt_lookup[pvt->mc_node_id] = pvt;
return 0;
err_put:
amd64_free_mc_sibling_devices(pvt);
err_free:
kfree(pvt);
err_exit:
return ret;
}
/*
* This is the finishing stage of the init code. Needs to be performed after all
* MCs' hardware have been prepped for accessing extended config space.
*/
static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
{
int node_id = pvt->mc_node_id;
struct mem_ctl_info *mci;
int ret = -ENODEV;
amd64_read_mc_registers(pvt);
/*
* We need to determine how many memory channels there are. Then use
* that information for calculating the size of the dynamic instance
* tables in the 'mci' structure
*/
pvt->channel_count = pvt->ops->early_channel_count(pvt);
if (pvt->channel_count < 0)
goto err_exit;
ret = -ENOMEM;
mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
if (!mci)
goto err_exit;
mci->pvt_info = pvt;
mci->dev = &pvt->dram_f2_ctl->dev;
amd64_setup_mci_misc_attributes(mci);
if (amd64_init_csrows(mci))
mci->edac_cap = EDAC_FLAG_NONE;
amd64_enable_ecc_error_reporting(mci);
amd64_set_mc_sysfs_attributes(mci);
ret = -ENODEV;
if (edac_mc_add_mc(mci)) {
debugf1("failed edac_mc_add_mc()\n");
goto err_add_mc;
}
mci_lookup[node_id] = mci;
pvt_lookup[node_id] = NULL;
/* register stuff with EDAC MCE */
if (report_gart_errors)
amd_report_gart_errors(true);
amd_register_ecc_decoder(amd64_decode_bus_error);
return 0;
err_add_mc:
edac_mc_free(mci);
err_exit:
debugf0("failure to init 2nd stage: ret=%d\n", ret);
amd64_restore_ecc_error_reporting(pvt);
if (boot_cpu_data.x86 > 0xf)
amd64_teardown(pvt);
amd64_free_mc_sibling_devices(pvt);
kfree(pvt_lookup[pvt->mc_node_id]);
pvt_lookup[node_id] = NULL;
return ret;
}
static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
const struct pci_device_id *mc_type)
{
int ret = 0;
debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
get_amd_family_name(mc_type->driver_data));
ret = pci_enable_device(pdev);
if (ret < 0)
ret = -EIO;
else
ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
if (ret < 0)
debugf0("ret=%d\n", ret);
return ret;
}
static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
/* Remove from EDAC CORE tracking list */
mci = edac_mc_del_mc(&pdev->dev);
if (!mci)
return;
pvt = mci->pvt_info;
amd64_restore_ecc_error_reporting(pvt);
if (boot_cpu_data.x86 > 0xf)
amd64_teardown(pvt);
amd64_free_mc_sibling_devices(pvt);
/* unregister from EDAC MCE */
amd_report_gart_errors(false);
amd_unregister_ecc_decoder(amd64_decode_bus_error);
/* Free the EDAC CORE resources */
mci->pvt_info = NULL;
mci_lookup[pvt->mc_node_id] = NULL;
kfree(pvt);
edac_mc_free(mci);
}
/*
* This table is part of the interface for loading drivers for PCI devices. The
* PCI core identifies what devices are on a system during boot, and then
* inquiry this table to see if this driver is for a given device found.
*/
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
{
.vendor = PCI_VENDOR_ID_AMD,
.device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = 0,
.class_mask = 0,
.driver_data = K8_CPUS
},
{
.vendor = PCI_VENDOR_ID_AMD,
.device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = 0,
.class_mask = 0,
.driver_data = F10_CPUS
},
{
.vendor = PCI_VENDOR_ID_AMD,
.device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = 0,
.class_mask = 0,
.driver_data = F11_CPUS
},
{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);
static struct pci_driver amd64_pci_driver = {
.name = EDAC_MOD_STR,
.probe = amd64_init_one_instance,
.remove = __devexit_p(amd64_remove_one_instance),
.id_table = amd64_pci_table,
};
static void amd64_setup_pci_device(void)
{
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
if (amd64_ctl_pci)
return;
mci = mci_lookup[0];
if (mci) {
pvt = mci->pvt_info;
amd64_ctl_pci =
edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
EDAC_MOD_STR);
if (!amd64_ctl_pci) {
pr_warning("%s(): Unable to create PCI control\n",
__func__);
pr_warning("%s(): PCI error report via EDAC not set\n",
__func__);
}
}
}
static int __init amd64_edac_init(void)
{
int nb, err = -ENODEV;
bool load_ok = false;
edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
opstate_init();
if (cache_k8_northbridges() < 0)
goto err_ret;
msrs = msrs_alloc();
if (!msrs)
goto err_ret;
err = pci_register_driver(&amd64_pci_driver);
if (err)
goto err_pci;
/*
* At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
* amd64_pvt structs. These will be used in the 2nd stage init function
* to finish initialization of the MC instances.
*/
err = -ENODEV;
for (nb = 0; nb < num_k8_northbridges; nb++) {
if (!pvt_lookup[nb])
continue;
err = amd64_init_2nd_stage(pvt_lookup[nb]);
if (err)
goto err_2nd_stage;
load_ok = true;
}
if (load_ok) {
amd64_setup_pci_device();
return 0;
}
err_2nd_stage:
pci_unregister_driver(&amd64_pci_driver);
err_pci:
msrs_free(msrs);
msrs = NULL;
err_ret:
return err;
}
static void __exit amd64_edac_exit(void)
{
if (amd64_ctl_pci)
edac_pci_release_generic_ctl(amd64_ctl_pci);
pci_unregister_driver(&amd64_pci_driver);
msrs_free(msrs);
msrs = NULL;
}
module_init(amd64_edac_init);
module_exit(amd64_edac_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
EDAC_AMD64_VERSION);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");