WSL2-Linux-Kernel/include/linux/page-flags.h

533 строки
16 KiB
C

/*
* Macros for manipulating and testing page->flags
*/
#ifndef PAGE_FLAGS_H
#define PAGE_FLAGS_H
#include <linux/types.h>
#include <linux/bug.h>
#include <linux/mmdebug.h>
#ifndef __GENERATING_BOUNDS_H
#include <linux/mm_types.h>
#include <generated/bounds.h>
#endif /* !__GENERATING_BOUNDS_H */
/*
* Various page->flags bits:
*
* PG_reserved is set for special pages, which can never be swapped out. Some
* of them might not even exist (eg empty_bad_page)...
*
* The PG_private bitflag is set on pagecache pages if they contain filesystem
* specific data (which is normally at page->private). It can be used by
* private allocations for its own usage.
*
* During initiation of disk I/O, PG_locked is set. This bit is set before I/O
* and cleared when writeback _starts_ or when read _completes_. PG_writeback
* is set before writeback starts and cleared when it finishes.
*
* PG_locked also pins a page in pagecache, and blocks truncation of the file
* while it is held.
*
* page_waitqueue(page) is a wait queue of all tasks waiting for the page
* to become unlocked.
*
* PG_uptodate tells whether the page's contents is valid. When a read
* completes, the page becomes uptodate, unless a disk I/O error happened.
*
* PG_referenced, PG_reclaim are used for page reclaim for anonymous and
* file-backed pagecache (see mm/vmscan.c).
*
* PG_error is set to indicate that an I/O error occurred on this page.
*
* PG_arch_1 is an architecture specific page state bit. The generic code
* guarantees that this bit is cleared for a page when it first is entered into
* the page cache.
*
* PG_highmem pages are not permanently mapped into the kernel virtual address
* space, they need to be kmapped separately for doing IO on the pages. The
* struct page (these bits with information) are always mapped into kernel
* address space...
*
* PG_hwpoison indicates that a page got corrupted in hardware and contains
* data with incorrect ECC bits that triggered a machine check. Accessing is
* not safe since it may cause another machine check. Don't touch!
*/
/*
* Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
* locked- and dirty-page accounting.
*
* The page flags field is split into two parts, the main flags area
* which extends from the low bits upwards, and the fields area which
* extends from the high bits downwards.
*
* | FIELD | ... | FLAGS |
* N-1 ^ 0
* (NR_PAGEFLAGS)
*
* The fields area is reserved for fields mapping zone, node (for NUMA) and
* SPARSEMEM section (for variants of SPARSEMEM that require section ids like
* SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
*/
enum pageflags {
PG_locked, /* Page is locked. Don't touch. */
PG_error,
PG_referenced,
PG_uptodate,
PG_dirty,
PG_lru,
PG_active,
PG_slab,
PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
PG_arch_1,
PG_reserved,
PG_private, /* If pagecache, has fs-private data */
PG_private_2, /* If pagecache, has fs aux data */
PG_writeback, /* Page is under writeback */
#ifdef CONFIG_PAGEFLAGS_EXTENDED
PG_head, /* A head page */
PG_tail, /* A tail page */
#else
PG_compound, /* A compound page */
#endif
PG_swapcache, /* Swap page: swp_entry_t in private */
PG_mappedtodisk, /* Has blocks allocated on-disk */
PG_reclaim, /* To be reclaimed asap */
PG_swapbacked, /* Page is backed by RAM/swap */
PG_unevictable, /* Page is "unevictable" */
#ifdef CONFIG_MMU
PG_mlocked, /* Page is vma mlocked */
#endif
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
PG_uncached, /* Page has been mapped as uncached */
#endif
#ifdef CONFIG_MEMORY_FAILURE
PG_hwpoison, /* hardware poisoned page. Don't touch */
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
PG_compound_lock,
#endif
__NR_PAGEFLAGS,
/* Filesystems */
PG_checked = PG_owner_priv_1,
/* Two page bits are conscripted by FS-Cache to maintain local caching
* state. These bits are set on pages belonging to the netfs's inodes
* when those inodes are being locally cached.
*/
PG_fscache = PG_private_2, /* page backed by cache */
/* XEN */
PG_pinned = PG_owner_priv_1,
PG_savepinned = PG_dirty,
/* SLOB */
PG_slob_free = PG_private,
};
#ifndef __GENERATING_BOUNDS_H
/*
* Macros to create function definitions for page flags
*/
#define TESTPAGEFLAG(uname, lname) \
static inline int Page##uname(const struct page *page) \
{ return test_bit(PG_##lname, &page->flags); }
#define SETPAGEFLAG(uname, lname) \
static inline void SetPage##uname(struct page *page) \
{ set_bit(PG_##lname, &page->flags); }
#define CLEARPAGEFLAG(uname, lname) \
static inline void ClearPage##uname(struct page *page) \
{ clear_bit(PG_##lname, &page->flags); }
#define __SETPAGEFLAG(uname, lname) \
static inline void __SetPage##uname(struct page *page) \
{ __set_bit(PG_##lname, &page->flags); }
#define __CLEARPAGEFLAG(uname, lname) \
static inline void __ClearPage##uname(struct page *page) \
{ __clear_bit(PG_##lname, &page->flags); }
#define TESTSETFLAG(uname, lname) \
static inline int TestSetPage##uname(struct page *page) \
{ return test_and_set_bit(PG_##lname, &page->flags); }
#define TESTCLEARFLAG(uname, lname) \
static inline int TestClearPage##uname(struct page *page) \
{ return test_and_clear_bit(PG_##lname, &page->flags); }
#define __TESTCLEARFLAG(uname, lname) \
static inline int __TestClearPage##uname(struct page *page) \
{ return __test_and_clear_bit(PG_##lname, &page->flags); }
#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
__SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname)
#define PAGEFLAG_FALSE(uname) \
static inline int Page##uname(const struct page *page) \
{ return 0; }
#define TESTSCFLAG(uname, lname) \
TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
#define SETPAGEFLAG_NOOP(uname) \
static inline void SetPage##uname(struct page *page) { }
#define CLEARPAGEFLAG_NOOP(uname) \
static inline void ClearPage##uname(struct page *page) { }
#define __CLEARPAGEFLAG_NOOP(uname) \
static inline void __ClearPage##uname(struct page *page) { }
#define TESTCLEARFLAG_FALSE(uname) \
static inline int TestClearPage##uname(struct page *page) { return 0; }
#define __TESTCLEARFLAG_FALSE(uname) \
static inline int __TestClearPage##uname(struct page *page) { return 0; }
struct page; /* forward declaration */
TESTPAGEFLAG(Locked, locked)
PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error)
PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
TESTCLEARFLAG(Active, active)
__PAGEFLAG(Slab, slab)
PAGEFLAG(Checked, checked) /* Used by some filesystems */
PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */
PAGEFLAG(SavePinned, savepinned); /* Xen */
PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
__PAGEFLAG(SlobFree, slob_free)
/*
* Private page markings that may be used by the filesystem that owns the page
* for its own purposes.
* - PG_private and PG_private_2 cause releasepage() and co to be invoked
*/
PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
__CLEARPAGEFLAG(Private, private)
PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
/*
* Only test-and-set exist for PG_writeback. The unconditional operators are
* risky: they bypass page accounting.
*/
TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
PAGEFLAG(MappedToDisk, mappedtodisk)
/* PG_readahead is only used for reads; PG_reclaim is only for writes */
PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim)
#ifdef CONFIG_HIGHMEM
/*
* Must use a macro here due to header dependency issues. page_zone() is not
* available at this point.
*/
#define PageHighMem(__p) is_highmem(page_zone(__p))
#else
PAGEFLAG_FALSE(HighMem)
#endif
#ifdef CONFIG_SWAP
PAGEFLAG(SwapCache, swapcache)
#else
PAGEFLAG_FALSE(SwapCache)
SETPAGEFLAG_NOOP(SwapCache) CLEARPAGEFLAG_NOOP(SwapCache)
#endif
PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
TESTCLEARFLAG(Unevictable, unevictable)
#ifdef CONFIG_MMU
PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked)
#else
PAGEFLAG_FALSE(Mlocked) SETPAGEFLAG_NOOP(Mlocked)
TESTCLEARFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
#endif
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
PAGEFLAG(Uncached, uncached)
#else
PAGEFLAG_FALSE(Uncached)
#endif
#ifdef CONFIG_MEMORY_FAILURE
PAGEFLAG(HWPoison, hwpoison)
TESTSCFLAG(HWPoison, hwpoison)
#define __PG_HWPOISON (1UL << PG_hwpoison)
#else
PAGEFLAG_FALSE(HWPoison)
#define __PG_HWPOISON 0
#endif
u64 stable_page_flags(struct page *page);
static inline int PageUptodate(struct page *page)
{
int ret = test_bit(PG_uptodate, &(page)->flags);
/*
* Must ensure that the data we read out of the page is loaded
* _after_ we've loaded page->flags to check for PageUptodate.
* We can skip the barrier if the page is not uptodate, because
* we wouldn't be reading anything from it.
*
* See SetPageUptodate() for the other side of the story.
*/
if (ret)
smp_rmb();
return ret;
}
static inline void __SetPageUptodate(struct page *page)
{
smp_wmb();
__set_bit(PG_uptodate, &(page)->flags);
}
static inline void SetPageUptodate(struct page *page)
{
/*
* Memory barrier must be issued before setting the PG_uptodate bit,
* so that all previous stores issued in order to bring the page
* uptodate are actually visible before PageUptodate becomes true.
*/
smp_wmb();
set_bit(PG_uptodate, &(page)->flags);
}
CLEARPAGEFLAG(Uptodate, uptodate)
extern void cancel_dirty_page(struct page *page, unsigned int account_size);
int test_clear_page_writeback(struct page *page);
int test_set_page_writeback(struct page *page);
static inline void set_page_writeback(struct page *page)
{
test_set_page_writeback(page);
}
#ifdef CONFIG_PAGEFLAGS_EXTENDED
/*
* System with lots of page flags available. This allows separate
* flags for PageHead() and PageTail() checks of compound pages so that bit
* tests can be used in performance sensitive paths. PageCompound is
* generally not used in hot code paths except arch/powerpc/mm/init_64.c
* and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages
* and avoid handling those in real mode.
*/
__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
__PAGEFLAG(Tail, tail)
static inline int PageCompound(struct page *page)
{
return page->flags & ((1L << PG_head) | (1L << PG_tail));
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{
BUG_ON(!PageHead(page));
ClearPageHead(page);
}
#endif
#else
/*
* Reduce page flag use as much as possible by overlapping
* compound page flags with the flags used for page cache pages. Possible
* because PageCompound is always set for compound pages and not for
* pages on the LRU and/or pagecache.
*/
TESTPAGEFLAG(Compound, compound)
__SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound)
/*
* PG_reclaim is used in combination with PG_compound to mark the
* head and tail of a compound page. This saves one page flag
* but makes it impossible to use compound pages for the page cache.
* The PG_reclaim bit would have to be used for reclaim or readahead
* if compound pages enter the page cache.
*
* PG_compound & PG_reclaim => Tail page
* PG_compound & ~PG_reclaim => Head page
*/
#define PG_head_mask ((1L << PG_compound))
#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
static inline int PageHead(struct page *page)
{
return ((page->flags & PG_head_tail_mask) == PG_head_mask);
}
static inline int PageTail(struct page *page)
{
return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
}
static inline void __SetPageTail(struct page *page)
{
page->flags |= PG_head_tail_mask;
}
static inline void __ClearPageTail(struct page *page)
{
page->flags &= ~PG_head_tail_mask;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{
BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
clear_bit(PG_compound, &page->flags);
}
#endif
#endif /* !PAGEFLAGS_EXTENDED */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* PageHuge() only returns true for hugetlbfs pages, but not for
* normal or transparent huge pages.
*
* PageTransHuge() returns true for both transparent huge and
* hugetlbfs pages, but not normal pages. PageTransHuge() can only be
* called only in the core VM paths where hugetlbfs pages can't exist.
*/
static inline int PageTransHuge(struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
return PageHead(page);
}
/*
* PageTransCompound returns true for both transparent huge pages
* and hugetlbfs pages, so it should only be called when it's known
* that hugetlbfs pages aren't involved.
*/
static inline int PageTransCompound(struct page *page)
{
return PageCompound(page);
}
/*
* PageTransTail returns true for both transparent huge pages
* and hugetlbfs pages, so it should only be called when it's known
* that hugetlbfs pages aren't involved.
*/
static inline int PageTransTail(struct page *page)
{
return PageTail(page);
}
#else
static inline int PageTransHuge(struct page *page)
{
return 0;
}
static inline int PageTransCompound(struct page *page)
{
return 0;
}
static inline int PageTransTail(struct page *page)
{
return 0;
}
#endif
/*
* If network-based swap is enabled, sl*b must keep track of whether pages
* were allocated from pfmemalloc reserves.
*/
static inline int PageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
return PageActive(page);
}
static inline void SetPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
SetPageActive(page);
}
static inline void __ClearPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
__ClearPageActive(page);
}
static inline void ClearPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
ClearPageActive(page);
}
#ifdef CONFIG_MMU
#define __PG_MLOCKED (1 << PG_mlocked)
#else
#define __PG_MLOCKED 0
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __PG_COMPOUND_LOCK (1 << PG_compound_lock)
#else
#define __PG_COMPOUND_LOCK 0
#endif
/*
* Flags checked when a page is freed. Pages being freed should not have
* these flags set. It they are, there is a problem.
*/
#define PAGE_FLAGS_CHECK_AT_FREE \
(1 << PG_lru | 1 << PG_locked | \
1 << PG_private | 1 << PG_private_2 | \
1 << PG_writeback | 1 << PG_reserved | \
1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \
1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \
__PG_COMPOUND_LOCK)
/*
* Flags checked when a page is prepped for return by the page allocator.
* Pages being prepped should not have any flags set. It they are set,
* there has been a kernel bug or struct page corruption.
*/
#define PAGE_FLAGS_CHECK_AT_PREP ((1 << NR_PAGEFLAGS) - 1)
#define PAGE_FLAGS_PRIVATE \
(1 << PG_private | 1 << PG_private_2)
/**
* page_has_private - Determine if page has private stuff
* @page: The page to be checked
*
* Determine if a page has private stuff, indicating that release routines
* should be invoked upon it.
*/
static inline int page_has_private(struct page *page)
{
return !!(page->flags & PAGE_FLAGS_PRIVATE);
}
#endif /* !__GENERATING_BOUNDS_H */
#endif /* PAGE_FLAGS_H */